메뉴 건너뛰기




Volumn 257, Issue 1, 2014, Pages 210-225

Rapamycin-resistant effector T-cell therapy

Author keywords

Apoptosis autophagy; Cytokines; Graft versus host disease; Th1 Th2 Th17; Transplantation

Indexed keywords

CYCLOPHOSPHAMIDE; CYTOKINE RECEPTOR; FLUDARABINE; GAMMA INTERFERON; GROWTH FACTOR RECEPTOR; INSULIN RECEPTOR SUBSTRATE; INTERLEUKIN 10; INTERLEUKIN 12; INTERLEUKIN 2; INTERLEUKIN 4; INTERLEUKIN 7; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; PROTEIN KINASE B; PROTEIN P53; RAPAMYCIN; TRANSCRIPTION FACTOR FOXP3; TRANSCRIPTION FACTOR GATA 3;

EID: 84890238278     PISSN: 01052896     EISSN: 1600065X     Source Type: Journal    
DOI: 10.1111/imr.12127     Document Type: Article
Times cited : (18)

References (147)
  • 1
    • 0016724057 scopus 로고
    • Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle
    • Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiotics 1975;28:721-726.
    • (1975) J Antibiotics , vol.28 , pp. 721-726
    • Vezina, C.1    Kudelski, A.2    Sehgal, S.N.3
  • 2
    • 34249779568 scopus 로고    scopus 로고
    • Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma
    • Hudes G, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007;356:2271-2281.
    • (2007) N Engl J Med , vol.356 , pp. 2271-2281
    • Hudes, G.1
  • 3
    • 48649107474 scopus 로고    scopus 로고
    • Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial
    • Motzer RJ, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008;372:449-456.
    • (2008) Lancet , vol.372 , pp. 449-456
    • Motzer, R.J.1
  • 4
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 5
    • 0028360374 scopus 로고
    • A mammalian protein targeted by G1-arresting rapamycin-receptor complex
    • Brown EJ, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994;369:756-758.
    • (1994) Nature , vol.369 , pp. 756-758
    • Brown, E.J.1
  • 6
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002;110:163-175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1
  • 7
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human mTOR complex I and its implications for rapamycin inhibition
    • Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 2010;38:768-774.
    • (2010) Mol Cell , vol.38 , pp. 768-774
    • Yip, C.K.1    Murata, K.2    Walz, T.3    Sabatini, D.M.4    Kang, S.A.5
  • 8
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648-657.
    • (2002) Nat Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 9
    • 17444431201 scopus 로고    scopus 로고
    • Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
    • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005;121:179-193.
    • (2005) Cell , vol.121 , pp. 179-193
    • Ma, L.1    Chen, Z.2    Erdjument-Bromage, H.3    Tempst, P.4    Pandolfi, P.P.5
  • 10
    • 4544384577 scopus 로고    scopus 로고
    • Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
    • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004;101:13489-13494.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 13489-13494
    • Roux, P.P.1    Ballif, B.A.2    Anjum, R.3    Gygi, S.P.4    Blenis, J.5
  • 11
    • 34547605613 scopus 로고    scopus 로고
    • IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway
    • Lee DF, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 2007;130:440-455.
    • (2007) Cell , vol.130 , pp. 440-455
    • Lee, D.F.1
  • 12
    • 33748153690 scopus 로고    scopus 로고
    • TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
    • Inoki K, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006;126:955-968.
    • (2006) Cell , vol.126 , pp. 955-968
    • Inoki, K.1
  • 13
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577-590.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 14
    • 10044276783 scopus 로고    scopus 로고
    • Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
    • Brugarolas J, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004;18:2893-2904.
    • (2004) Genes Dev , vol.18 , pp. 2893-2904
    • Brugarolas, J.1
  • 15
    • 20444363122 scopus 로고    scopus 로고
    • The coordinate regulation of the p53 and mTOR pathways in cells
    • Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 2005;102:8204-8209.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 8204-8209
    • Feng, Z.1    Zhang, H.2    Levine, A.J.3    Jin, S.4
  • 17
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008;320:1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 18
    • 0035976615 scopus 로고    scopus 로고
    • Phosphatidic acid-mediated mitogenic activation of mTOR signaling
    • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001;294:1942-1945.
    • (2001) Science , vol.294 , pp. 1942-1945
    • Fang, Y.1    Vilella-Bach, M.2    Bachmann, R.3    Flanigan, A.4    Chen, J.5
  • 19
    • 62849111751 scopus 로고    scopus 로고
    • Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin
    • Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 2009;29:1411-1420.
    • (2009) Mol Cell Biol , vol.29 , pp. 1411-1420
    • Toschi, A.1    Lee, E.2    Xu, L.3    Garcia, A.4    Gadir, N.5    Foster, D.A.6
  • 20
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009;10:307-318.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 21
    • 70450204007 scopus 로고    scopus 로고
    • An emerging role of mTOR in lipid biosynthesis
    • Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol 2009;19:R1046-R1052.
    • (2009) Curr Biol , vol.19
    • Laplante, M.1    Sabatini, D.M.2
  • 22
    • 84865301337 scopus 로고    scopus 로고
    • mTOR, metabolism, and the regulation of T-cell differentiation and function
    • Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 2012;249:43-58.
    • (2012) Immunol Rev , vol.249 , pp. 43-58
    • Waickman, A.T.1    Powell, J.D.2
  • 23
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley IG, du Lam H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009;284:12297-12305.
    • (2009) J Biol Chem , vol.284 , pp. 12297-12305
    • Ganley, I.G.1    du Lam, H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 25
    • 79960470913 scopus 로고    scopus 로고
    • mTOR complex 2 signaling and functions
    • Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 2011;10:2305-2316.
