메뉴 건너뛰기




Volumn 19, Issue 36, 2013, Pages 6534-6550

Lipid a biosynthesis of multidrug-resistant pathogens - A novel drug target

Author keywords

Acyltransferase; Chemotherapy; Deacetylase; Lipid A biosynthesis; Multidrug resistant pathogens

Indexed keywords

ANTIBIOTIC AGENT; BB 78484; BB 78485; CHIR 090; CHR 12; HYDROLASE; L 161240; LIPID A; LPC 009; LPC 011; LPC 012; LPC 013; LPC 054; RJPXD 33; TU 514; TU 521; UNCLASSIFIED DRUG; URIDINE DIPHOSPHATE 3 O (3 HYDROXYACYL) N ACETYLGLUCOSAMINE DEACETYLASE; URIDINE DIPHOSPHATE 3 O (3 HYDROXYACYL) N ACETYLTRANSFERASE; URIDINE DIPHOSPHATE N ACETYLGLUCOSAMINE ACYLTRANSFERASE;

EID: 84887980311     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/13816128113199990494     Document Type: Review
Times cited : (23)

References (80)
  • 1
    • 10944272743 scopus 로고    scopus 로고
    • Antibacterial resistance worldwide: Causes, challenges and responses
    • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004; 10: S122-9.
    • (2004) Nat Med , vol.10
    • Levy, S.B.1    Marshall, B.2
  • 2
    • 33646837531 scopus 로고    scopus 로고
    • Resistance in gram-negative bacteria: Enterobacteriaceae
    • discussion S64-73
    • Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006; 34: S20-8; discussion S64-73.
    • (2006) Am J Infect Control , vol.34
    • Paterson, D.L.1
  • 3
    • 84055193605 scopus 로고    scopus 로고
    • New definitions of extended-spectrum beta-lactamase conferring worldwide emerging antibiotic resistance
    • Lee JH, Bae IK, Lee SH. New definitions of extended-spectrum beta-lactamase conferring worldwide emerging antibiotic resistance. Med Res Rev 2012; 32: 216-32.
    • (2012) Med Res Rev , vol.32 , pp. 216-232
    • Lee, J.H.1    Bae, I.K.2    Lee, S.H.3
  • 4
    • 63449092015 scopus 로고    scopus 로고
    • New disturbing trend in antimicrobial resistance of gram-negative pathogens
    • Lee JH, Jeong SH, Cha SS, Lee SH. New disturbing trend in antimicrobial resistance of gram-negative pathogens. PLoS Pathog 2009; 5: e1000221.
    • (2009) PLoS Pathog , vol.5
    • Lee, J.H.1    Jeong, S.H.2    Cha, S.S.3    Lee, S.H.4
  • 5
    • 38849159205 scopus 로고    scopus 로고
    • Multidrug-resistant Gram-negative bacterial infections: The emerging threat and potential novel treatment options
    • Vergidis PI, Falagas ME. Multidrug-resistant Gram-negative bacterial infections: the emerging threat and potential novel treatment options. Curr Opin Investig Drugs 2008; 9: 176-83.
    • (2008) Curr Opin Investig Drugs , vol.9 , pp. 176-183
    • Vergidis, P.I.1    Falagas, M.E.2
  • 6
    • 35748983815 scopus 로고    scopus 로고
    • A lack of drugs for antibioticresistant Gram-negative bacteria
    • doi: 10. 1038/nrd2201-c1
    • Lee JH, Jeong SH, Cha S-S, Lee SH. A lack of drugs for antibioticresistant Gram-negative bacteria. Nat Rev Drug Discov 2007; 6: doi: 10. 1038/nrd2201-c1.
    • (2007) Nat Rev Drug Discov , vol.6
    • Lee, J.H.1    Jeong, S.H.2    Cha, S.-S.3    Lee, S.H.4
  • 7
  • 8
    • 0031922619 scopus 로고    scopus 로고
    • Antibacterial and antiinflammatory agents that target endotoxin
    • Wyckoff TJ, Raetz CR, Jackman JE. Antibacterial and antiinflammatory agents that target endotoxin. Trends Microbiol 1998; 6: 154-9.
