메뉴 건너뛰기




Volumn 25, Issue 6, 2014, Pages 285-292

Could microRNAs contribute to the maintenance of β cell identity?

Author keywords

Cellular identity; Dedifferentiation; Diabetes; Endocrine pancreas; MiRNAs; cells

Indexed keywords

INSULIN; MICRORNA;

EID: 84901835072     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2014.01.003     Document Type: Review
Times cited : (40)

References (94)
  • 1
    • 51149203927 scopus 로고
    • Canalization of development and the inheritance of acquired characters
    • Waddington C.H. Canalization of development and the inheritance of acquired characters. Nature 1942, 150:563-565.
    • (1942) Nature , vol.150 , pp. 563-565
    • Waddington, C.H.1
  • 2
    • 0025976462 scopus 로고
    • Differentiation requires continuous regulation
    • Blau H.M., Baltimore D. Differentiation requires continuous regulation. J. Cell Biol. 1991, 112:781-783.
    • (1991) J. Cell Biol. , vol.112 , pp. 781-783
    • Blau, H.M.1    Baltimore, D.2
  • 3
    • 0031851293 scopus 로고    scopus 로고
    • Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation
    • Alberti K.G., Zimmet P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15:539-553.
    • (1998) Diabet. Med. , vol.15 , pp. 539-553
    • Alberti, K.G.1    Zimmet, P.Z.2
  • 4
    • 79954563768 scopus 로고    scopus 로고
    • Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx
    • Dhawan S., et al. Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev. Cell 2011, 20:419-429.
    • (2011) Dev. Cell , vol.20 , pp. 419-429
    • Dhawan, S.1
  • 5
    • 84866389264 scopus 로고    scopus 로고
    • Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure
    • Talchai C., et al. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 2012, 150:1223-1234.
    • (2012) Cell , vol.150 , pp. 1223-1234
    • Talchai, C.1
  • 6
    • 84881218353 scopus 로고    scopus 로고
    • Inactivation of specific beta cell transcription factors in type 2 diabetes
    • Guo S., et al. Inactivation of specific beta cell transcription factors in type 2 diabetes. J. Clin. Invest. 2013, 123:3305-3316.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3305-3316
    • Guo, S.1
  • 7
    • 33745863033 scopus 로고    scopus 로고
    • Islet beta cell failure in type 2 diabetes
    • Prentki M., Nolan C.J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 2006, 116:1802-1812.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1802-1812
    • Prentki, M.1    Nolan, C.J.2
  • 8
    • 79952266112 scopus 로고    scopus 로고
    • Re-dicing the pancreatic beta-cell: do microRNAs define cellular identity?
    • Tattikota S.G., Poy M.N. Re-dicing the pancreatic beta-cell: do microRNAs define cellular identity?. EMBO J. 2011, 30:797-799.
    • (2011) EMBO J. , vol.30 , pp. 797-799
    • Tattikota, S.G.1    Poy, M.N.2
  • 9
    • 79954512711 scopus 로고    scopus 로고
    • Removing the brakes on cell identity
    • Akerman I., et al. Removing the brakes on cell identity. Dev. Cell 2011, 20:411-412.
    • (2011) Dev. Cell , vol.20 , pp. 411-412
    • Akerman, I.1
  • 10
    • 84872478906 scopus 로고    scopus 로고
    • Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult beta cells
    • van Arensbergen J., et al. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult beta cells. Genes Dev. 2013, 27:52-63.
    • (2013) Genes Dev. , vol.27 , pp. 52-63
    • van Arensbergen, J.1
  • 11
    • 84873514082 scopus 로고    scopus 로고
    • Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity
    • Schaffer A.E., et al. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet. 2013, 9:e1003274.