    • (2011) Cell Cycle , vol.10 , pp. 2305-2316
    • Oh, W.J.1    Jacinto, E.2
  • 26
    • 70350545722 scopus 로고    scopus 로고
    • Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
    • Dibble CC, Asara JM, Manning BD. Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 2009;29:5657-5670.
    • (2009) Mol Cell Biol , vol.29 , pp. 5657-5670
    • Dibble, C.C.1    Asara, J.M.2    Manning, B.D.3
  • 27
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098-1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 28
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011;144:757-768.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4
  • 29
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov DD, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14:1296-1302.
    • (2004) Curr Biol , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 30
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov DD, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006;22:159-168.
    • (2006) Mol Cell , vol.22 , pp. 159-168
    • Sarbassov, D.D.1
  • 31
    • 33746800144 scopus 로고    scopus 로고
    • Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin
    • Phung TL, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 2006;10:159-170.
    • (2006) Cancer Cell , vol.10 , pp. 159-170
    • Phung, T.L.1
  • 32
    • 34147146014 scopus 로고    scopus 로고
    • Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML
    • Zeng Z, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007;109:3509-3512.
    • (2007) Blood , vol.109 , pp. 3509-3512
    • Zeng, Z.1
  • 33
    • 84873056283 scopus 로고    scopus 로고
    • Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2
    • Ye L, Varamini B, Lamming DW, Sabatini DM, Baur JA. Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2. Front Genet 2012;3:177.
    • (2012) Front Genet , vol.3 , pp. 177
    • Ye, L.1    Varamini, B.2    Lamming, D.W.3    Sabatini, D.M.4    Baur, J.A.5
  • 34
    • 84859117806 scopus 로고    scopus 로고
    • Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
    • Lamming DW, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012;335:1638-1643.
    • (2012) Science , vol.335 , pp. 1638-1643
    • Lamming, D.W.1
  • 35
    • 0028328655 scopus 로고
    • Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor
    • Dilling MB, Dias P, Shapiro DN, Germain GS, Johnson RK, Houghton PJ. Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res 1994;54:903-907.
    • (1994) Cancer Res , vol.54 , pp. 903-907
    • Dilling, M.B.1    Dias, P.2    Shapiro, D.N.3    Germain, G.S.4    Johnson, R.K.5    Houghton, P.J.6
  • 37
    • 0028825698 scopus 로고
    • TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin
    • Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem 1995;270:27531-27537.
    • (1995) J Biol Chem , vol.270 , pp. 27531-27537
    • Lorenz, M.C.1    Heitman, J.2
  • 38
    • 0035744033 scopus 로고    scopus 로고
    • Mechanisms of resistance to rapamycins
    • Huang S, Houghton PJ. Mechanisms of resistance to rapamycins. Drug Resist Updat 2001;4:378-391.
    • (2001) Drug Resist Updat , vol.4 , pp. 378-391
    • Huang, S.1    Houghton, P.J.2
  • 39
    • 79957530990 scopus 로고    scopus 로고
    • Mechanisms of mTOR inhibitor resistance in cancer therapy
    • Carew JS, Kelly KR, Nawrocki ST. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol 2011;6:17-27.
    • (2011) Target Oncol , vol.6 , pp. 17-27
    • Carew, J.S.1    Kelly, K.R.2    Nawrocki, S.T.3
  • 40
    • 84859999866 scopus 로고    scopus 로고
    • TOR signaling pathway and mTOR inhibitors in cancer therapy
    • vii.
    • Gomez-Pinillos A, Ferrari AC. TOR signaling pathway and mTOR inhibitors in cancer therapy. Hematol Oncol Clinics N Am 2012;26:483-505, vii.
    • (2012) Hematol Oncol Clinics N Am , vol.26 , pp. 483-505
    • Gomez-Pinillos, A.1    Ferrari, A.C.2
  • 41
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
    • Feldman ME, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009;7:e38.
    • (2009) PLoS Biol , vol.7
    • Feldman, M.E.1
  • 42
    • 75149112670 scopus 로고    scopus 로고
    • AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
    • Chresta CM, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010;70:288-298.
    • (2010) Cancer Res , vol.70 , pp. 288-298
    • Chresta, C.M.1
  • 44
    • 76349104427 scopus 로고    scopus 로고
    • Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor
    • Janes MR, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010;16:205-213.
    • (2010) Nat Med , vol.16 , pp. 205-213
    • Janes, M.R.1
  • 45
    • 79952216582 scopus 로고    scopus 로고
    • Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors
    • Falcon BL, et al. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res 2011;71:1573-1583.
    • (2011) Cancer Res , vol.71 , pp. 1573-1583
    • Falcon, B.L.1
  • 46
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen CC, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009;284:8023-8032.
    • (2009) J Biol Chem , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1
  • 47
    • 84879316492 scopus 로고    scopus 로고
    • Murine dendritic cell rapamycin-resistant and rictor-independent mTOR controls IL-10, B7-H1, and regulatory T-cell induction
    • Rosborough BR, et al. Murine dendritic cell rapamycin-resistant and rictor-independent mTOR controls IL-10, B7-H1, and regulatory T-cell induction. Blood 2013;121:3619-3630.
    • (2013) Blood , vol.121 , pp. 3619-3630
    • Rosborough, B.R.1
  • 48
    • 80053083941 scopus 로고    scopus 로고
    • The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile
    • Wang BT, Ducker GS, Barczak AJ, Barbeau R, Erle DJ, Shokat KM. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc Natl Acad Sci USA 2011;108:15201-15206.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 15201-15206
    • Wang, B.T.1    Ducker, G.S.2    Barczak, A.J.3    Barbeau, R.4    Erle, D.J.5    Shokat, K.M.6
  • 49
    • 70449494636 scopus 로고    scopus 로고
    • Inhibition of histone deacetylase overcomes rapamycin-mediated resistance in diffuse large B-cell lymphoma by inhibiting Akt signaling through mTORC2
    • Gupta M, Ansell SM, Novak AJ, Kumar S, Kaufmann SH, Witzig TE. Inhibition of histone deacetylase overcomes rapamycin-mediated resistance in diffuse large B-cell lymphoma by inhibiting Akt signaling through mTORC2. Blood 2009;114:2926-2935.