    • (1998) Trends Microbiol , vol.6 , pp. 154-159
    • Wyckoff, T.J.1    Raetz, C.R.2    Jackman, J.E.3
  • 9
    • 0021989093 scopus 로고
    • Molecular basis of bacterial outer membrane permeability
    • Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985; 49: 1-32.
    • (1985) Microbiol Rev , vol.49 , pp. 1-32
    • Nikaido, H.1    Vaara, M.2
  • 10
    • 0025220127 scopus 로고
    • A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis
    • Galloway SM, Raetz CR. A mutant of Escherichia coli defective in the first step of endotoxin biosynthesis. J Biol Chem 1990; 265: 6394-402.
    • (1990) J Biol Chem , vol.265 , pp. 6394-6402
    • Galloway, S.M.1    Raetz, C.R.2
  • 11
    • 0027255391 scopus 로고
    • Bacterial endotoxins: Extraordinary lipids that activate eucaryotic signal transduction
    • Raetz CR. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J Bacteriol 1993; 175: 5745-53.
    • (1993) J Bacteriol , vol.175 , pp. 5745-5753
    • Raetz, C.R.1
  • 12
    • 0026604214 scopus 로고
    • The lipid A biosynthesis mutation lpxA2 of Escherichia coli results in drastic antibiotic supersusceptibility
    • Vuorio R, Vaara M. The lipid A biosynthesis mutation lpxA2 of Escherichia coli results in drastic antibiotic supersusceptibility. Antimicrob Agents Chemother 1992; 36: 826-9.
    • (1992) Antimicrob Agents Chemother , vol.36 , pp. 826-829
    • Vuorio, R.1    Vaara, M.2
  • 13
    • 84870243063 scopus 로고    scopus 로고
    • Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli
    • Okuda S, Freinkman E, Kahne D. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 2012; 338: 1214-7.
    • (2012) Science , vol.338 , pp. 1214-1217
    • Okuda, S.1    Freinkman, E.2    Kahne, D.3
  • 14
    • 10544252685 scopus 로고    scopus 로고
    • Antibacterial agents that inhibit lipid A biosynthesis
    • Onishi HR, Pelak BA, Gerckens LS, et al. Antibacterial agents that inhibit lipid A biosynthesis. Science 1996; 274: 980-2.
    • (1996) Science , vol.274 , pp. 980-982
    • Onishi, H.R.1    Pelak, B.A.2    Gerckens, L.S.3
  • 15
    • 0027304442 scopus 로고
    • UDP-Nacetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable
    • Anderson MS, Bull HG, Galloway SM, et al. UDP-Nacetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable. J Biol Chem 1993; 268: 19858-65.
    • (1993) J Biol Chem , vol.268 , pp. 19858-19865
    • Anderson, M.S.1    Bull, H.G.2    Galloway, S.M.3
  • 16
    • 39449115488 scopus 로고    scopus 로고
    • Mechanism and inhibition of LpxC: An essential zinc-dependent deacetylase of bacterial lipid A synthesis
    • Barb AW, Zhou P. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotechnol 2008; 9: 9-15.
    • (2008) Curr Pharm Biotechnol , vol.9 , pp. 9-15
    • Barb, A.W.1    Zhou, P.2
  • 17
    • 43249099873 scopus 로고    scopus 로고
    • Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis
    • Bartling CM, Raetz CR. Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 2008; 47: 5290-302.
    • (2008) Biochemistry , vol.47 , pp. 5290-5302
    • Bartling, C.M.1    Raetz, C.R.2
  • 18
    • 0027275541 scopus 로고
    • The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis
    • Kelly TM, Stachula SA, Raetz CR, Anderson MS. The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J Biol Chem 1993; 268: 19866-74.
