-
1
-
-
51149203927
-
Canalization of development and the inheritance of acquired characters
-
Waddington C.H. Canalization of development and the inheritance of acquired characters. Nature 1942, 150:563-565.
-
(1942)
Nature
, vol.150
, pp. 563-565
-
-
Waddington, C.H.1
-
2
-
-
0025976462
-
Differentiation requires continuous regulation
-
Blau H.M., Baltimore D. Differentiation requires continuous regulation. J. Cell Biol. 1991, 112:781-783.
-
(1991)
J. Cell Biol.
, vol.112
, pp. 781-783
-
-
Blau, H.M.1
Baltimore, D.2
-
3
-
-
0031851293
-
Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation
-
Alberti K.G., Zimmet P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15:539-553.
-
(1998)
Diabet. Med.
, vol.15
, pp. 539-553
-
-
Alberti, K.G.1
Zimmet, P.Z.2
-
4
-
-
79954563768
-
Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx
-
Dhawan S., et al. Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev. Cell 2011, 20:419-429.
-
(2011)
Dev. Cell
, vol.20
, pp. 419-429
-
-
Dhawan, S.1
-
5
-
-
84866389264
-
Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure
-
Talchai C., et al. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 2012, 150:1223-1234.
-
(2012)
Cell
, vol.150
, pp. 1223-1234
-
-
Talchai, C.1
-
6
-
-
84881218353
-
Inactivation of specific beta cell transcription factors in type 2 diabetes
-
Guo S., et al. Inactivation of specific beta cell transcription factors in type 2 diabetes. J. Clin. Invest. 2013, 123:3305-3316.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3305-3316
-
-
Guo, S.1
-
7
-
-
33745863033
-
Islet beta cell failure in type 2 diabetes
-
Prentki M., Nolan C.J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 2006, 116:1802-1812.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 1802-1812
-
-
Prentki, M.1
Nolan, C.J.2
-
8
-
-
79952266112
-
Re-dicing the pancreatic beta-cell: do microRNAs define cellular identity?
-
Tattikota S.G., Poy M.N. Re-dicing the pancreatic beta-cell: do microRNAs define cellular identity?. EMBO J. 2011, 30:797-799.
-
(2011)
EMBO J.
, vol.30
, pp. 797-799
-
-
Tattikota, S.G.1
Poy, M.N.2
-
9
-
-
79954512711
-
Removing the brakes on cell identity
-
Akerman I., et al. Removing the brakes on cell identity. Dev. Cell 2011, 20:411-412.
-
(2011)
Dev. Cell
, vol.20
, pp. 411-412
-
-
Akerman, I.1
-
10
-
-
84872478906
-
Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult beta cells
-
van Arensbergen J., et al. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult beta cells. Genes Dev. 2013, 27:52-63.
-
(2013)
Genes Dev.
, vol.27
, pp. 52-63
-
-
van Arensbergen, J.1
-
11
-
-
84873514082
-
Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity
-
Schaffer A.E., et al. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet. 2013, 9:e1003274.
-
(2013)
PLoS Genet.
, vol.9
-
-
Schaffer, A.E.1
-
12
-
-
84876800552
-
Control of cell identity in pancreas development and regeneration
-
Stanger B.Z., Hebrok M. Control of cell identity in pancreas development and regeneration. Gastroenterology 2013, 144:1170-1179.
-
(2013)
Gastroenterology
, vol.144
, pp. 1170-1179
-
-
Stanger, B.Z.1
Hebrok, M.2
-
13
-
-
84884590826
-
Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells
-
Taylor B.L., et al. Nkx6.1 is essential for maintaining the functional state of pancreatic beta cells. Cell Rep. 2013, 4:1262-1275.
-
(2013)
Cell Rep.
, vol.4
, pp. 1262-1275
-
-
Taylor, B.L.1
-
14
-
-
24144496798
-
Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes
-
Kjorholt C., et al. Chronic hyperglycemia, independent of plasma lipid levels, is sufficient for the loss of beta-cell differentiation and secretory function in the db/db mouse model of diabetes. Diabetes 2005, 54:2755-2763.