    • (2009) Blood , vol.114 , pp. 2926-2935
    • Gupta, M.1    Ansell, S.M.2    Novak, A.J.3    Kumar, S.4    Kaufmann, S.H.5    Witzig, T.E.6
  • 52
    • 78650606450 scopus 로고    scopus 로고
    • For better or for worse: the role of Pim oncogenes in tumorigenesis
    • Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 2011;11:23-34.
    • (2011) Nat Rev Cancer , vol.11 , pp. 23-34
    • Nawijn, M.C.1    Alendar, A.2    Berns, A.3
  • 55
    • 48549096958 scopus 로고    scopus 로고
    • Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels
    • Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 2008;68:5076-5085.
    • (2008) Cancer Res , vol.68 , pp. 5076-5085
    • Morishita, D.1    Katayama, R.2    Sekimizu, K.3    Tsuruo, T.4    Fujita, N.5
  • 56
    • 0141569009 scopus 로고    scopus 로고
    • Myc-driven murine prostate cancer shares molecular features with human prostate tumors
    • Ellwood-Yen K, et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003;4:223-238.
    • (2003) Cancer Cell , vol.4 , pp. 223-238
    • Ellwood-Yen, K.1
  • 57
    • 0033451992 scopus 로고    scopus 로고
    • Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis
    • Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 1999;11:709-719.
    • (1999) Immunity , vol.11 , pp. 709-719
    • Shirogane, T.1    Fukada, T.2    Muller, J.M.3    Shima, D.T.4    Hibi, M.5    Hirano, T.6
  • 58
    • 79951847989 scopus 로고    scopus 로고
    • Principles and current strategies for targeting autophagy for cancer treatment
    • Amaravadi RK, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 2011;17:654-666.
    • (2011) Clin Cancer Res , vol.17 , pp. 654-666
    • Amaravadi, R.K.1
  • 59
    • 84864960912 scopus 로고    scopus 로고
    • Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger
    • Mathew R, White E. Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. Cold Spring Harbor Symp Quant Biol 2011;76:389-396.
    • (2011) Cold Spring Harbor Symp Quant Biol , vol.76 , pp. 389-396
    • Mathew, R.1    White, E.2
  • 60
  • 62
    • 77955443001 scopus 로고    scopus 로고
    • Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells
    • Carayol N, et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 2010;107:12469-12474.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 12469-12474
    • Carayol, N.1
  • 63
    • 77953703298 scopus 로고    scopus 로고
    • Simultaneous inhibition of mTORC1 and mTORC2 by mTOR kinase inhibitor AZD8055 induces autophagy and cell death in cancer cells
    • Sini P, James D, Chresta C, Guichard S. Simultaneous inhibition of mTORC1 and mTORC2 by mTOR kinase inhibitor AZD8055 induces autophagy and cell death in cancer cells. Autophagy 2010;6:553-554.
    • (2010) Autophagy , vol.6 , pp. 553-554
    • Sini, P.1    James, D.2    Chresta, C.3    Guichard, S.4
  • 65
    • 0035870281 scopus 로고    scopus 로고
    • p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin
    • Huang S, Liu LN, Hosoi H, Dilling MB, Shikata T, Houghton PJ. p53/p21(CIP1) cooperate in enforcing rapamycin-induced G(1) arrest and determine the cellular response to rapamycin. Cancer Res 2001;61:3373-3381.
    • (2001) Cancer Res , vol.61 , pp. 3373-3381
    • Huang, S.1    Liu, L.N.2    Hosoi, H.3    Dilling, M.B.4    Shikata, T.5    Houghton, P.J.6
  • 66
    • 77955288855 scopus 로고    scopus 로고
    • Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus
    • Di Nicolantonio F, et al. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 2010;120:2858-2866.
    • (2010) J Clin Invest , vol.120 , pp. 2858-2866
    • Di Nicolantonio, F.1
  • 67
    • 37549048521 scopus 로고    scopus 로고
    • mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor
    • Masri J, et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 2007;67:11712-11720.
    • (2007) Cancer Res , vol.67 , pp. 11712-11720
    • Masri, J.1
  • 68
    • 4544220704 scopus 로고    scopus 로고
    • Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity
    • Um SH, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004;431:200-205.
    • (2004) Nature , vol.431 , pp. 200-205
    • Um, S.H.1
  • 69
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson TR, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009;137:873-886.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1
  • 70
    • 84870825008 scopus 로고    scopus 로고
    • JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer
    • Britschgi A, et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell 2012;22:796-811.
    • (2012) Cancer Cell , vol.22 , pp. 796-811
    • Britschgi, A.1
  • 71
    • 0033104824 scopus 로고    scopus 로고
    • Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation
    • Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 1999;162:2775-2784.
    • (1999) J Immunol , vol.162 , pp. 2775-2784
    • Powell, J.D.1    Lerner, C.G.2    Schwartz, R.H.3
  • 72
    • 84865570428 scopus 로고    scopus 로고
    • Tumor suppressor TSC1 is critical for T-cell anergy
    • Xie DL, Wu J, Lou YL, Zhong XP. Tumor suppressor TSC1 is critical for T-cell anergy. Proc Natl Acad Sci USA 2012;109:14152-14157.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 14152-14157
    • Xie, D.L.1    Wu, J.2    Lou, Y.L.3    Zhong, X.P.4
  • 74
    • 84860237060 scopus 로고    scopus 로고
    • Regulation and function of mTOR signalling in T cell fate decisions
    • Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 2012;12:325-338.
