-
2
-
-
84872091789
-
Heart disease and stroke statistics-2013 update: A report from the American Heart Association
-
Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation 2013; 127:e6-e245.
-
(2013)
Circulation
, vol.127
-
-
Go, A.S.1
Mozaffarian, D.2
Roger, V.L.3
-
3
-
-
80053320057
-
The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report-2011
-
Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-eighth Adult Heart Transplant Report-2011. J Heart Lung Transplant 2011; 30:1078-1094.
-
(2011)
J Heart Lung Transplant
, vol.30
, pp. 1078-1094
-
-
Stehlik, J.1
Edwards, L.B.2
Kucheryavaya, A.Y.3
-
4
-
-
77950201708
-
Primary contribution to zebrafish heart regeneration by gata4(\+) cardiomyocytes
-
Kikuchi K, Holdway JE, Werdich AA, et al. Primary contribution to zebrafish heart regeneration by gata4(\+) cardiomyocytes. Nature 2010; 464:601-605.
-
(2010)
Nature
, vol.464
, pp. 601-605
-
-
Kikuchi, K.1
Holdway, J.E.2
Werdich, A.A.3
-
5
-
-
33847248871
-
Getting to the heart of regeneration in zebrafish
-
Poss KD. Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol 2007; 18:36-45.
-
(2007)
Semin Cell Dev Biol
, vol.18
, pp. 36-45
-
-
Poss, K.D.1
-
7
-
-
79960778952
-
The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion
-
Wang J, Panakova D, Kikuchi K, et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 2011; 138:3421-3430.
-
(2011)
Development
, vol.138
, pp. 3421-3430
-
-
Wang, J.1
Panakova, D.2
Kikuchi, K.3
-
8
-
-
77950200829
-
Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation
-
Jopling C, Sleep E, Raya M, et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010; 464:606-609.
-
(2010)
Nature
, vol.464
, pp. 606-609
-
-
Jopling, C.1
Sleep, E.2
Raya, M.3
-
9
-
-
64249107059
-
Evidence for cardiomyocyte renewal in humans
-
Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009; 324:98-102.
-
(2009)
Science
, vol.324
, pp. 98-102
-
-
Bergmann, O.1
Bhardwaj, R.D.2
Bernard, S.3
-
10
-
-
84872876842
-
Cardiomyocyte proliferation contributes to heart growth in young humans
-
Mollova M, Bersell K, Walsh S, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci USA 2013; 110:1446-1451.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 1446-1451
-
-
Mollova, M.1
Bersell, K.2
Walsh, S.3
-
11
-
-
84867241732
-
Cardiomyogenesis in the aging and failing human heart
-
Kajstura J, Rota M, Cappetta D, et al. Cardiomyogenesis in the aging and failing human heart. Circulation 2012; 126:1869-1881.
-
(2012)
Circulation
, vol.126
, pp. 1869-1881
-
-
Kajstura, J.1
Rota, M.2
Cappetta, D.3
-
12
-
-
84872611623
-
Mammalian heart renewal by preexisting cardiomyocytes
-
Senyo SE, Steinhauser ML, Pizzimenti CL, et al. Mammalian heart renewal by preexisting cardiomyocytes. Nature 2013; 493:433-436.
-
(2013)
Nature
, vol.493
, pp. 433-436
-
-
Senyo, S.E.1
Steinhauser, M.L.2
Pizzimenti, C.L.3
-
13
-
-
77955172516
-
Cardiomyogenesis in the adult human heart
-
Kajstura J, Urbanek K, Perl S, et al. Cardiomyogenesis in the adult human heart. Circ Res 2010; 107:305-315.
-
(2010)
Circ Res
, vol.107
, pp. 305-315
-
-
Kajstura, J.1
Urbanek, K.2
Perl, S.3
-
14
-
-
77951901715
-
Cell death in the pathogenesis of heart disease: Mechanisms and significance
-
Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010; 72:19-44.
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 19-44
-
-
Whelan, R.S.1
Kaplinskiy, V.2
Kitsis, R.N.3
-
15
-
-
79956334658
-
Heart regeneration
-
Laflamme MA, Murry CE. Heart regeneration. Nature 2011; 473:326-335.