    • (1993) J Biol Chem , vol.268 , pp. 19866-19874
    • Kelly, T.M.1    Stachula, S.A.2    Raetz, C.R.3    Anderson, M.S.4
  • 19
    • 79958221467 scopus 로고    scopus 로고
    • Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD
    • Kim HJ, Lee CR, Kim M, Peterkofsky A, Seok YJ. Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD. Biochem Biophys Res Commun 2011; 409: 556-61.
    • (2011) Biochem Biophys Res Commun , vol.409 , pp. 556-561
    • Kim, H.J.1    Lee, C.R.2    Kim, M.3    Peterkofsky, A.4    Seok, Y.J.5
  • 20
    • 0029908978 scopus 로고    scopus 로고
    • Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-Nacetylglucosamine deacetylase in Escherichia coli. The second enzymatic step of lipid a biosynthesis
    • Sorensen PG, Lutkenhaus J, Young K, Eveland SS, Anderson MS, Raetz CR. Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-Nacetylglucosamine deacetylase in Escherichia coli. The second enzymatic step of lipid a biosynthesis. J Biol Chem 1996; 271: 25898-905.
    • (1996) J Biol Chem , vol.271 , pp. 25898-25905
    • Sorensen, P.G.1    Lutkenhaus, J.2    Young, K.3    Eveland, S.S.4    Anderson, M.S.5    Raetz, C.R.6
  • 21
    • 0028844306 scopus 로고
    • A left-handed parallel [helix in the structure of UDP-N-acetylglucosamine acyltransferase
    • Raetz CR, Roderick SL. A left-handed parallel [helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science 1995; 270: 997-1000.
    • (1995) Science , vol.270 , pp. 997-1000
    • Raetz, C.R.1    Roderick, S.L.2
  • 22
    • 33746623281 scopus 로고    scopus 로고
    • Structure of UDP-N-acetylglucosamine acyltransferase with a bound antibacterial pentadecapeptide
    • Williams AH, Immormino RM, Gewirth DT, Raetz CR. Structure of UDP-N-acetylglucosamine acyltransferase with a bound antibacterial pentadecapeptide. Proc Natl Acad Sci USA 2006; 103: 10877-82.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 10877-10882
    • Williams, A.H.1    Immormino, R.M.2    Gewirth, D.T.3    Raetz, C.R.4
  • 23
    • 35348926770 scopus 로고    scopus 로고
    • Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase
    • Williams AH, Raetz CR. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc Natl Acad Sci USA 2007; 104: 13543-50.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 13543-13550
    • Williams, A.H.1    Raetz, C.R.2
  • 24
    • 84870894185 scopus 로고    scopus 로고
    • Structure determination of LpxA from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii
    • Badger J, Chie-Leon B, Logan C, et al. Structure determination of LpxA from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68: 1477-81.
    • (2012) Acta Crystallogr Sect F Struct Biol Cryst Commun , vol.68 , pp. 1477-1481
    • Badger, J.1    Chie-Leon, B.2    Logan, C.3
  • 25
    • 67650022094 scopus 로고    scopus 로고
    • Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA
    • Robins LI, Williams AH, Raetz CR. Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA. Biochemistry 2009; 48: 6191-201.
    • (2009) Biochemistry , vol.48 , pp. 6191-6201
    • Robins, L.I.1    Williams, A.H.2    Raetz, C.R.3
  • 26
    • 84861629566 scopus 로고    scopus 로고
    • Activity and crystal structure of Arabidopsis thaliana UDP-N-acetylglucosamine acyltransferase
    • Joo SH, Chung HS, Raetz CR, Garrett TA. Activity and crystal structure of Arabidopsis thaliana UDP-N-acetylglucosamine acyltransferase. Biochemistry 2012; 51: 4322-30.