    • (2012) Nat Rev Immunol , vol.12 , pp. 325-338
    • Chi, H.1
  • 75
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009;30:832-844.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1
  • 76
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe GM, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011;12:295-303.
    • (2011) Nat Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 77
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010;32:743-753.
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1
  • 78
    • 79960348203 scopus 로고    scopus 로고
    • Relieving autophagy and 4EBP1 from rapamycin resistance
    • Nyfeler B, et al. Relieving autophagy and 4EBP1 from rapamycin resistance. Mol Cell Biol 2011;31:2867-2876.
    • (2011) Mol Cell Biol , vol.31 , pp. 2867-2876
    • Nyfeler, B.1
  • 80
    • 0030980222 scopus 로고    scopus 로고
    • Induction of IL-5 expression by IL-2 is resistant to the immunosuppressive agents cyclosporin A and rapamycin
    • Valentine JE, Sewell WA. Induction of IL-5 expression by IL-2 is resistant to the immunosuppressive agents cyclosporin A and rapamycin. Int Immunol 1997;9:975-982.
    • (1997) Int Immunol , vol.9 , pp. 975-982
    • Valentine, J.E.1    Sewell, W.A.2
  • 82
    • 0346463082 scopus 로고    scopus 로고
    • Rapamycin-resistant proliferation of CD8+ T cells correlates with p27kip1 down-regulation and bcl-xL induction, and is prevented by an inhibitor of phosphoinositide 3-kinase activity
    • Slavik JM, Lim DG, Burakoff SJ, Hafler DA. Rapamycin-resistant proliferation of CD8+ T cells correlates with p27kip1 down-regulation and bcl-xL induction, and is prevented by an inhibitor of phosphoinositide 3-kinase activity. J Biol Chem 2004;279:910-919.
    • (2004) J Biol Chem , vol.279 , pp. 910-919
    • Slavik, J.M.1    Lim, D.G.2    Burakoff, S.J.3    Hafler, D.A.4
  • 83
    • 0035284805 scopus 로고    scopus 로고
    • Uncoupling p70(s6) kinase activation and proliferation: rapamycin-resistant proliferation of human CD8(+) T lymphocytes
    • Slavik JM, Lim DG, Burakoff SJ, Hafler DA. Uncoupling p70(s6) kinase activation and proliferation: rapamycin-resistant proliferation of human CD8(+) T lymphocytes. J Immunol 2001;166:3201-3209.
    • (2001) J Immunol , vol.166 , pp. 3201-3209
    • Slavik, J.M.1    Lim, D.G.2    Burakoff, S.J.3    Hafler, D.A.4
  • 84
    • 82955195419 scopus 로고    scopus 로고
    • Combining mTor inhibitors with rapamycin-resistant T cells: a two-pronged approach to tumor elimination
    • Huye LE, et al. Combining mTor inhibitors with rapamycin-resistant T cells: a two-pronged approach to tumor elimination. Mol Ther 2011;19:2239-2248.
    • (2011) Mol Ther , vol.19 , pp. 2239-2248
    • Huye, L.E.1
  • 85
    • 20444373376 scopus 로고    scopus 로고
    • Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
    • Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005;105:4743-4748.
    • (2005) Blood , vol.105 , pp. 4743-4748
    • Battaglia, M.1    Stabilini, A.2    Roncarolo, M.G.3
  • 86
    • 44449100271 scopus 로고    scopus 로고
    • Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin
    • Basu S, Golovina T, Mikheeva T, June CH, Riley JL. Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol 2008;180:5794-5798.
    • (2008) J Immunol , vol.180 , pp. 5794-5798
    • Basu, S.1    Golovina, T.2    Mikheeva, T.3    June, C.H.4    Riley, J.L.5
  • 87
    • 78650667201 scopus 로고    scopus 로고
    • An intrinsic mechanism predisposes Foxp3-expressing regulatory T cells to Th2 conversion in vivo
    • Wang Y, Souabni A, Flavell RA, Wan YY. An intrinsic mechanism predisposes Foxp3-expressing regulatory T cells to Th2 conversion in vivo. J Immunol 2010;185:5983-5992.
    • (2010) J Immunol , vol.185 , pp. 5983-5992
    • Wang, Y.1    Souabni, A.2    Flavell, R.A.3    Wan, Y.Y.4
  • 88
    • 67650490301 scopus 로고    scopus 로고
    • Signal transducer and activator of transcription 4 limits the development of adaptive regulatory T cells
    • O'Malley JT, et al. Signal transducer and activator of transcription 4 limits the development of adaptive regulatory T cells. Immunology 2009;127:587-595.
    • (2009) Immunology , vol.127 , pp. 587-595
    • O'Malley, J.T.1
  • 89
    • 84866893829 scopus 로고    scopus 로고
    • Differential effects of IL-12 on Tregs and non-Treg T cells: roles of IFN-gamma, IL-2 and IL-2R
    • Zhao J, Zhao J, Perlman S. Differential effects of IL-12 on Tregs and non-Treg T cells: roles of IFN-gamma, IL-2 and IL-2R. PLoS ONE 2012;7:e46241.
    • (2012) PLoS ONE , vol.7
    • Zhao, J.1    Zhao, J.2    Perlman, S.3
  • 90
    • 84874271196 scopus 로고    scopus 로고
    • mTOR, linking metabolism and immunity
    • Xu X, Ye L, Araki K, Ahmed R. mTOR, linking metabolism and immunity. Semin Immunol 2012;24:429-435.