    • (2013) PLoS Genet. , vol.9
    • Schaffer, A.E.1
  • 12
    • 84876800552 scopus 로고    scopus 로고
    • Control of cell identity in pancreas development and regeneration
    • Stanger B.Z., Hebrok M. Control of cell identity in pancreas development and regeneration. Gastroenterology 2013, 144:1170-1179.
    • (2013) Gastroenterology , vol.144 , pp. 1170-1179
    • Stanger, B.Z.1    Hebrok, M.2
  • 13
    • 84884590826 scopus 로고    scopus 로고
    • Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells
    • Taylor B.L., et al. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep. 2013, 4:1262-1275.
    • (2013) Cell Rep. , vol.4 , pp. 1262-1275
    • Taylor, B.L.1
  • 14
    • 24144496798 scopus 로고    scopus 로고
    • Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes
    • Kjorholt C., et al. Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes. Diabetes 2005, 54:2755-2763.
    • (2005) Diabetes , vol.54 , pp. 2755-2763
    • Kjorholt, C.1
  • 15
    • 77952966500 scopus 로고    scopus 로고
    • Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program
    • van Arensbergen J., et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res. 2010, 20:722-732.
    • (2010) Genome Res. , vol.20 , pp. 722-732
    • van Arensbergen, J.1
  • 16
    • 84861914948 scopus 로고    scopus 로고
    • Maintenance of beta-cell maturity and plasticity in the adult pancreas: developmental biology concepts in adult physiology
    • Szabat M., et al. Maintenance of beta-cell maturity and plasticity in the adult pancreas: developmental biology concepts in adult physiology. Diabetes 2012, 61:1365-1371.
    • (2012) Diabetes , vol.61 , pp. 1365-1371
    • Szabat, M.1
  • 17
    • 84865175215 scopus 로고    scopus 로고
    • Epigenetic regulation of pancreas development and function
    • Avrahami D., Kaestner K.H. Epigenetic regulation of pancreas development and function. Semin. Cell Dev. Biol. 2012, 23:693-700.
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 693-700
    • Avrahami, D.1    Kaestner, K.H.2
  • 18
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 19
    • 84984765621 scopus 로고    scopus 로고
    • Canalization of development by microRNAs
    • Hornstein E., Shomron N. Canalization of development by microRNAs. Nat. Genet. 2006, 38(Suppl.):S20-S24.
    • (2006) Nat. Genet. , vol.38 , Issue.SUPPL.
    • Hornstein, E.1    Shomron, N.2
  • 20
    • 26944441255 scopus 로고    scopus 로고
    • Dicing and slicing: the core machinery of the RNA interference pathway
    • Hammond S.M. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. 2005, 579:5822-5829.
    • (2005) FEBS Lett. , vol.579 , pp. 5822-5829
    • Hammond, S.M.1
  • 21
    • 84883197339 scopus 로고    scopus 로고
    • The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal
    • Doyle M., et al. The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal. RNA 2013, 19:1238-1252.
    • (2013) RNA , vol.19 , pp. 1238-1252
    • Doyle, M.1
  • 22
    • 79952259862 scopus 로고    scopus 로고
    • MiRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors
    • Melkman-Zehavi T., et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011, 30:835-845.
    • (2011) EMBO J. , vol.30 , pp. 835-845
    • Melkman-Zehavi, T.1
  • 23
    • 36248978699 scopus 로고    scopus 로고
    • MicroRNA expression is required for pancreatic islet cell genesis in the mouse
    • Lynn F.C., et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007, 56:2938-2945.
    • (2007) Diabetes , vol.56 , pp. 2938-2945
    • Lynn, F.C.1
  • 24
    • 84876530204 scopus 로고    scopus 로고
    • Dicer1 is required to repress neuronal fate during endocrine cell maturation
    • Kanji M.S., et al. Dicer1 is required to repress neuronal fate during endocrine cell maturation. Diabetes 2013, 62:1602-1611.