    • (2012) Biochemistry , vol.51 , pp. 4322-4330
    • Joo, S.H.1    Chung, H.S.2    Raetz, C.R.3    Garrett, T.A.4
  • 27
    • 0032555280 scopus 로고    scopus 로고
    • The conformational change and active site structure of tetrahydrodipicolinate Nsuccinyltransferase
    • Beaman TW, Blanchard JS, Roderick SL. The conformational change and active site structure of tetrahydrodipicolinate Nsuccinyltransferase. Biochemistry 1998; 37: 10363-9.
    • (1998) Biochemistry , vol.37 , pp. 10363-10369
    • Beaman, T.W.1    Blanchard, J.S.2    Roderick, S.L.3
  • 28
    • 0035916240 scopus 로고    scopus 로고
    • Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites
    • Olsen LR, Roderick SL. Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry 2001; 40: 1913-21.
    • (2001) Biochemistry , vol.40 , pp. 1913-1921
    • Olsen, L.R.1    Roderick, S.L.2
  • 29
    • 0036223044 scopus 로고    scopus 로고
    • Structure of the lac operon galactoside acetyltransferase
    • Wang XG, Olsen LR, Roderick SL. Structure of the lac operon galactoside acetyltransferase. Structure 2002; 10: 581-8.
    • (2002) Structure , vol.10 , pp. 581-588
    • Wang, X.G.1    Olsen, L.R.2    Roderick, S.L.3
  • 30
    • 0033578887 scopus 로고    scopus 로고
    • The active site of Escherichia coli UDP-Nacetylglucosamine acyltransferase. Chemical modification and sitedirected mutagenesis
    • Wyckoff TJ, Raetz CR. The active site of Escherichia coli UDP-Nacetylglucosamine acyltransferase. Chemical modification and sitedirected mutagenesis. J Biol Chem 1999; 274: 27047-55.
    • (1999) J Biol Chem , vol.274 , pp. 27047-27055
    • Wyckoff, T.J.1    Raetz, C.R.2
  • 32
    • 79960981349 scopus 로고    scopus 로고
    • Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli
    • Li C, Guan Z, Liu D, Raetz CR. Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli. Proc Natl Acad Sci USA 2011; 108: 11387-92.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 11387-11392
    • Li, C.1    Guan, Z.2    Liu, D.3    Raetz, C.R.4
  • 35
    • 0032971984 scopus 로고    scopus 로고
    • UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme
    • Jackman JE, Raetz CR, Fierke CA. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 1999; 38: 1902-11.
    • (1999) Biochemistry , vol.38 , pp. 1902-1911
    • Jackman, J.E.1    Raetz, C.R.2    Fierke, C.A.3
  • 36
    • 39549112496 scopus 로고    scopus 로고
    • Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor
    • Mochalkin I, Knafels JD, Lightle S. Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor. Protein Sci 2008; 17: 450-7.
    • (2008) Protein Sci , vol.17 , pp. 450-457
    • Mochalkin, I.1    Knafels, J.D.2    Lightle, S.3
  • 37
    • 9744244982 scopus 로고    scopus 로고
    • Zinc hydrolases: The mechanisms of zincdependent deacetylases
    • Hernick M, Fierke CA. Zinc hydrolases: the mechanisms of zincdependent deacetylases. Arch Biochem Biophys 2005; 433: 71-84.
    • (2005) Arch Biochem Biophys , vol.433 , pp. 71-84
    • Hernick, M.1    Fierke, C.A.2
  • 38
    • 0035895351 scopus 로고    scopus 로고
    • Site-directed mutagenesis of the bacterial metalloamidase UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC). Identification of the zinc binding site
    • Jackman JE, Raetz CR, Fierke CA. Site-directed mutagenesis of the bacterial metalloamidase UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC). Identification of the zinc binding site. Biochemistry 2001; 40: 514-23.
    • (2001) Biochemistry , vol.40 , pp. 514-523
    • Jackman, J.E.1    Raetz, C.R.2    Fierke, C.A.3
  • 39
    • 20444469255 scopus 로고    scopus 로고
    • UDP-3-O-(R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase functions through a general acidbase catalyst pair mechanism
    • Hernick M, Gennadios HA, Whittington DA, Rusche KM, Christianson DW, Fierke CA. UDP-3-O-(R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase functions through a general acidbase catalyst pair mechanism. J Biol Chem 2005; 280: 16969-78.