    • (2012) Semin Immunol , vol.24 , pp. 429-435
    • Xu, X.1    Ye, L.2    Araki, K.3    Ahmed, R.4
  • 91
    • 67650074206 scopus 로고    scopus 로고
    • mTOR regulates memory CD8 T-cell differentiation
    • Araki K, et al. mTOR regulates memory CD8 T-cell differentiation. Nature 2009;460:108-112.
    • (2009) Nature , vol.460 , pp. 108-112
    • Araki, K.1
  • 92
    • 74649085700 scopus 로고    scopus 로고
    • The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
    • Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 2010;32:67-78.
    • (2010) Immunity , vol.32 , pp. 67-78
    • Rao, R.R.1    Li, Q.2    Odunsi, K.3    Shrikant, P.A.4
  • 93
    • 79954623272 scopus 로고    scopus 로고
    • A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity
    • Li Q, et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 2011;34:541-553.
    • (2011) Immunity , vol.34 , pp. 541-553
    • Li, Q.1
  • 94
    • 84863344634 scopus 로고    scopus 로고
    • Gubbels Bupp MR, Shrikant PA. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation
    • Rao RR, Li Q. Gubbels Bupp MR, Shrikant PA. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 2012;36:374-387.
    • (2012) Immunity , vol.36 , pp. 374-387
    • Rao, R.R.1    Li, Q.2
  • 95
    • 42449110816 scopus 로고    scopus 로고
    • Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking
    • Sinclair LV, et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Imunol 2008;9:513-521.
    • (2008) Nat Imunol , vol.9 , pp. 513-521
    • Sinclair, L.V.1
  • 96
    • 79956142389 scopus 로고    scopus 로고
    • Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells
    • He S, et al. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells. PLoS ONE 2011;6:e20107.
    • (2011) PLoS ONE , vol.6
    • He, S.1
  • 97
    • 79251500689 scopus 로고    scopus 로고
    • Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease
    • Gatza E, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med 2011;3:67ra68.
    • (2011) Sci Transl Med , vol.3
    • Gatza, E.1
  • 98
    • 0033575383 scopus 로고    scopus 로고
    • Prevention of graft versus host disease by inactivation of host antigen-presenting cells
    • Shlomchik WD, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999;285:412-415.
    • (1999) Science , vol.285 , pp. 412-415
    • Shlomchik, W.D.1
  • 99
    • 33746876717 scopus 로고    scopus 로고
    • MiHA reactive CD4 and CD8 T-cells effect resistance to hematopoietic engraftment following reduced intensity conditioning
    • Zimmerman ZF, Levy RB. MiHA reactive CD4 and CD8 T-cells effect resistance to hematopoietic engraftment following reduced intensity conditioning. Am J Transplant 2006;6:2089-2098.
    • (2006) Am J Transplant , vol.6 , pp. 2089-2098
    • Zimmerman, Z.F.1    Levy, R.B.2
  • 100
    • 0026504392 scopus 로고
    • Lethal graft-versus-host disease in mice directed to multiple minor histocompatibility antigens: features of CD8+ and CD4+ T cell responses
    • Korngold R. Lethal graft-versus-host disease in mice directed to multiple minor histocompatibility antigens: features of CD8+ and CD4+ T cell responses. Bone Marrow Transplant 1992;9:355-364.
    • (1992) Bone Marrow Transplant , vol.9 , pp. 355-364
    • Korngold, R.1
  • 101
    • 0028009081 scopus 로고
    • Rapamycin, a potent inhibitor of T-cell function, prevents graft rejection in murine recipients of allogeneic T-cell-depleted donor marrow
    • Blazar BR, Taylor PA, Sehgal SN, Vallera DA. Rapamycin, a potent inhibitor of T-cell function, prevents graft rejection in murine recipients of allogeneic T-cell-depleted donor marrow. Blood 1994;83:600-609.
    • (1994) Blood , vol.83 , pp. 600-609
    • Blazar, B.R.1    Taylor, P.A.2    Sehgal, S.N.3    Vallera, D.A.4
  • 102
    • 0032102935 scopus 로고    scopus 로고
    • Rapamycin inhibits the generation of graft-versus-host disease- and graft-versus-leukemia-causing T cells by interfering with the production of Th1 or Th1 cytotoxic cytokines
    • Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Vallera DA. Rapamycin inhibits the generation of graft-versus-host disease- and graft-versus-leukemia-causing T cells by interfering with the production of Th1 or Th1 cytotoxic cytokines. J Immunol 1998;160:5355-5365.
    • (1998) J Immunol , vol.160 , pp. 5355-5365
    • Blazar, B.R.1    Taylor, P.A.2    Panoskaltsis-Mortari, A.3    Vallera, D.A.4
  • 103
    • 32544453971 scopus 로고    scopus 로고
    • Shared biology of GVHD and GVT effects: potential methods of separation
    • Fowler DH. Shared biology of GVHD and GVT effects: potential methods of separation. Crit Rev Oncol Hematol 2006;57:225-244.
    • (2006) Crit Rev Oncol Hematol , vol.57 , pp. 225-244
    • Fowler, D.H.1
  • 104
    • 80052157997 scopus 로고    scopus 로고
    • Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells
    • Shin HJ, Baker J, Leveson-Gower DB, Smith AT, Sega EI, Negrin RS. Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood 2011;118:2342-2350.
    • (2011) Blood , vol.118 , pp. 2342-2350
    • Shin, H.J.1    Baker, J.2    Leveson-Gower, D.B.3    Smith, A.T.4    Sega, E.I.5    Negrin, R.S.6
  • 105
    • 38049177784 scopus 로고    scopus 로고
    • Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells
    • Zeiser R, et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 2008;111:453-462.
    • (2008) Blood , vol.111 , pp. 453-462
    • Zeiser, R.1
  • 106
    • 84862489728 scopus 로고    scopus 로고
    • Identification and expansion of highly suppressive CD8(+)FoxP3(+) regulatory T cells after experimental allogeneic bone marrow transplantation
    • Robb RJ, et al. Identification and expansion of highly suppressive CD8(+)FoxP3(+) regulatory T cells after experimental allogeneic bone marrow transplantation. Blood 2012;119:5898-5908.