-
(2011)
Nature
, vol.473
, pp. 326-335
-
-
Laflamme, M.A.1
Murry, C.E.2
-
16
-
-
43749100265
-
Stem-cell-based therapy and lessons from the heart
-
Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature 2008; 453:322-329.
-
(2008)
Nature
, vol.453
, pp. 322-329
-
-
Passier, R.1
Van Laake, L.W.2
Mummery, C.L.3
-
17
-
-
39749105397
-
Stem-cell therapy for cardiac disease
-
Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008; 451:937-942.
-
(2008)
Nature
, vol.451
, pp. 937-942
-
-
Segers, V.F.1
Lee, R.T.2
-
19
-
-
82355175128
-
NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes
-
Elliott DA, Braam SR, Koutsis K, et al. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods 2011; 8:1037-1040.
-
(2011)
Nat Methods
, vol.8
, pp. 1037-1040
-
-
Elliott, D.A.1
Braam, S.R.2
Koutsis, K.3
-
20
-
-
84866150446
-
Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts
-
Shiba Y, Fernandes S, Zhu WZ, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012; 489:322-325.
-
(2012)
Nature
, vol.489
, pp. 322-325
-
-
Shiba, Y.1
Fernandes, S.2
Zhu, W.Z.3
-
21
-
-
84878850858
-
Cardiac stem cell therapy and the promise of heart regeneration
-
Garbern JC, Lee RT. Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 2013; 12:689-698.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 689-698
-
-
Garbern, J.C.1
Lee, R.T.2
-
22
-
-
82255175382
-
Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial
-
Bolli R, Chugh AR, D'Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011; 378:1847-1857.
-
(2011)
Lancet
, vol.378
, pp. 1847-1857
-
-
Bolli, R.1
Chugh, A.R.2
D'Amario, D.3
-
23
-
-
84858019974
-
Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial
-
Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 2012; 379:895-904.
-
(2012)
Lancet
, vol.379
, pp. 895-904
-
-
Makkar, R.R.1
Smith, R.R.2
Cheng, K.3
-
24
-
-
84872048038
-
Distinct metabolic flow enables largescale purification of mouse and human pluripotent stem cell-derived cardiomyocytes
-
Tohyama S, Hattori F, Sano M, et al. Distinct metabolic flow enables largescale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2013; 12:127-137.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 127-137
-
-
Tohyama, S.1
Hattori, F.2
Sano, M.3
-
25
-
-
84873305461
-
Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart
-
Malliaras K, Zhang Y, Seinfeld J, et al. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 2013; 5:191-209.
-
(2013)
EMBO Mol Med
, vol.5
, pp. 191-209
-
-
Malliaras, K.1
Zhang, Y.2
Seinfeld, J.3
-
26
-
-
84885676364
-
Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction
-
Zangi L, Lui KO, von Gise A, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 2013; 31:898-907.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 898-907
-
-
Zangi, L.1
Lui, K.O.2
Von Gise, A.3
-
27
-
-
79953903083
-
Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair
-
Loffredo FS, Steinhauser ML, Gannon J, Lee RT. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell 2011; 8:389-398.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 389-398
-
-
Loffredo, F.S.1
Steinhauser, M.L.2
Gannon, J.3
Lee, R.T.4
-
28
-
-
84881667960
-
C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway
-
Beigi F, Schmeckpeper J, Pow-Anpongkul P, et al. C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the PI3K-AKT-CDK7 pathway. Circ Res 2013; 113:372-380.
-
(2013)
Circ Res
, vol.113
, pp. 372-380
-
-
Beigi, F.1
Schmeckpeper, J.2
Pow-Anpongkul, P.3
-
29
-
-
18844383961
-
P38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes
-
Engel FB, Schebesta M, Duong MT, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 2005; 19: 1175-1187.
-
(2005)
Genes Dev
, vol.19
, pp. 1175-1187
-
-
Engel, F.B.1
Schebesta, M.2
Duong, M.T.3
-
30
-
-
34547691243
-
Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair
-
Kuhn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 2007; 13:962-969.
-
(2007)
Nat Med
, vol.13
, pp. 962-969
-
-
Kuhn, B.1
Del Monte, F.2
Hajjar, R.J.3
-
31
-
-
67650569135
-
Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury
-
Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009; 138:257-270.