-
(2005)
Diabetes
, vol.54
, pp. 2755-2763
-
-
Kjorholt, C.1
-
15
-
-
77952966500
-
Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program
-
van Arensbergen J., et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res. 2010, 20:722-732.
-
(2010)
Genome Res.
, vol.20
, pp. 722-732
-
-
van Arensbergen, J.1
-
16
-
-
84861914948
-
Maintenance of beta-cell maturity and plasticity in the adult pancreas: developmental biology concepts in adult physiology
-
Szabat M., et al. Maintenance of beta-cell maturity and plasticity in the adult pancreas: developmental biology concepts in adult physiology. Diabetes 2012, 61:1365-1371.
-
(2012)
Diabetes
, vol.61
, pp. 1365-1371
-
-
Szabat, M.1
-
17
-
-
84865175215
-
Epigenetic regulation of pancreas development and function
-
Avrahami D., Kaestner K.H. Epigenetic regulation of pancreas development and function. Semin. Cell Dev. Biol. 2012, 23:693-700.
-
(2012)
Semin. Cell Dev. Biol.
, vol.23
, pp. 693-700
-
-
Avrahami, D.1
Kaestner, K.H.2
-
18
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
19
-
-
84984765621
-
Canalization of development by microRNAs
-
Hornstein E., Shomron N. Canalization of development by microRNAs. Nat. Genet. 2006, 38(Suppl.):S20-S24.
-
(2006)
Nat. Genet.
, vol.38
, Issue.SUPPL.
-
-
Hornstein, E.1
Shomron, N.2
-
20
-
-
26944441255
-
Dicing and slicing: the core machinery of the RNA interference pathway
-
Hammond S.M. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. 2005, 579:5822-5829.
-
(2005)
FEBS Lett.
, vol.579
, pp. 5822-5829
-
-
Hammond, S.M.1
-
21
-
-
84883197339
-
The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal
-
Doyle M., et al. The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal. RNA 2013, 19:1238-1252.
-
(2013)
RNA
, vol.19
, pp. 1238-1252
-
-
Doyle, M.1
-
22
-
-
79952259862
-
MiRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors
-
Melkman-Zehavi T., et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011, 30:835-845.
-
(2011)
EMBO J.
, vol.30
, pp. 835-845
-
-
Melkman-Zehavi, T.1
-
23
-
-
36248978699
-
MicroRNA expression is required for pancreatic islet cell genesis in the mouse
-
Lynn F.C., et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 2007, 56:2938-2945.
-
(2007)
Diabetes
, vol.56
, pp. 2938-2945
-
-
Lynn, F.C.1
-
24
-
-
84876530204
-
Dicer1 is required to repress neuronal fate during endocrine cell maturation
-
Kanji M.S., et al. Dicer1 is required to repress neuronal fate during endocrine cell maturation. Diabetes 2013, 62:1602-1611.
-
(2013)
Diabetes
, vol.62
, pp. 1602-1611
-
-
Kanji, M.S.1
-
25
-
-
84455161954
-
Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus
-
Kalis M., et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS ONE 2011, 6:e29166.
-
(2011)
PLoS ONE
, vol.6
-
-
Kalis, M.1
-
26
-
-
0028149890
-
Insulin-promoter-factor 1 is required for pancreas development in mice
-
Jonsson J., et al. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994, 371:606-609.
-
(1994)
Nature
, vol.371
, pp. 606-609
-
-
Jonsson, J.1
-
27
-
-
62649123872
-
Dicer is required for maintaining adult pancreas
-
Morita S., et al. Dicer is required for maintaining adult pancreas. PLoS ONE 2009, 4:e4212.
-
(2009)
PLoS ONE
, vol.4
-
-
Morita, S.1
-
28
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A., et al. Combinatorial microRNA target predictions. Nat. Genet. 2005, 37:495-500.
-
(2005)
Nat. Genet.
, vol.37
, pp. 495-500
-
-
Krek, A.1
-
29
-
-
9144270691
-
A pancreatic islet-specific microRNA regulates insulin secretion
-
Poy M.N., et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432:226-230.