    • (2012) Blood , vol.119 , pp. 5898-5908
    • Robb, R.J.1
  • 107
    • 79952750887 scopus 로고    scopus 로고
    • Regulatory T cells require mammalian target of rapamycin signaling to maintain both homeostasis and alloantigen-driven proliferation in lymphocyte-replete mice
    • Wang Y, et al. Regulatory T cells require mammalian target of rapamycin signaling to maintain both homeostasis and alloantigen-driven proliferation in lymphocyte-replete mice. J Immunol 2011;186:2809-2818.
    • (2011) J Immunol , vol.186 , pp. 2809-2818
    • Wang, Y.1
  • 108
    • 58149292274 scopus 로고    scopus 로고
    • Impact of mammalian target of rapamycin inhibition on lymphoid homing and tolerogenic function of nanoparticle-labeled dendritic cells following allogeneic hematopoietic cell transplantation
    • Reichardt W, et al. Impact of mammalian target of rapamycin inhibition on lymphoid homing and tolerogenic function of nanoparticle-labeled dendritic cells following allogeneic hematopoietic cell transplantation. J Immunol 2008;181:4770-4779.
    • (2008) J Immunol , vol.181 , pp. 4770-4779
    • Reichardt, W.1
  • 109
    • 33747332338 scopus 로고    scopus 로고
    • Ex vivo rapamycin generates Th1/Tc1 or Th2/Tc2 Effector T cells with enhanced in vivo function and differential sensitivity to post-transplant rapamycin therapy
    • Jung U, et al. Ex vivo rapamycin generates Th1/Tc1 or Th2/Tc2 Effector T cells with enhanced in vivo function and differential sensitivity to post-transplant rapamycin therapy. Biol Blood Marrow Transplant 2006;12:905-918.
    • (2006) Biol Blood Marrow Transplant , vol.12 , pp. 905-918
    • Jung, U.1
  • 110
    • 20444499355 scopus 로고    scopus 로고
    • Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells
    • Gattinoni L, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 2005;115:1616-1626.
    • (2005) J Clin Invest , vol.115 , pp. 1616-1626
    • Gattinoni, L.1
  • 111
    • 67650465237 scopus 로고    scopus 로고
    • Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells
    • Gattinoni L, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 2009;15:808-813.
    • (2009) Nat Med , vol.15 , pp. 808-813
    • Gattinoni, L.1
  • 112
    • 72849126360 scopus 로고    scopus 로고
    • Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice
    • Huang J, et al. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest 2009;119:3519-3529.
    • (2009) J Clin Invest , vol.119 , pp. 3519-3529
    • Huang, J.1
  • 113
    • 77952203723 scopus 로고    scopus 로고
    • Pharmacologic induction of CD8+ T cell memory: better living through chemistry
    • ps12
    • Gattinoni L, Klebanoff CA, Restifo NP. Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci Transl Med 2009;1:11ps12.
    • (2009) Sci Transl Med , vol.1 , pp. 11
    • Gattinoni, L.1    Klebanoff, C.A.2    Restifo, N.P.3
  • 114
    • 38149117105 scopus 로고    scopus 로고
    • Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates
    • Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 2008;118:294-305.
    • (2008) J Clin Invest , vol.118 , pp. 294-305
    • Berger, C.1    Jensen, M.C.2    Lansdorp, P.M.3    Gough, M.4    Elliott, C.5    Riddell, S.R.6
  • 115
    • 0842263996 scopus 로고    scopus 로고
    • Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease
    • Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood 2004;103:1534-1541.
    • (2004) Blood , vol.103 , pp. 1534-1541
    • Chen, B.J.1    Cui, X.2    Sempowski, G.D.3    Liu, C.4    Chao, N.J.5
  • 116
    • 41349101545 scopus 로고    scopus 로고
    • Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease
    • Zheng H, et al. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood 2008;111:2476-2484.
    • (2008) Blood , vol.111 , pp. 2476-2484
    • Zheng, H.1
  • 117
    • 77951160869 scopus 로고    scopus 로고
    • Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia
    • Zheng H, Matte-Martone C, Jain D, McNiff J, Shlomchik WD. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia. J Immunol 2009;182:5938-5948.
    • (2009) J Immunol , vol.182 , pp. 5938-5948
    • Zheng, H.1    Matte-Martone, C.2    Jain, D.3    McNiff, J.4    Shlomchik, W.D.5
  • 118
    • 9444280125 scopus 로고    scopus 로고
    • L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection
    • Taylor PA, et al. L-Selectin(hi) but not the L-selectin(lo) CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 2004;104:3804-3812.
    • (2004) Blood , vol.104 , pp. 3804-3812
    • Taylor, P.A.1
  • 119
    • 78649881395 scopus 로고    scopus 로고
    • L-selectin is dispensable for T regulatory cell function postallogeneic bone marrow transplantation
    • Carlson MJ, et al. L-selectin is dispensable for T regulatory cell function postallogeneic bone marrow transplantation. Am J Transplant 2010;10:2596-2603.
    • (2010) Am J Transplant , vol.10 , pp. 2596-2603
    • Carlson, M.J.1
  • 120
    • 27144554518 scopus 로고    scopus 로고
    • Ex vivo rapamycin generates donor Th2 cells that potently inhibit graft-versus-host disease and graft-versus-tumor effects via an IL-4-dependent mechanism
    • Foley JE, et al. Ex vivo rapamycin generates donor Th2 cells that potently inhibit graft-versus-host disease and graft-versus-tumor effects via an IL-4-dependent mechanism. J Immunol 2005;175:5732-5743.