-
(2009)
Cell
, vol.138
, pp. 257-270
-
-
Bersell, K.1
Arab, S.2
Haring, B.3
Kuhn, B.4
-
32
-
-
84862907693
-
Production of de novo cardiomyocytes: Human pluripotent stem cell differentiation and direct reprogramming
-
Burridge PW, Keller G, Gold JD, Wu JC. Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 2012; 10:16-28.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 16-28
-
-
Burridge, P.W.1
Keller, G.2
Gold, J.D.3
Wu, J.C.4
-
33
-
-
0042510139
-
Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants
-
Latinkic BV, Kotecha S, Mohun TJ. Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants. Development 2003; 130:3865-3876.
-
(2003)
Development
, vol.130
, pp. 3865-3876
-
-
Latinkic, B.V.1
Kotecha, S.2
Mohun, T.J.3
-
34
-
-
66649127942
-
Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors
-
Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 2009; 459:708-711.
-
(2009)
Nature
, vol.459
, pp. 708-711
-
-
Takeuchi, J.K.1
Bruneau, B.G.2
-
35
-
-
85027957068
-
Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5
-
Chen JX, Krane M, Deutsch MA, et al. Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ Res 2012; 111:50-55.
-
(2012)
Circ Res
, vol.111
, pp. 50-55
-
-
Chen, J.X.1
Krane, M.2
Deutsch, M.A.3
-
36
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
-
Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142:375-386.
-
(2010)
Cell
, vol.142
, pp. 375-386
-
-
Ieda, M.1
Fu, J.D.2
Delgado-Olguin, P.3
-
37
-
-
84865402121
-
Critical factors for cardiac reprogramming
-
Srivastava D, Ieda M. Critical factors for cardiac reprogramming. Circ Res 2012; 111:5-8.
-
(2012)
Circ Res
, vol.111
, pp. 5-8
-
-
Srivastava, D.1
Ieda, M.2
-
38
-
-
84872608599
-
Direct reprogramming of mouse fibroblasts into cardiac myocytes
-
Inagawa K, Ieda M. Direct reprogramming of mouse fibroblasts into cardiac myocytes. J Cardiovasc Transl Res 2013; 6:37-45.
-
(2013)
J Cardiovasc Transl Res
, vol.6
, pp. 37-45
-
-
Inagawa, K.1
Ieda, M.2
-
39
-
-
84863626782
-
Heart repair by reprogramming nonmyocytes with cardiac transcription factors
-
Song K, Nam YJ, Luo X, et al. Heart repair by reprogramming nonmyocytes with cardiac transcription factors. Nature 2012; 485:599-604.
-
(2012)
Nature
, vol.485
, pp. 599-604
-
-
Song, K.1
Nam, Y.J.2
Luo, X.3
-
40
-
-
84861642380
-
MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes
-
Jayawardena TM, Egemnazarov B, Finch EA, et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 2012; 110:1465-1473.
-
(2012)
Circ Res
, vol.110
, pp. 1465-1473
-
-
Jayawardena, T.M.1
Egemnazarov, B.2
Finch, E.A.3
-
41
-
-
84875848994
-
Reprogramming of human fibroblasts toward a cardiac fate
-
Nam YJ, Song K, Luo X, et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci USA 2013; 110:5588-5593.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 5588-5593
-
-
Nam, Y.J.1
Song, K.2
Luo, X.3
-
42
-
-
84878646315
-
Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success
-
Addis RC, Ifkovits JL, Pinto F, et al. Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success. J Mol Cell Cardiol 2013; 60:97-106.
-
(2013)
J Mol Cell Cardiol
, vol.60
, pp. 97-106
-
-
Addis, R.C.1
Ifkovits, J.L.2
Pinto, F.3
-
43
-
-
84883753931
-
Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state
-
Fu JD, Stone NR, Liu L, et al. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Rep 2013; 1:235-247.
-
(2013)
Stem Cell Rep
, vol.1
, pp. 235-247
-
-
Fu, J.D.1
Stone, N.R.2
Liu, L.3
-
44
-
-
84863629484
-
In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes
-
Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012; 485:593-598.
-
(2012)
Nature
, vol.485
, pp. 593-598
-
-
Qian, L.1
Huang, Y.2
Spencer, C.I.3
-
45
-
-
84879333188
-
Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro
-
Qian L, Berry EC, Fu JD, et al. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat Protoc 2013; 8:1204-1215.