-
(2004)
Nature
, vol.432
, pp. 226-230
-
-
Poy, M.N.1
-
30
-
-
65249093130
-
MiR-375 maintains normal pancreatic alpha- and beta-cell mass
-
Poy M.N., et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:5813-5818.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 5813-5818
-
-
Poy, M.N.1
-
31
-
-
39749143354
-
Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters
-
Ventura A., et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008, 132:875-886.
-
(2008)
Cell
, vol.132
, pp. 875-886
-
-
Ventura, A.1
-
32
-
-
84884686777
-
MiR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development
-
Wystub K., et al. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet. 2013, 9:e1003793.
-
(2013)
PLoS Genet.
, vol.9
-
-
Wystub, K.1
-
33
-
-
80052181929
-
Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects
-
Medeiros L.A., et al. Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14163-14168.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14163-14168
-
-
Medeiros, L.A.1
-
34
-
-
79952267171
-
MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors
-
Shibata M., et al. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J. Neurosci. 2011, 31:3407-3422.
-
(2011)
J. Neurosci.
, vol.31
, pp. 3407-3422
-
-
Shibata, M.1
-
35
-
-
60849106298
-
Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126
-
Kuhnert F., et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 2008, 135:3989-3993.
-
(2008)
Development
, vol.135
, pp. 3989-3993
-
-
Kuhnert, F.1
-
36
-
-
48549106378
-
The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis
-
Wang S., et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 2008, 15:261-271.
-
(2008)
Dev. Cell
, vol.15
, pp. 261-271
-
-
Wang, S.1
-
37
-
-
84877601932
-
When less is more: the forbidden fruits of gene repression in the adult beta-cell
-
Pullen T.J., Rutter G.A. When less is more: the forbidden fruits of gene repression in the adult beta-cell. Diabetes Obes. Metab. 2013, 15:503-512.
-
(2013)
Diabetes Obes. Metab.
, vol.15
, pp. 503-512
-
-
Pullen, T.J.1
Rutter, G.A.2
-
38
-
-
45249092800
-
Why expression of some genes is disallowed in beta-cells
-
Quintens R., et al. Why expression of some genes is disallowed in beta-cells. Biochem. Soc. Trans. 2008, 36:300-305.
-
(2008)
Biochem. Soc. Trans.
, vol.36
, pp. 300-305
-
-
Quintens, R.1
-
39
-
-
79960322580
-
MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1)
-
Pullen T.J., et al. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol. Cell. Biol. 2011, 31:3182-3194.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 3182-3194
-
-
Pullen, T.J.1
-
40
-
-
77953429949
-
Identification of genes selectively disallowed in the pancreatic islet
-
Pullen T.J., et al. Identification of genes selectively disallowed in the pancreatic islet. Islets 2010, 2:89-95.
-
(2010)
Islets
, vol.2
, pp. 89-95
-
-
Pullen, T.J.1
-
41
-
-
78651472654
-
Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation
-
Thorrez L., et al. Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res. 2011, 21:95-105.
-
(2011)
Genome Res.
, vol.21
, pp. 95-105
-
-
Thorrez, L.1
-
42
-
-
0033431775
-
Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells
-
Ishihara H., et al. Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J. Clin. Invest. 1999, 104:1621-1629.
-
(1999)
J. Clin. Invest.
, vol.104
, pp. 1621-1629
-
-
Ishihara, H.1
-
43
-
-
12044255619
-
Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing
-
Sekine N., et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J. Biol. Chem. 1994, 269:4895-4902.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 4895-4902
-
-
Sekine, N.1
-
44
-
-
84863214806
-
Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic beta-cells leads to relative hyperinsulinism during exercise
-
Pullen T.J., et al. Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic beta-cells leads to relative hyperinsulinism during exercise. Diabetes 2012, 61:1719-1725.
-
(2012)
Diabetes
, vol.61
, pp. 1719-1725
-
-
Pullen, T.J.1
-
45
-
-
28444449496
-
The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development
-
Hornstein E. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 2005, 438:671-674.
-
(2005)
Nature
, vol.438
, pp. 671-674
-
-
Hornstein, E.1
-
46
-
-
29144505309
-
The widespread impact of mammalian microRNAs on mRNA repression and evolution
-
Farh K.K., et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 2005, 310:1817-1821.