    • (2013) Diabetes , vol.62 , pp. 1602-1611
    • Kanji, M.S.1
  • 25
    • 84455161954 scopus 로고    scopus 로고
    • Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus
    • Kalis M., et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS ONE 2011, 6:e29166.
    • (2011) PLoS ONE , vol.6
    • Kalis, M.1
  • 26
    • 0028149890 scopus 로고
    • Insulin-promoter-factor 1 is required for pancreas development in mice
    • Jonsson J., et al. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994, 371:606-609.
    • (1994) Nature , vol.371 , pp. 606-609
    • Jonsson, J.1
  • 27
    • 62649123872 scopus 로고    scopus 로고
    • Dicer is required for maintaining adult pancreas
    • Morita S., et al. Dicer is required for maintaining adult pancreas. PLoS ONE 2009, 4:e4212.
    • (2009) PLoS ONE , vol.4
    • Morita, S.1
  • 28
    • 20944450160 scopus 로고    scopus 로고
    • Combinatorial microRNA target predictions
    • Krek A., et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37:495-500.
    • (2005) Nat. Genet. , vol.37 , pp. 495-500
    • Krek, A.1
  • 29
    • 9144270691 scopus 로고    scopus 로고
    • A pancreatic islet-specific microRNA regulates insulin secretion
    • Poy M.N., et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432:226-230.
    • (2004) Nature , vol.432 , pp. 226-230
    • Poy, M.N.1
  • 30
    • 65249093130 scopus 로고    scopus 로고
    • MiR-375 maintains normal pancreatic alpha- and beta-cell mass
    • Poy M.N., et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:5813-5818.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 5813-5818
    • Poy, M.N.1
  • 31
    • 39749143354 scopus 로고    scopus 로고
    • Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters
    • Ventura A., et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008, 132:875-886.
    • (2008) Cell , vol.132 , pp. 875-886
    • Ventura, A.1
  • 32
    • 84884686777 scopus 로고    scopus 로고
    • MiR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development
    • Wystub K., et al. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet. 2013, 9:e1003793.
    • (2013) PLoS Genet. , vol.9
    • Wystub, K.1
  • 33
    • 80052181929 scopus 로고    scopus 로고
    • Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects
    • Medeiros L.A., et al. Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14163-14168.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14163-14168
    • Medeiros, L.A.1
  • 34
    • 79952267171 scopus 로고    scopus 로고
    • MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors
    • Shibata M., et al. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J. Neurosci. 2011, 31:3407-3422.
    • (2011) J. Neurosci. , vol.31 , pp. 3407-3422
    • Shibata, M.1
  • 35
    • 60849106298 scopus 로고    scopus 로고
    • Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126
    • Kuhnert F., et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 2008, 135:3989-3993.
    • (2008) Development , vol.135 , pp. 3989-3993
    • Kuhnert, F.1
  • 36
    • 48549106378 scopus 로고    scopus 로고
    • The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis
    • Wang S., et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 2008, 15:261-271.
    • (2008) Dev. Cell , vol.15 , pp. 261-271
    • Wang, S.1
  • 37
    • 84877601932 scopus 로고    scopus 로고
    • When less is more: the forbidden fruits of gene repression in the adult beta-cell
    • Pullen T.J., Rutter G.A. When less is more: the forbidden fruits of gene repression in the adult beta-cell. Diabetes Obes. Metab. 2013, 15:503-512.
    • (2013) Diabetes Obes. Metab. , vol.15 , pp. 503-512
    • Pullen, T.J.1    Rutter, G.A.2
  • 38
    • 45249092800 scopus 로고    scopus 로고
    • Why expression of some genes is disallowed in beta-cells
    • Quintens R., et al. Why expression of some genes is disallowed in beta-cells. Biochem. Soc. Trans. 2008, 36:300-305.