-
(2013)
Nat Protoc
, vol.8
, pp. 1204-1215
-
-
Qian, L.1
Berry, E.C.2
Fu, J.D.3
-
46
-
-
84887936851
-
Hippo signaling impedes adult heart regeneration
-
Heallen T, Morikawa Y, Leach J, et al. Hippo signaling impedes adult heart regeneration. Development 2013; 140:4683-4690.
-
(2013)
Development
, vol.140
, pp. 4683-4690
-
-
Heallen, T.1
Morikawa, Y.2
Leach, J.3
-
47
-
-
79955405757
-
Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size
-
Heallen T, Zhang M, Wang J, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 2011; 332:458-461.
-
(2011)
Science
, vol.332
, pp. 458-461
-
-
Heallen, T.1
Zhang, M.2
Wang, J.3
-
48
-
-
84882740716
-
Hippo pathway effector Yap promotes cardiac regeneration
-
Xin M, Kim Y, Sutherland LB, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci USA 2013; 110:13839-13844.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 13839-13844
-
-
Xin, M.1
Kim, Y.2
Sutherland, L.B.3
-
49
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
Porrello ER, Mahmoud AI, Simpson E, et al. Transient regenerative potential of the neonatal mouse heart. Science 2011; 331:1078-1080.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
-
50
-
-
84857136357
-
YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy
-
von Gise A, Lin Z, Schlegelmilch K, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci USA 2012; 109:2394-2399.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 2394-2399
-
-
Von Gise, A.1
Lin, Z.2
Schlegelmilch, K.3
-
51
-
-
80054965145
-
Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size
-
Xin M, Kim Y, Sutherland LB, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 2011; 4:ra70.
-
(2011)
Sci Signal
, vol.4
-
-
Xin, M.1
Kim, Y.2
Sutherland, L.B.3
-
52
-
-
58249088751
-
MicroRNAs: Target recognition and regulatory functions
-
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136:215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
53
-
-
34848838292
-
MicroRNAs: Powerful new regulators of heart disease and provocative therapeutic targets
-
van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 2007; 117:2369-2376.
-
(2007)
J Clin Invest
, vol.117
, pp. 2369-2376
-
-
Van Rooij, E.1
Olson, E.N.2
-
54
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37:495-500.
-
(2005)
Nat Genet
, vol.37
, pp. 495-500
-
-
Krek, A.1
Grun, D.2
Poy, M.N.3
-
55
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120:15-20.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
56
-
-
41149130838
-
Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish
-
Yin VP, Thomson JM, Thummel R, et al. Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev 2008; 22:728-733.
-
(2008)
Genes Dev
, vol.22
, pp. 728-733
-
-
Yin, V.P.1
Thomson, J.M.2
Thummel, R.3
-
57
-
-
72149131804
-
MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice
-
Williams AH, Valdez G, Moresi V, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009; 326:1549-1554.
-
(2009)
Science
, vol.326
, pp. 1549-1554
-
-
Williams, A.H.1
Valdez, G.2
Moresi, V.3
-
58
-
-
84861807017
-
MicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice
-
Liu N, Williams AH, Maxeiner JM, et al. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest 2012; 122:2054-2065.
-
(2012)
J Clin Invest
, vol.122
, pp. 2054-2065
-
-
Liu, N.1
Williams, A.H.2
Maxeiner, J.M.3
-
59
-
-
84880839534
-
Mending broken hearts: Cardiac development as a basis for adult heart regeneration and repair
-
Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol 2013; 14:529-541.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 529-541
-
-
Xin, M.1
Olson, E.N.2
Bassel-Duby, R.3
-
60
-
-
84880997880
-
MicroRNAs in stem cell function and regenerative therapy of the heart
-
Seeger FH, Zeiher AM, Dimmeler S. MicroRNAs in stem cell function and regenerative therapy of the heart. Arterioscler Thromb Vasc Biol 2013; 33:1739-1746.
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, pp. 1739-1746
-
-
Seeger, F.H.1
Zeiher, A.M.2
Dimmeler, S.3
-
61
-
-
84862793489
-
MicroRNAs in cardiovascular development
-
Chen J, Wang DZ. microRNAs in cardiovascular development. J Mol Cell Cardiol 2012; 52:949-957.