    • (2005) J Immunol , vol.175 , pp. 5732-5743
    • Foley, J.E.1
  • 121
    • 49449109282 scopus 로고    scopus 로고
    • Th2 cell therapy of established acute graft-versus-host disease requires IL-4 and IL-10 and is abrogated by IL-2 or host-type antigen-presenting cells
    • Foley JE, Mariotti J, Ryan K, Eckhaus M, Fowler DH. Th2 cell therapy of established acute graft-versus-host disease requires IL-4 and IL-10 and is abrogated by IL-2 or host-type antigen-presenting cells. Biol Blood Marrow Transplant 2008;14:959-972.
    • (2008) Biol Blood Marrow Transplant , vol.14 , pp. 959-972
    • Foley, J.E.1    Mariotti, J.2    Ryan, K.3    Eckhaus, M.4    Fowler, D.H.5
  • 122
    • 0032530890 scopus 로고    scopus 로고
    • Involvement of donor T-cell cytotoxic effector mechanisms in preventing allogeneic marrow graft rejection
    • Martin PJ, Akatsuka Y, Hahne M, Sale G. Involvement of donor T-cell cytotoxic effector mechanisms in preventing allogeneic marrow graft rejection. Blood 1998;92:2177-2181.
    • (1998) Blood , vol.92 , pp. 2177-2181
    • Martin, P.J.1    Akatsuka, Y.2    Hahne, M.3    Sale, G.4
  • 123
    • 58149382715 scopus 로고    scopus 로고
    • Graft rejection as a Th1-type process amenable to regulation by donor Th2-type cells through an interleukin-4/STAT6 pathway
    • Mariotti J, et al. Graft rejection as a Th1-type process amenable to regulation by donor Th2-type cells through an interleukin-4/STAT6 pathway. Blood 2008;112:4765-4775.
    • (2008) Blood , vol.112 , pp. 4765-4775
    • Mariotti, J.1
  • 124
    • 79955741366 scopus 로고    scopus 로고
    • Host-based Th2 cell therapy for prolongation of cardiac allograft viability
    • Amarnath S, et al. Host-based Th2 cell therapy for prolongation of cardiac allograft viability. PLoS ONE 2011;6:e18885.
    • (2011) PLoS ONE , vol.6
    • Amarnath, S.1
  • 125
    • 40449100796 scopus 로고    scopus 로고
    • Ex vivo rapamycin generates apoptosis-resistant donor Th2 cells that persist in vivo and prevent hemopoietic stem cell graft rejection
    • Mariotti J, et al. Ex vivo rapamycin generates apoptosis-resistant donor Th2 cells that persist in vivo and prevent hemopoietic stem cell graft rejection. J Immunol 2008;180:89-105.
    • (2008) J Immunol , vol.180 , pp. 89-105
    • Mariotti, J.1
  • 126
    • 77953714876 scopus 로고    scopus 로고
    • Rapamycin generates anti-apoptotic human Th1/Tc1 cells via autophagy for induction of xenogeneic GVHD
    • Amarnath S, et al. Rapamycin generates anti-apoptotic human Th1/Tc1 cells via autophagy for induction of xenogeneic GVHD. Autophagy 2010;6:523-541.
    • (2010) Autophagy , vol.6 , pp. 523-541
    • Amarnath, S.1
  • 127
    • 83655182357 scopus 로고    scopus 로고
    • Harnessing autophagy for adoptive T-cell therapy
    • Amarnath S, Fowler DH. Harnessing autophagy for adoptive T-cell therapy. Immunotherapy 2012;4:1-4.
    • (2012) Immunotherapy , vol.4 , pp. 1-4
    • Amarnath, S.1    Fowler, D.H.2
  • 128
    • 84873305477 scopus 로고    scopus 로고
    • Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation
    • Tahvanainen J, et al. Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation. J Biol Chem 2013;288:3048-3058.
    • (2013) J Biol Chem , vol.288 , pp. 3048-3058
    • Tahvanainen, J.1
  • 129
    • 33750511589 scopus 로고    scopus 로고
    • Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation
    • Fowler DH, et al. Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2006;12:1150-1160.
    • (2006) Biol Blood Marrow Transplant , vol.12 , pp. 1150-1160
    • Fowler, D.H.1
  • 130
    • 84870848878 scopus 로고    scopus 로고
    • Ultra-short course sirolimus contributes to effective GVHD prophylaxis after reduced-intensity allogeneic hematopoietic cell transplantation
    • Floisand Y, et al. Ultra-short course sirolimus contributes to effective GVHD prophylaxis after reduced-intensity allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2012;47:1552-1557.
    • (2012) Bone Marrow Transplant , vol.47 , pp. 1552-1557
    • Floisand, Y.1
  • 131
    • 11144354152 scopus 로고    scopus 로고
    • Sirolimus and tacrolimus without methotrexate as graft-versus-host disease prophylaxis after matched related donor peripheral blood stem cell transplantation
    • Cutler C, et al. Sirolimus and tacrolimus without methotrexate as graft-versus-host disease prophylaxis after matched related donor peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2004;10:328-336.
    • (2004) Biol Blood Marrow Transplant , vol.10 , pp. 328-336
    • Cutler, C.1
  • 132
    • 57449092086 scopus 로고    scopus 로고
    • Improved survival in lymphoma patients receiving sirolimus for graft-versus-host disease prophylaxis after allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning
    • Armand P, et al. Improved survival in lymphoma patients receiving sirolimus for graft-versus-host disease prophylaxis after allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning. J Clin Oncol 2008;26:5767-5774.