-
(2005)
Science
, vol.310
, pp. 1817-1821
-
-
Farh, K.K.1
-
47
-
-
13944282215
-
Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
-
Lim L.P., et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005, 433:769-773.
-
(2005)
Nature
, vol.433
, pp. 769-773
-
-
Lim, L.P.1
-
48
-
-
28944439309
-
Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution
-
Stark A., et al. Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 2005, 123:1133-1146.
-
(2005)
Cell
, vol.123
, pp. 1133-1146
-
-
Stark, A.1
-
49
-
-
34447128957
-
Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells
-
Oetjen E., et al. Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells. Diabetologia 2007, 50:1678-1687.
-
(2007)
Diabetologia
, vol.50
, pp. 1678-1687
-
-
Oetjen, E.1
-
50
-
-
84866115684
-
MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells
-
Zhao X., et al. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J. Biol. Chem. 2012, 287:31155-31164.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 31155-31164
-
-
Zhao, X.1
-
51
-
-
58249107416
-
Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription
-
Tang X., et al. Identification of glucose-regulated miRNAs from pancreatic β cells reveals a role for miR-30d in insulin transcription. RNA 2009, 15:287-293.
-
(2009)
RNA
, vol.15
, pp. 287-293
-
-
Tang, X.1
-
52
-
-
84868132259
-
Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds
-
Nieto M., et al. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds. Cell Transplant. 2012, 21:1761-1774.
-
(2012)
Cell Transplant.
, vol.21
, pp. 1761-1774
-
-
Nieto, M.1
-
53
-
-
77951158889
-
Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells
-
Roggli E., et al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 2010, 59:978-986.
-
(2010)
Diabetes
, vol.59
, pp. 978-986
-
-
Roggli, E.1
-
54
-
-
79961065195
-
The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death
-
Ruan Q., et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12030-12035.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 12030-12035
-
-
Ruan, Q.1
-
55
-
-
84891856209
-
Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets
-
Kameswaran V., et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014, 19:135-145.
-
(2014)
Cell Metab.
, vol.19
, pp. 135-145
-
-
Kameswaran, V.1
-
56
-
-
79960464624
-
Beta-cell evolution: how the pancreas borrowed from the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship
-
Arntfield M.E., van der Kooy D. Beta-cell evolution: how the pancreas borrowed from the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship. Bioessays 2011, 33:582-587.
-
(2011)
Bioessays
, vol.33
, pp. 582-587
-
-
Arntfield, M.E.1
van der Kooy, D.2
-
57
-
-
34147092649
-
Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression
-
Collombat P., et al. Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 2007, 117:961-970.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 961-970
-
-
Collombat, P.1
-
58
-
-
77951611220
-
Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss
-
Thorel F., et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010, 464:1149-1154.
-
(2010)
Nature
, vol.464
, pp. 1149-1154
-
-
Thorel, F.1
-
59
-
-
84860410786
-
Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression
-
Yang Y.P., et al. Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes Dev. 2011, 25:1680-1685.
-
(2011)
Genes Dev.
, vol.25
, pp. 1680-1685
-
-
Yang, Y.P.1
-
60
-
-
68149162957
-
The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells
-
Collombat P., et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009, 138:449-462.
-
(2009)
Cell
, vol.138
, pp. 449-462
-
-
Collombat, P.1
-
61
-
-
84883722508
-
Conversion of mature human beta-cells into glucagon-producing alpha-cells
-
Spijker H.S., et al. Conversion of mature human beta-cells into glucagon-producing alpha-cells. Diabetes 2013, 62:2471-2480.
-
(2013)
Diabetes
, vol.62
, pp. 2471-2480
-
-
Spijker, H.S.1
-
62
-
-
80455173402
-
Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming
-
Papizan J.B., et al. Nkx2.2 repressor complex regulates islet beta-cell specification and prevents beta-to-alpha-cell reprogramming. Genes Dev. 2011, 25:2291-2305.
-
(2011)
Genes Dev.
, vol.25
, pp. 2291-2305
-
-
Papizan, J.B.1
-
63
-
-
0142091542
-
Opposing actions of Arx and Pax4 in endocrine pancreas development
-
Collombat P., et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. Genes Dev. 2003, 17:2591-2603.