-
(2012)
J Mol Cell Cardiol
, vol.52
, pp. 949-957
-
-
Chen, J.1
Wang, D.Z.2
-
62
-
-
84859299160
-
A new level of complexity: The role of microRNAs in cardiovascular development
-
Boettger T, Braun T. A new level of complexity: the role of microRNAs in cardiovascular development. Circ Res 2012; 110:1000-1013.
-
(2012)
Circ Res
, vol.110
, pp. 1000-1013
-
-
Boettger, T.1
Braun, T.2
-
63
-
-
84875078530
-
Small and long noncoding RNAs in cardiac homeostasis and regeneration
-
Ounzain S, Crippa S, Pedrazzini T. Small and long noncoding RNAs in cardiac homeostasis and regeneration. Biochim Biophys Acta 2013; 1833:923-933.
-
(2013)
Biochim Biophys Acta
, vol.1833
, pp. 923-933
-
-
Ounzain, S.1
Crippa, S.2
Pedrazzini, T.3
-
64
-
-
84880293423
-
Induced regeneration: The progress and promise of direct reprogramming for heart repair
-
Addis RC, Epstein JA. Induced regeneration: the progress and promise of direct reprogramming for heart repair. Nat Med 2013; 19:829-836.
-
(2013)
Nat Med
, vol.19
, pp. 829-836
-
-
Addis, R.C.1
Epstein, J.A.2
-
65
-
-
84884232495
-
Developing insights into cardiac regeneration
-
Christoffels VM, Pu WT. Developing insights into cardiac regeneration. Development 2013; 140:3933-3937.
-
(2013)
Development
, vol.140
, pp. 3933-3937
-
-
Christoffels, V.M.1
Pu, W.T.2
-
66
-
-
84860145591
-
Role of microRNAs in the reperfused myocardium towards postinfarct remodelling
-
Zhu H, Fan GC. Role of microRNAs in the reperfused myocardium towards postinfarct remodelling. Cardiovasc Res 2012; 94:284-292.
-
(2012)
Cardiovasc Res
, vol.94
, pp. 284-292
-
-
Zhu, H.1
Fan, G.C.2
-
67
-
-
84873817376
-
MicroRNAs in cardiovascular disease: From pathogenesis to prevention and treatment
-
Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest 2013; 123:11-18.
-
(2013)
J Clin Invest
, vol.123
, pp. 11-18
-
-
Quiat, D.1
Olson, E.N.2
-
68
-
-
84868475728
-
MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles
-
van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012; 11:860-872.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 860-872
-
-
Van Rooij, E.1
Olson, E.N.2
-
69
-
-
78751660177
-
Pervasive roles of microRNAs in cardiovascular biology
-
Small EM,Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469:336-342.
-
(2011)
Nature
, vol.469
, pp. 336-342
-
-
Small Emolson, E.N.1
-
70
-
-
84871442001
-
Functional screening identifies miRNAs inducing cardiac regeneration
-
Eulalio A, Mano M, Dal Ferro M, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012; 492:376-381.
-
(2012)
Nature
, vol.492
, pp. 376-381
-
-
Eulalio, A.1
Mano, M.2
Dal Ferro, M.3
-
71
-
-
84857953621
-
Mir-33 regulates cell proliferation and cell cycle progression
-
Cirera-Salinas D, Pauta M, Allen RM, et al. Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012; 11:922-933.
-
(2012)
Cell Cycle
, vol.11
, pp. 922-933
-
-
Cirera-Salinas, D.1
Pauta, M.2
Allen, R.M.3
-
72
-
-
79959326172
-
MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling
-
Davalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 2011; 108:9232-9237.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 9232-9237
-
-
Davalos, A.1
Goedeke, L.2
Smibert, P.3
-
73
-
-
84878958446
-
A regulatory role for microRNA 33-in controlling lipid metabolism gene expression
-
Goedeke L, Vales-Lara FM, Fenstermaker M, et al. A regulatory role for microRNA 33-in controlling lipid metabolism gene expression. Mol Cell Biol 2013; 33:2339-2352.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 2339-2352
-
-
Goedeke, L.1
Vales-Lara, F.M.2
Fenstermaker, M.3
-
75
-
-
0242353156
-
PI3 kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis
-
Rong R, Ahn JY, Huang H, et al. PI3 kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis. Nat Neurosci 2003; 6:1153-1161.