    • (2008) J Clin Oncol , vol.26 , pp. 5767-5774
    • Armand, P.1
  • 133
    • 84879448457 scopus 로고    scopus 로고
    • Phase 2 clinical trial of rapamycin-resistant donor CD4+ Th2/Th1 (T-Rapa) cells after low-intensity allogeneic hematopoietic cell transplantation
    • Fowler DH, et al. Phase 2 clinical trial of rapamycin-resistant donor CD4+ Th2/Th1 (T-Rapa) cells after low-intensity allogeneic hematopoietic cell transplantation. Blood 2013;121:2864-2874.
    • (2013) Blood , vol.121 , pp. 2864-2874
    • Fowler, D.H.1
  • 134
    • 78650316191 scopus 로고    scopus 로고
    • CD8+ enriched "young" tumor infiltrating lymphocytes can mediate regression of metastatic melanoma
    • Dudley ME, et al. CD8+ enriched "young" tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010;16:6122-6131.
    • (2010) Clin Cancer Res , vol.16 , pp. 6122-6131
    • Dudley, M.E.1
  • 135
    • 84875713254 scopus 로고    scopus 로고
    • Differential gene expression profile of first-generation and second-generation rapamycin-resistant allogeneic T cells
    • Castiello L, et al. Differential gene expression profile of first-generation and second-generation rapamycin-resistant allogeneic T cells. Cytotherapy 2013;15:598-609.
    • (2013) Cytotherapy , vol.15 , pp. 598-609
    • Castiello, L.1
  • 136
    • 84855416310 scopus 로고    scopus 로고
    • Autologous stem cell transplantation and multiple myeloma cancer stem cells
    • Matsui W, Borrello I, Mitsiades C. Autologous stem cell transplantation and multiple myeloma cancer stem cells. Biol Blood Marrow Transplant 2012;18:S27-S32.
    • (2012) Biol Blood Marrow Transplant , vol.18
    • Matsui, W.1    Borrello, I.2    Mitsiades, C.3
  • 137
    • 30744454570 scopus 로고    scopus 로고
    • Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer
    • Rapoport AP, et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 2005;11:1230-1237.
    • (2005) Nat Med , vol.11 , pp. 1230-1237
    • Rapoport, A.P.1
  • 138
    • 67650360757 scopus 로고    scopus 로고
    • Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of Costimulated autologous T cells
    • Rapoport AP, et al. Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of Costimulated autologous T cells. Clin Cancer Res 2009;15:4499-4507.
    • (2009) Clin Cancer Res , vol.15 , pp. 4499-4507
    • Rapoport, A.P.1
  • 139
    • 79954593204 scopus 로고    scopus 로고
    • The pentostatin plus cyclophosphamide nonmyeloablative regimen induces durable host T cell functional deficits and prevents murine marrow allograft rejection
    • Mariotti J, et al. The pentostatin plus cyclophosphamide nonmyeloablative regimen induces durable host T cell functional deficits and prevents murine marrow allograft rejection. Biol Blood Marrow Transplant 2011;17:620-631.
    • (2011) Biol Blood Marrow Transplant , vol.17 , pp. 620-631
    • Mariotti, J.1
  • 140
    • 79957890340 scopus 로고    scopus 로고
    • Pentostatin plus cyclophosphamide safely and effectively prevents immunotoxin immunogenicity in murine hosts
    • Mossoba ME, et al. Pentostatin plus cyclophosphamide safely and effectively prevents immunotoxin immunogenicity in murine hosts. Clin Cancer Res 2011;17:3697-3705.
    • (2011) Clin Cancer Res , vol.17 , pp. 3697-3705
    • Mossoba, M.E.1
  • 141
    • 71849118976 scopus 로고    scopus 로고
    • Allogeneic hematopoietic stem-cell transplantation for sickle cell disease
    • Hsieh MM, et al. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N Engl J Med 2009;361:2309-2317.
    • (2009) N Engl J Med , vol.361 , pp. 2309-2317
    • Hsieh, M.M.1
  • 142
    • 84880885997 scopus 로고    scopus 로고
    • Harnessing autophagy for cell fate control gene therapy
    • Felizardo TC, et al. Harnessing autophagy for cell fate control gene therapy. Autophagy 2013;9:1069-1079.
    • (2013) Autophagy , vol.9 , pp. 1069-1079
    • Felizardo, T.C.1
  • 143
    • 34247194881 scopus 로고    scopus 로고
    • Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy
    • Sato T, Neschadim A, Konrad M, Fowler DH, Lavie A, Medin JA. Engineered human tmpk/AZT as a novel enzyme/prodrug axis for suicide gene therapy. Mol Ther 2007;15:962-970.
    • (2007) Mol Ther , vol.15 , pp. 962-970
    • Sato, T.1    Neschadim, A.2    Konrad, M.3    Fowler, D.H.4    Lavie, A.5    Medin, J.A.6
  • 144
    • 65349157330 scopus 로고    scopus 로고
    • Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study
    • Ciceri F, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 2009;10:489-500.
    • (2009) Lancet Oncol , vol.10 , pp. 489-500
    • Ciceri, F.1
  • 145
    • 80455162464 scopus 로고    scopus 로고
    • Inducible apoptosis as a safety switch for adoptive cell therapy
    • Di Stasi A, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011;365:1673-1683.
    • (2011) N Engl J Med , vol.365 , pp. 1673-1683
    • Di Stasi, A.1
  • 146
    • 43449091559 scopus 로고    scopus 로고
    • HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide
    • Luznik L, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant 2008;14:641-650.
    • (2008) Biol Blood Marrow Transplant , vol.14 , pp. 641-650
    • Luznik, L.1
  • 147
    • 82655184651 scopus 로고    scopus 로고
    • The PDL1-PD1 axis converts human TH1 cells into regulatory T cells
    • Amarnath S, et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 2011;3:111ra120.
    • (2011) Sci Transl Med , vol.3
    • Amarnath, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.