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 300-305
    • Quintens, R.1
  • 39
    • 79960322580 scopus 로고    scopus 로고
    • MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
    • Pullen T.J., et al. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol. Cell. Biol. 2011, 31:3182-3194.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 3182-3194
    • Pullen, T.J.1
  • 40
    • 77953429949 scopus 로고    scopus 로고
    • Identification of genes selectively disallowed in the pancreatic islet
    • Pullen T.J., et al. Identification of genes selectively disallowed in the pancreatic islet. Islets 2010, 2:89-95.
    • (2010) Islets , vol.2 , pp. 89-95
    • Pullen, T.J.1
  • 41
    • 78651472654 scopus 로고    scopus 로고
    • Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation
    • Thorrez L., et al. Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res. 2011, 21:95-105.
    • (2011) Genome Res. , vol.21 , pp. 95-105
    • Thorrez, L.1
  • 42
    • 0033431775 scopus 로고    scopus 로고
    • Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells
    • Ishihara H., et al. Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J. Clin. Invest. 1999, 104:1621-1629.
    • (1999) J. Clin. Invest. , vol.104 , pp. 1621-1629
    • Ishihara, H.1
  • 43
    • 12044255619 scopus 로고
    • Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing
    • Sekine N., et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J. Biol. Chem. 1994, 269:4895-4902.
    • (1994) J. Biol. Chem. , vol.269 , pp. 4895-4902
    • Sekine, N.1
  • 44
    • 84863214806 scopus 로고    scopus 로고
    • Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic beta-cells leads to relative hyperinsulinism during exercise
    • Pullen T.J., et al. Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic beta-cells leads to relative hyperinsulinism during exercise. Diabetes 2012, 61:1719-1725.
    • (2012) Diabetes , vol.61 , pp. 1719-1725
    • Pullen, T.J.1
  • 45
    • 28444449496 scopus 로고    scopus 로고
    • The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development
    • Hornstein E. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 2005, 438:671-674.
    • (2005) Nature , vol.438 , pp. 671-674
    • Hornstein, E.1
  • 46
    • 29144505309 scopus 로고    scopus 로고
    • The widespread impact of mammalian microRNAs on mRNA repression and evolution
    • Farh K.K., et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 2005, 310:1817-1821.
    • (2005) Science , vol.310 , pp. 1817-1821
    • Farh, K.K.1
  • 47
    • 13944282215 scopus 로고    scopus 로고
    • Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
    • Lim L.P., et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433:769-773.
    • (2005) Nature , vol.433 , pp. 769-773
    • Lim, L.P.1
  • 48
    • 28944439309 scopus 로고    scopus 로고
    • Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution
    • Stark A., et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 2005, 123:1133-1146.
    • (2005) Cell , vol.123 , pp. 1133-1146
    • Stark, A.1
  • 49
    • 34447128957 scopus 로고    scopus 로고
    • Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells
    • Oetjen E., et al. Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells. Diabetologia 2007, 50:1678-1687.
    • (2007) Diabetologia , vol.50 , pp. 1678-1687
    • Oetjen, E.1
  • 50
    • 84866115684 scopus 로고    scopus 로고
    • MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells
    • Zhao X., et al. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J. Biol. Chem. 2012, 287:31155-31164.
    • (2012) J. Biol. Chem. , vol.287 , pp. 31155-31164
    • Zhao, X.1
  • 51
    • 58249107416 scopus 로고    scopus 로고
    • Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription
    • Tang X., et al. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription. RNA 2009, 15:287-293.
    • (2009) RNA , vol.15 , pp. 287-293
    • Tang, X.1
  • 52
    • 84868132259 scopus 로고    scopus 로고
    • Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds
    • Nieto M., et al. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant. 2012, 21:1761-1774.
    • (2012) Cell Transplant. , vol.21 , pp. 1761-1774
    • Nieto, M.1
  • 53
    • 77951158889 scopus 로고    scopus 로고
    • Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells
    • Roggli E., et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010, 59:978-986.