-
(2003)
Nat Neurosci
, vol.6
, pp. 1153-1161
-
-
Rong, R.1
Ahn, J.Y.2
Huang, H.3
-
76
-
-
0038420722
-
Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: A novel mechanism for control of intracellular calcium signaling
-
Hwang SY, Wei J, Westhoff JH, et al. Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Cell Calcium 2003; 34:177-184.
-
(2003)
Cell Calcium
, vol.34
, pp. 177-184
-
-
Hwang, S.Y.1
Wei, J.2
Westhoff, J.H.3
-
77
-
-
0347298823
-
Homer regulates gain of ryanodine receptor type 1 channel complex
-
Feng W, Tu J, Yang T, et al. Homer regulates gain of ryanodine receptor type 1 channel complex. J Biol Chem 2002; 277:44722-44730.
-
(2002)
J Biol Chem
, vol.277
, pp. 44722-44730
-
-
Feng, W.1
Tu, J.2
Yang, T.3
-
78
-
-
18644364557
-
Modulation of cardiac growth and development by HOP, an unusual homeodomain protein
-
Shin CH, Liu ZP, Passier R, et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 2002; 110:725-735.
-
(2002)
Cell
, vol.110
, pp. 725-735
-
-
Shin, C.H.1
Liu, Z.P.2
Passier, R.3
-
79
-
-
0141540461
-
Hopping to the beat Hop regulation of cardiac gene expression
-
Kook H, Epstein JA. Hopping to the beat. Hop regulation of cardiac gene expression. Trends Cardiovasc Med 2003; 13:261-264.
-
(2003)
Trends Cardiovasc Med
, vol.13
, pp. 261-264
-
-
Kook, H.1
Epstein, J.A.2
-
80
-
-
79951679775
-
Homeodomain-only protein HOP is a novel modulator of late differentiation in keratinocytes
-
Obarzanek-Fojt M, Favre B, Kypriotou M, et al. Homeodomain-only protein HOP is a novel modulator of late differentiation in keratinocytes. Eur J Cell Biol 2011; 90:279-290.
-
(2011)
Eur J Cell Biol
, vol.90
, pp. 279-290
-
-
Obarzanek-Fojt, M.1
Favre, B.2
Kypriotou, M.3
-
81
-
-
77956604362
-
Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation
-
Trivedi CM, Zhu W, Wang Q, et al. Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev Cell 2010; 19:450-459.
-
(2010)
Dev Cell
, vol.19
, pp. 450-459
-
-
Trivedi, C.M.1
Zhu, W.2
Wang, Q.3
-
82
-
-
77952011160
-
Expression of the homeobox gene, HOPX, is modulated by cell differentiation in human keratinocytes and is involved in the expression of differentiation markers
-
Yang JM, Sim SM, Kim HY, Park GT. Expression of the homeobox gene, HOPX, is modulated by cell differentiation in human keratinocytes and is involved in the expression of differentiation markers. Eur J Cell Biol 2010; 89:537-546.
-
(2010)
Eur J Cell Biol
, vol.89
, pp. 537-546
-
-
Yang, J.M.1
Sim, S.M.2
Kim, H.Y.3
Park, G.T.4
-
84
-
-
65249185780
-
Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes
-
Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 2009; 104:879-886.
-
(2009)
Circ Res
, vol.104
, pp. 879-886
-
-
Rane, S.1
He, M.2
Sayed, D.3
-
85
-
-
79957523514
-
Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: A key role for ubiquitin-conjugating enzymes
-
Haghikia A, Missol-Kolka E, Tsikas D, et al. Signal transducer and activator of transcription 3-mediated regulation of miR-199a-5p links cardiomyocyte and endothelial cell function in the heart: a key role for ubiquitin-conjugating enzymes. Eur Heart J 2011; 32:1287-1297.
-
(2011)
Eur Heart J
, vol.32
, pp. 1287-1297
-
-
Haghikia, A.1
Missol-Kolka, E.2
Tsikas, D.3
-
86
-
-
84861891920
-
MicroRNA dysregulation in diabetic ischemic heart failure patients
-
Greco S, Fasanaro P, Castelvecchio S, et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 2012; 61:1633-1641.