    • (2005) J Biol Chem , vol.280 , pp. 16969-16978
    • Hernick, M.1    Gennadios, H.A.2    Whittington, D.A.3    Rusche, K.M.4    Christianson, D.W.5    Fierke, C.A.6
  • 40
    • 70249134273 scopus 로고    scopus 로고
    • Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis
    • Bartling CM, Raetz CR. Crystal structure and acyl chain selectivity of Escherichia coli LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry 2009; 48: 8672-83.
    • (2009) Biochemistry , vol.48 , pp. 8672-8683
    • Bartling, C.M.1    Raetz, C.R.2
  • 42
    • 34247642136 scopus 로고    scopus 로고
    • Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis
    • Buetow L, Smith TK, Dawson A, Fyffe S, Hunter WN. Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. Proc Natl Acad Sci USA 2007; 104: 4321-6.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 4321-4326
    • Buetow, L.1    Smith, T.K.2    Dawson, A.3    Fyffe, S.4    Hunter, W.N.5
  • 43
    • 84872114739 scopus 로고    scopus 로고
    • Structure determination of LpxD from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii
    • Badger J, Chie-Leon B, Logan C, et al. Structure determination of LpxD from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69: 6-9.
    • (2013) Acta Crystallogr Sect F Struct Biol Cryst Commun , vol.69 , pp. 6-9
    • Badger, J.1    Chie-Leon, B.2    Logan, C.3
  • 44
    • 0033546340 scopus 로고    scopus 로고
    • Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2
    • Rund S, Lindner B, Brade H, Holst O. Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2. J Biol Chem 1999; 274: 16819-24.
    • (1999) J Biol Chem , vol.274 , pp. 16819-16824
    • Rund, S.1    Lindner, B.2    Brade, H.3    Holst, O.4
  • 45
    • 67649386512 scopus 로고    scopus 로고
    • A new class of UDP-3-O-(R-3-hydroxymyristol)-Nacetylglucosamine deacetylase (LpxC) inhibitors for the treatment of Gram-negative infections: PCT application WO 2008027466
    • Cuny GD. A new class of UDP-3-O-(R-3-hydroxymyristol)-Nacetylglucosamine deacetylase (LpxC) inhibitors for the treatment of Gram-negative infections: PCT application WO 2008027466. Expert Opin Ther Pat 2009; 19: 893-9.
    • (2009) Expert Opin Ther Pat , vol.19 , pp. 893-899
    • Cuny, G.D.1
  • 46
    • 84860535850 scopus 로고    scopus 로고
    • UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: A new class of antibacterial agents
    • Zhang J, Zhang L, Li X, Xu W. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents. Curr Med Chem 2012; 19: 2038-50.
    • (2012) Curr Med Chem , vol.19 , pp. 2038-2050
    • Zhang, J.1    Zhang, L.2    Li, X.3    Xu, W.4
  • 47
    • 0033535073 scopus 로고    scopus 로고
    • Carbohydroxamidooxazolidines: Antibacterial agents that target lipid A biosynthesis
    • Chen MH, Steiner MG, de Laszlo SE, et al. Carbohydroxamidooxazolidines: antibacterial agents that target lipid A biosynthesis. Bioorg Med Chem Lett 1999; 9: 313-8.
    • (1999) Bioorg Med Chem Lett , vol.9 , pp. 313-318
    • Chen, M.H.1    Steiner, M.G.2    de Laszlo, S.E.3
  • 48
    • 33744487392 scopus 로고    scopus 로고
    • Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa
    • Mdluli KE, Witte PR, Kline T, et al. Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50: 2178-84.