    • (2010) Diabetes , vol.59 , pp. 978-986
    • Roggli, E.1
  • 54
    • 79961065195 scopus 로고    scopus 로고
    • The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death
    • Ruan Q., et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12030-12035.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 12030-12035
    • Ruan, Q.1
  • 55
    • 84891856209 scopus 로고    scopus 로고
    • Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets
    • Kameswaran V., et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014, 19:135-145.
    • (2014) Cell Metab. , vol.19 , pp. 135-145
    • Kameswaran, V.1
  • 56
    • 79960464624 scopus 로고    scopus 로고
    • Beta-cell evolution: how the pancreas borrowed from the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship
    • Arntfield M.E., van der Kooy D. Beta-cell evolution: how the pancreas borrowed from the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship. Bioessays 2011, 33:582-587.
    • (2011) Bioessays , vol.33 , pp. 582-587
    • Arntfield, M.E.1    van der Kooy, D.2
  • 57
    • 34147092649 scopus 로고    scopus 로고
    • Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression
    • Collombat P., et al. Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 2007, 117:961-970.
    • (2007) J. Clin. Invest. , vol.117 , pp. 961-970
    • Collombat, P.1
  • 58
    • 77951611220 scopus 로고    scopus 로고
    • Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss
    • Thorel F., et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010, 464:1149-1154.
    • (2010) Nature , vol.464 , pp. 1149-1154
    • Thorel, F.1
  • 59
    • 84860410786 scopus 로고    scopus 로고
    • Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression
    • Yang Y.P., et al. Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes Dev. 2011, 25:1680-1685.
    • (2011) Genes Dev. , vol.25 , pp. 1680-1685
    • Yang, Y.P.1
  • 60
    • 68149162957 scopus 로고    scopus 로고
    • The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells
    • Collombat P., et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009, 138:449-462.
    • (2009) Cell , vol.138 , pp. 449-462
    • Collombat, P.1
  • 61
    • 84883722508 scopus 로고    scopus 로고
    • Conversion of mature human beta-cells into glucagon-producing alpha-cells
    • Spijker H.S., et al. Conversion of mature human beta-cells into glucagon-producing alpha-cells. Diabetes 2013, 62:2471-2480.
    • (2013) Diabetes , vol.62 , pp. 2471-2480
    • Spijker, H.S.1
  • 62
    • 80455173402 scopus 로고    scopus 로고
    • Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming
    • Papizan J.B., et al. Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming. Genes Dev. 2011, 25:2291-2305.
    • (2011) Genes Dev. , vol.25 , pp. 2291-2305
    • Papizan, J.B.1
  • 63
    • 0142091542 scopus 로고    scopus 로고
    • Opposing actions of Arx and Pax4 in endocrine pancreas development
    • Collombat P., et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 2003, 17:2591-2603.
    • (2003) Genes Dev. , vol.17 , pp. 2591-2603
    • Collombat, P.1
  • 64
    • 84873815396 scopus 로고    scopus 로고
    • MicroRNA expression in alpha and beta cells of human pancreatic islets
    • Klein D., et al. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS ONE 2013, 8:e55064.
    • (2013) PLoS ONE , vol.8
    • Klein, D.1
  • 65
    • 77956276832 scopus 로고    scopus 로고
    • High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression
    • Fred R.G., et al. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS ONE 2010, 5:e10843.
    • (2010) PLoS ONE , vol.5
    • Fred, R.G.1
  • 66
    • 84883116249 scopus 로고    scopus 로고
    • MiR-25 and miR-92a regulate insulin I biosynthesis in rats
    • Setyowati Karolina D., et al. miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol. 2013, 10:1365-1378.
    • (2013) RNA Biol. , vol.10 , pp. 1365-1378
    • Setyowati Karolina, D.1
  • 67
    • 84876484626 scopus 로고    scopus 로고
    • MiRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models
    • Kim J.W., et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 2013, 56:847-855.