-
(2012)
Diabetes
, vol.61
, pp. 1633-1641
-
-
Greco, S.1
Fasanaro, P.2
Castelvecchio, S.3
-
87
-
-
84885330287
-
TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human endstage dilated cardiomyopathy
-
Baumgarten A, Bang C, Tschirner A, et al. TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human endstage dilated cardiomyopathy. Int J Cardiol 2013; 168:1447-1452.
-
(2013)
Int J Cardiol
, vol.168
, pp. 1447-1452
-
-
Baumgarten, A.1
Bang, C.2
Tschirner, A.3
-
88
-
-
84883466769
-
The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation
-
el Azzouzi H, Leptidis S, Dirkx E, et al. The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab 2013; 18:341-354.
-
(2013)
Cell Metab
, vol.18
, pp. 341-354
-
-
El Azzouzi, H.1
Leptidis, S.2
Dirkx, E.3
-
89
-
-
78649974535
-
Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNAmediated mechanism
-
Wang J, Greene SB, Bonilla-Claudio M, et al. Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNAmediated mechanism. Dev Cell 2010; 19:903-912.
-
(2010)
Dev Cell
, vol.19
, pp. 903-912
-
-
Wang, J.1
Greene, S.B.2
Bonilla-Claudio, M.3
-
90
-
-
84884695760
-
MicroRNA-17-92, a direct Ap-2alpha transcriptional target, modulates T-box factor activity in orofacial clefting
-
Wang J, Bai Y, Li H, et al. MicroRNA-17-92, a direct Ap-2alpha transcriptional target, modulates T-box factor activity in orofacial clefting. PLoS Genet 2013; 9:e1003785.
-
(2013)
PLoS Genet
, vol.9
-
-
Wang, J.1
Bai, Y.2
Li, H.3
-
91
-
-
84864827128
-
Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury
-
Iaconetti C, Polimeni A, Sorrentino S, et al. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 2012; 107:296.
-
(2012)
Basic Res Cardiol
, vol.107
, pp. 296
-
-
Iaconetti, C.1
Polimeni, A.2
Sorrentino, S.3
-
92
-
-
67649998366
-
MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice
-
Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324:1710-1713.
-
(2009)
Science
, vol.324
, pp. 1710-1713
-
-
Bonauer, A.1
Carmona, G.2
Iwasaki, M.3
-
93
-
-
84880040358
-
Mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts
-
Chen J, Huang ZP, Seok HY, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 2013; 112:1557-1566.
-
(2013)
Circ Res
, vol.112
, pp. 1557-1566
-
-
Chen, J.1
Huang, Z.P.2
Seok, H.Y.3
-
94
-
-
72849120988
-
MiR-19 is a key oncogenic component of mir-17-92
-
Olive V, Bennett MJ, Walker JC, et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev 2009; 23:2839-2849.
-
(2009)
Genes Dev
, vol.23
, pp. 2839-2849
-
-
Olive, V.1
Bennett, M.J.2
Walker, J.C.3
-
95
-
-
0036172324
-
Age-associated cardiovascular changes in health: Impact on cardiovascular disease in older persons
-
Lakatta EG. Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail Rev 2002; 7:29-49.
-
(2002)
Heart Fail Rev
, vol.7
, pp. 29-49
-
-
Lakatta, E.G.1
-
96
-
-
84874700585
-
MicroRNA-34a regulates cardiac ageing and function
-
Boon RA, Iekushi K, Lechner S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature 2013; 495:107-110.
-
(2013)
Nature
, vol.495
, pp. 107-110
-
-
Boon, R.A.1
Iekushi, K.2
Lechner, S.3
-
97
-
-
74249124132
-
P53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC
-
Christoffersen NR, Shalgi R, Frankel LB, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 2010; 17:236-245.
-
(2010)
Cell Death Differ
, vol.17
, pp. 236-245
-
-
Christoffersen, N.R.1
Shalgi, R.2
Frankel, L.B.3
-
98
-
-
34250851115
-
A microRNA component of the p53 tumour suppressor network
-
He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447:1130-1134.