-
(2003)
Genes Dev.
, vol.17
, pp. 2591-2603
-
-
Collombat, P.1
-
64
-
-
84873815396
-
MicroRNA expression in alpha and beta cells of human pancreatic islets
-
Klein D., et al. MicroRNA expression in alpha and beta cells of human pancreatic islets. PLoS ONE 2013, 8:e55064.
-
(2013)
PLoS ONE
, vol.8
-
-
Klein, D.1
-
65
-
-
77956276832
-
High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression
-
Fred R.G., et al. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS ONE 2010, 5:e10843.
-
(2010)
PLoS ONE
, vol.5
-
-
Fred, R.G.1
-
66
-
-
84883116249
-
MiR-25 and miR-92a regulate insulin I biosynthesis in rats
-
Setyowati Karolina D., et al. miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol. 2013, 10:1365-1378.
-
(2013)
RNA Biol.
, vol.10
, pp. 1365-1378
-
-
Setyowati Karolina, D.1
-
67
-
-
84876484626
-
MiRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models
-
Kim J.W., et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 2013, 56:847-855.
-
(2013)
Diabetologia
, vol.56
, pp. 847-855
-
-
Kim, J.W.1
-
68
-
-
84883793279
-
Thioredoxin-interacting protein regulates insulin transcription through microRNA-204
-
Xu G., et al. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat. Med. 2013, 19:1141-1146.
-
(2013)
Nat. Med.
, vol.19
, pp. 1141-1146
-
-
Xu, G.1
-
69
-
-
80051800915
-
MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1
-
Zhang Z.W., et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1. FEBS Lett. 2011, 585:2592-2598.
-
(2011)
FEBS Lett.
, vol.585
, pp. 2592-2598
-
-
Zhang, Z.W.1
-
70
-
-
84887240183
-
MiR-375, a microRNA related to diabetes
-
Li X. MiR-375, a microRNA related to diabetes. Gene 2013, 533:1-4.
-
(2013)
Gene
, vol.533
, pp. 1-4
-
-
Li, X.1
-
71
-
-
84891867862
-
Argonaute2 mediates compensatory expansion of the pancreatic beta cell
-
Tattikota S.G., et al. Argonaute2 mediates compensatory expansion of the pancreatic beta cell. Cell Metab. 2014, 19:122-134.
-
(2014)
Cell Metab.
, vol.19
, pp. 122-134
-
-
Tattikota, S.G.1
-
72
-
-
84885109272
-
MiR-184 regulates insulin secretion through repression of Slc25a22
-
Morita S., et al. MiR-184 regulates insulin secretion through repression of Slc25a22. PeerJ 2013, 1:e162.
-
(2013)
PeerJ
, vol.1
-
-
Morita, S.1
-
73
-
-
84865581182
-
Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction
-
Guay C., et al. Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes. Metab. 2012, 14(Suppl. 3):12-21.
-
(2012)
Diabetes Obes. Metab.
, vol.14
, Issue.SUPPL. 3
, pp. 12-21
-
-
Guay, C.1
-
74
-
-
37749036293
-
Most Caenorhabditis elegans microRNAs are individually not essential for development or viability
-
Miska E.A., et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 2007, 3:e215.
-
(2007)
PLoS Genet.
, vol.3
-
-
Miska, E.A.1
-
75
-
-
76749134307
-
Many families of C. elegans microRNAs are not essential for development or viability
-
Alvarez-Saavedra E., Horvitz H.R. Many families of C. elegans microRNAs are not essential for development or viability. Curr. Biol. 2010, 20:367-373.
-
(2010)
Curr. Biol.
, vol.20
, pp. 367-373
-
-
Alvarez-Saavedra, E.1
Horvitz, H.R.2
-
76
-
-
33749507943
-
A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes
-
Kent O.A., Mendell J.T. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006, 25:6188-6196.
-
(2006)
Oncogene
, vol.25
, pp. 6188-6196
-
-
Kent, O.A.1
Mendell, J.T.2
-
77
-
-
84864305807
-
Pancreas-enriched miRNA refines endocrine cell differentiation
-
Kredo-Russo S., et al. Pancreas-enriched miRNA refines endocrine cell differentiation. Development 2012, 139:3021-3031.