    • (2013) Diabetologia , vol.56 , pp. 847-855
    • Kim, J.W.1
  • 68
    • 84883793279 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein regulates insulin transcription through microRNA-204
    • Xu G., et al. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat. Med. 2013, 19:1141-1146.
    • (2013) Nat. Med. , vol.19 , pp. 1141-1146
    • Xu, G.1
  • 69
    • 80051800915 scopus 로고    scopus 로고
    • MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1
    • Zhang Z.W., et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett. 2011, 585:2592-2598.
    • (2011) FEBS Lett. , vol.585 , pp. 2592-2598
    • Zhang, Z.W.1
  • 70
    • 84887240183 scopus 로고    scopus 로고
    • MiR-375, a microRNA related to diabetes
    • Li X. MiR-375, a microRNA related to diabetes. Gene 2013, 533:1-4.
    • (2013) Gene , vol.533 , pp. 1-4
    • Li, X.1
  • 71
    • 84891867862 scopus 로고    scopus 로고
    • Argonaute2 mediates compensatory expansion of the pancreatic beta cell
    • Tattikota S.G., et al. Argonaute2 mediates compensatory expansion of the pancreatic beta cell. Cell Metab. 2014, 19:122-134.
    • (2014) Cell Metab. , vol.19 , pp. 122-134
    • Tattikota, S.G.1
  • 72
    • 84885109272 scopus 로고    scopus 로고
    • MiR-184 regulates insulin secretion through repression of Slc25a22
    • Morita S., et al. MiR-184 regulates insulin secretion through repression of Slc25a22. PeerJ 2013, 1:e162.
    • (2013) PeerJ , vol.1
    • Morita, S.1
  • 73
    • 84865581182 scopus 로고    scopus 로고
    • Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction
    • Guay C., et al. Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes. Metab. 2012, 14(Suppl. 3):12-21.
    • (2012) Diabetes Obes. Metab. , vol.14 , Issue.SUPPL. 3 , pp. 12-21
    • Guay, C.1
  • 74
    • 37749036293 scopus 로고    scopus 로고
    • Most Caenorhabditis elegans microRNAs are individually not essential for development or viability
    • Miska E.A., et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007, 3:e215.
    • (2007) PLoS Genet. , vol.3
    • Miska, E.A.1
  • 75
    • 76749134307 scopus 로고    scopus 로고
    • Many families of C. elegans microRNAs are not essential for development or viability
    • Alvarez-Saavedra E., Horvitz H.R. Many families of C. elegans microRNAs are not essential for development or viability. Curr. Biol. 2010, 20:367-373.
    • (2010) Curr. Biol. , vol.20 , pp. 367-373
    • Alvarez-Saavedra, E.1    Horvitz, H.R.2
  • 76
    • 33749507943 scopus 로고    scopus 로고
    • A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes
    • Kent O.A., Mendell J.T. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006, 25:6188-6196.
    • (2006) Oncogene , vol.25 , pp. 6188-6196
    • Kent, O.A.1    Mendell, J.T.2
  • 77
    • 84864305807 scopus 로고    scopus 로고
    • Pancreas-enriched miRNA refines endocrine cell differentiation
    • Kredo-Russo S., et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development 2012, 139:3021-3031.
    • (2012) Development , vol.139 , pp. 3021-3031
    • Kredo-Russo, S.1
  • 78
    • 80052266532 scopus 로고    scopus 로고
    • MicroRNAs can generate thresholds in target gene expression
    • Mukherji S., et al. MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 2011, 43:854-859.
    • (2011) Nat. Genet. , vol.43 , pp. 854-859
    • Mukherji, S.1
  • 79
    • 79951865331 scopus 로고    scopus 로고
    • Analysis of microRNA knockouts in mice
    • Park C.Y., et al. Analysis of microRNA knockouts in mice. Hum. Mol. Genet. 2010, 19:R169-R175.