-
(2007)
Nature
, vol.447
, pp. 1130-1134
-
-
He, L.1
He, X.2
Lim, L.P.3
-
99
-
-
84866423871
-
MicroRNAs in the p53 network: Micromanagement of tumour suppression
-
Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 2012; 12:613-626.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 613-626
-
-
Hermeking, H.1
-
100
-
-
84861623180
-
Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease
-
Xu Q, Seeger FH, Castillo J, et al. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J Am Coll Cardiol 2012; 59:2107-2117.
-
(2012)
J Am Coll Cardiol
, vol.59
, pp. 2107-2117
-
-
Xu, Q.1
Seeger, F.H.2
Castillo, J.3
-
101
-
-
77953457652
-
MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1
-
Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 2010; 299:E110-E116.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.299
-
-
Zhao, T.1
Li, J.2
Chen, A.F.3
-
102
-
-
46749089975
-
Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis
-
De Leon G, Sherry TC, Krucher NA. Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis. Cancer Biol Ther 2008; 7:833-841.
-
(2008)
Cancer Biol Ther
, vol.7
, pp. 833-841
-
-
De Leon, G.1
Sherry, T.C.2
Krucher, N.A.3
-
103
-
-
80052557916
-
MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes
-
Porrello ER, Johnson BA, Aurora AB, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 2011; 109:670-679.
-
(2011)
Circ Res
, vol.109
, pp. 670-679
-
-
Porrello, E.R.1
Johnson, B.A.2
Aurora, A.B.3
-
104
-
-
77649253288
-
MicroRNAs add a new dimension to cardiovascular disease
-
Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation 2010; 121:1022-1032.
-
(2010)
Circulation
, vol.121
, pp. 1022-1032
-
-
Small, E.M.1
Frost, R.J.2
Olson, E.N.3
-
105
-
-
84855350458
-
Inhibition of miR-15 protects against cardiac ischemic injury
-
Hullinger TG, Montgomery RL, Seto AG, et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 2012; 110:71-81.
-
(2012)
Circ Res
, vol.110
, pp. 71-81
-
-
Hullinger, T.G.1
Montgomery, R.L.2
Seto, A.G.3
-
106
-
-
84871992154
-
Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family
-
Porrello ER, Mahmoud AI, Simpson E, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA 2013; 110:187-192.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 187-192
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
-
107
-
-
0030613551
-
The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation
-
Zandi E, Rothwarf DM, Delhase M, et al. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 1997; 91:243-252.
-
(1997)
Cell
, vol.91
, pp. 243-252
-
-
Zandi, E.1
Rothwarf, D.M.2
Delhase, M.3
-
108
-
-
10744220155
-
Identification of a human NF-kappaBactivating protein, TAB3
-
Jin G, Klika A, Callahan M, et al. Identification of a human NF-kappaBactivating protein, TAB3. Proc Natl Acad Sci USA 2004; 101:2028-2033.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 2028-2033
-
-
Jin, G.1
Klika, A.2
Callahan, M.3
-
109
-
-
84881012672
-
Genome-wide screening reveals that miR-195 targets the TNF-alpha/NF-kappaB pathway by down-regulating IkappaB kinase alpha and TAB3 in hepatocellular carcinoma
-
Ding J, Huang S, Wang Y, et al. Genome-wide screening reveals that miR-195 targets the TNF-alpha/NF-kappaB pathway by down-regulating IkappaB kinase alpha and TAB3 in hepatocellular carcinoma. Hepatology 2013; 58:654-666.
-
(2013)
Hepatology
, vol.58
, pp. 654-666
-
-
Ding, J.1
Huang, S.2
Wang, Y.3
-
110
-
-
20444467290
-
A microRNA polycistron as a potential human oncogene
-
He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435:828-833.
-
(2005)
Nature
, vol.435
, pp. 828-833
-
-
He, L.1
Thomson, J.M.2
Hemann, M.T.3
-
111
-
-
20444479428
-
C-Myc-regulated microRNAs modulate E2F1 expression
-
O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435:839-843.
-
(2005)
Nature
, vol.435
, pp. 839-843
-
-
O'Donnell, K.A.1
Wentzel, E.A.2
Zeller, K.I.3
-
112
-
-
77955924350
-
MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation
-
Li T, Morgan MJ, Choksi S, et al. MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat Immunol 2010; 11:799-805.
-
(2010)
Nat Immunol
, vol.11
, pp. 799-805
-
-
Li, T.1
Morgan, M.J.2
Choksi, S.3
|