-
(2012)
Development
, vol.139
, pp. 3021-3031
-
-
Kredo-Russo, S.1
-
78
-
-
80052266532
-
MicroRNAs can generate thresholds in target gene expression
-
Mukherji S., et al. MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 2011, 43:854-859.
-
(2011)
Nat. Genet.
, vol.43
, pp. 854-859
-
-
Mukherji, S.1
-
79
-
-
79951865331
-
Analysis of microRNA knockouts in mice
-
Park C.Y., et al. Analysis of microRNA knockouts in mice. Hum. Mol. Genet. 2010, 19:R169-R175.
-
(2010)
Hum. Mol. Genet.
, vol.19
-
-
Park, C.Y.1
-
80
-
-
84858379476
-
MicroRNAs in stress signaling and human disease
-
Mendell J.T., Olson E.N. MicroRNAs in stress signaling and human disease. Cell 2012, 148:1172-1187.
-
(2012)
Cell
, vol.148
, pp. 1172-1187
-
-
Mendell, J.T.1
Olson, E.N.2
-
81
-
-
81355142141
-
Non-coding RNAs in human disease
-
Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011, 12:861-874.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 861-874
-
-
Esteller, M.1
-
82
-
-
68449097267
-
MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity
-
Cordes K.R., et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009, 460:705-710.
-
(2009)
Nature
, vol.460
, pp. 705-710
-
-
Cordes, K.R.1
-
83
-
-
80051684096
-
MicroRNA-mediated conversion of human fibroblasts to neurons
-
Yoo A.S., et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011, 476:228-231.
-
(2011)
Nature
, vol.476
, pp. 228-231
-
-
Yoo, A.S.1
-
84
-
-
79953881831
-
Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency
-
Anokye-Danso F., et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 2011, 8:376-388.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 376-388
-
-
Anokye-Danso, F.1
-
85
-
-
79955780736
-
Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells
-
Subramanyam D., et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 2011, 29:443-448.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 443-448
-
-
Subramanyam, D.1
-
86
-
-
84881547016
-
MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny
-
Nimmo R., et al. MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. Dev. Cell 2013, 26:237-249.
-
(2013)
Dev. Cell
, vol.26
, pp. 237-249
-
-
Nimmo, R.1
-
87
-
-
63649138643
-
MiR-124 regulates adult neurogenesis in the subventricular zone stem cell niche
-
Cheng L.C., et al. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 2009, 12:399-408.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 399-408
-
-
Cheng, L.C.1
-
88
-
-
80052263198
-
MiR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression
-
Sanuki R., et al. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat. Neurosci. 2011, 14:1125-1134.
-
(2011)
Nat. Neurosci.
, vol.14
, pp. 1125-1134
-
-
Sanuki, R.1
-
89
-
-
34147153781
-
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2
-
Zhao Y., et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007, 129:303-317.
-
(2007)
Cell
, vol.129
, pp. 303-317
-
-
Zhao, Y.1
-
90
-
-
70349213385
-
Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster
-
Boettger T., et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 2009, 119:2634-2647.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2634-2647
-
-
Boettger, T.1
-
91
-
-
70449701464
-
The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease
-
Elia L., et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 2009, 16:1590-1598.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 1590-1598
-
-
Elia, L.1
-
92
-
-
77954408884
-
The miR-144/451 locus is required for erythroid homeostasis
-
Rasmussen K.D., et al. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 2010, 207:1351-1358.
-
(2010)
J. Exp. Med.
, vol.207
, pp. 1351-1358
-
-
Rasmussen, K.D.1
-
93
-
-
77955877430
-
MiR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta
-
Yu D., et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010, 24:1620-1633.
-
(2010)
Genes Dev.
, vol.24
, pp. 1620-1633
-
-
Yu, D.1
-
94
-
-
77956632634
-
Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses
-
Lu L.F., et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 2010, 142:914-929.
-
(2010)
Cell
, vol.142
, pp. 914-929
-
-
Lu, L.F.1
|