    • (2010) Hum. Mol. Genet. , vol.19
    • Park, C.Y.1
  • 80
    • 84858379476 scopus 로고    scopus 로고
    • MicroRNAs in stress signaling and human disease
    • Mendell J.T., Olson E.N. MicroRNAs in stress signaling and human disease. Cell 2012, 148:1172-1187.
    • (2012) Cell , vol.148 , pp. 1172-1187
    • Mendell, J.T.1    Olson, E.N.2
  • 81
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12:861-874.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 861-874
    • Esteller, M.1
  • 82
    • 68449097267 scopus 로고    scopus 로고
    • MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity
    • Cordes K.R., et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009, 460:705-710.
    • (2009) Nature , vol.460 , pp. 705-710
    • Cordes, K.R.1
  • 83
    • 80051684096 scopus 로고    scopus 로고
    • MicroRNA-mediated conversion of human fibroblasts to neurons
    • Yoo A.S., et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011, 476:228-231.
    • (2011) Nature , vol.476 , pp. 228-231
    • Yoo, A.S.1
  • 84
    • 79953881831 scopus 로고    scopus 로고
    • Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
    • Anokye-Danso F., et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011, 8:376-388.
    • (2011) Cell Stem Cell , vol.8 , pp. 376-388
    • Anokye-Danso, F.1
  • 85
    • 79955780736 scopus 로고    scopus 로고
    • Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells
    • Subramanyam D., et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 2011, 29:443-448.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 443-448
    • Subramanyam, D.1
  • 86
    • 84881547016 scopus 로고    scopus 로고
    • MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny
    • Nimmo R., et al. MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. Dev. Cell 2013, 26:237-249.
    • (2013) Dev. Cell , vol.26 , pp. 237-249
    • Nimmo, R.1
  • 87
    • 63649138643 scopus 로고    scopus 로고
    • MiR-124 regulates adult neurogenesis in the subventricular zone stem cell niche
    • Cheng L.C., et al. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 2009, 12:399-408.
    • (2009) Nat. Neurosci. , vol.12 , pp. 399-408
    • Cheng, L.C.1
  • 88
    • 80052263198 scopus 로고    scopus 로고
    • MiR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression
    • Sanuki R., et al. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat. Neurosci. 2011, 14:1125-1134.
    • (2011) Nat. Neurosci. , vol.14 , pp. 1125-1134
    • Sanuki, R.1
  • 89
    • 34147153781 scopus 로고    scopus 로고
    • Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2
    • Zhao Y., et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007, 129:303-317.
    • (2007) Cell , vol.129 , pp. 303-317
    • Zhao, Y.1
  • 90
    • 70349213385 scopus 로고    scopus 로고
    • Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster
    • Boettger T., et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 2009, 119:2634-2647.
    • (2009) J. Clin. Invest. , vol.119 , pp. 2634-2647
    • Boettger, T.1
  • 91
    • 70449701464 scopus 로고    scopus 로고
    • The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease
    • Elia L., et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 2009, 16:1590-1598.
    • (2009) Cell Death Differ. , vol.16 , pp. 1590-1598
    • Elia, L.1
  • 92
    • 77954408884 scopus 로고    scopus 로고
    • The miR-144/451 locus is required for erythroid homeostasis
    • Rasmussen K.D., et al. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 2010, 207:1351-1358.
    • (2010) J. Exp. Med. , vol.207 , pp. 1351-1358
    • Rasmussen, K.D.1
  • 93
    • 77955877430 scopus 로고    scopus 로고
    • MiR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta
    • Yu D., et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010, 24:1620-1633.
    • (2010) Genes Dev. , vol.24 , pp. 1620-1633
    • Yu, D.1
  • 94
    • 77956632634 scopus 로고    scopus 로고
    • Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses
    • Lu L.F., et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 2010, 142:914-929.
    • (2010) Cell , vol.142 , pp. 914-929
    • Lu, L.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.