    • (2006) Antimicrob Agents Chemother , vol.50 , pp. 2178-2184
    • Mdluli, K.E.1    Witte, P.R.2    Kline, T.3
  • 49
    • 0034646694 scopus 로고    scopus 로고
    • Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs
    • Jackman JE, Fierke CA, Tumey LN, et al. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem 2000; 275: 11002-9.
    • (2000) J Biol Chem , vol.275 , pp. 11002-11009
    • Jackman, J.E.1    Fierke, C.A.2    Tumey, L.N.3
  • 50
    • 13444287735 scopus 로고    scopus 로고
    • Refined solution structure of the LpxC-TU-514 complex and pKa analysis of an active site histidine: Insights into the mechanism and inhibitor design
    • Coggins BE, McClerren AL, Jiang L, et al. Refined solution structure of the LpxC-TU-514 complex and pKa analysis of an active site histidine: insights into the mechanism and inhibitor design. Biochemistry 2005; 44: 1114-26.
    • (2005) Biochemistry , vol.44 , pp. 1114-1126
    • Coggins, B.E.1    McClerren, A.L.2    Jiang, L.3
  • 51
    • 39449127018 scopus 로고    scopus 로고
    • Role of sulfonamide group in matrix metalloproteinase inhibitors
    • Cheng XC, Wang Q, Fang H, Xu WF. Role of sulfonamide group in matrix metalloproteinase inhibitors. Curr Med Chem 2008; 15: 368-73.
    • (2008) Curr Med Chem , vol.15 , pp. 368-373
    • Cheng, X.C.1    Wang, Q.2    Fang, H.3    Xu, W.F.4
  • 52
    • 0036096165 scopus 로고    scopus 로고
    • Antibacterial activities and characterization of novel inhibitors of LpxC
    • Clements JM, Coignard F, Johnson I, et al. Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob Agents Chemother 2002; 46: 1793-9.
    • (2002) Antimicrob Agents Chemother , vol.46 , pp. 1793-1799
    • Clements, J.M.1    Coignard, F.2    Johnson, I.3
  • 53
    • 29244445498 scopus 로고    scopus 로고
    • A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin
    • McClerren AL, Endsley S, Bowman JL, et al. A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry 2005; 44: 16574-83.
    • (2005) Biochemistry , vol.44 , pp. 16574-16583
    • McClerren, A.L.1    Endsley, S.2    Bowman, J.L.3
  • 54
    • 33947676835 scopus 로고    scopus 로고
    • Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli
    • Barb AW, McClerren AL, Snehelatha K, Reynolds CM, Zhou P, Raetz CR. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry 2007; 46: 3793-802.
    • (2007) Biochemistry , vol.46 , pp. 3793-3802
    • Barb, A.W.1    McClerren, A.L.2    Snehelatha, K.3    Reynolds, C.M.4    Zhou, P.5    Raetz, C.R.6
  • 55
    • 78651346930 scopus 로고    scopus 로고
    • Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090
    • Cole KE, Gattis SG, Angell HD, Fierke CA, Christianson DW. Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090. Biochemistry 2011; 50: 258-65.
    • (2011) Biochemistry , vol.50 , pp. 258-265
    • Cole, K.E.1    Gattis, S.G.2    Angell, H.D.3    Fierke, C.A.4    Christianson, D.W.5
  • 56
    • 36749037830 scopus 로고    scopus 로고
    • Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding
    • Barb AW, Jiang L, Raetz CR, Zhou P. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci USA 2007; 104: 18433-8.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 18433-18438
    • Barb, A.W.1    Jiang, L.2    Raetz, C.R.3    Zhou, P.4
  • 57
    • 79251630959 scopus 로고    scopus 로고
    • Species-specific and inhibitordependent conformations of LpxC: Implications for antibiotic design
    • Lee CJ, Liang X, Chen X, et al. Species-specific and inhibitordependent conformations of LpxC: implications for antibiotic design. Chem Biol 2011; 18: 38-47.
    • (2011) Chem Biol , vol.18 , pp. 38-47
    • Lee, C.J.1    Liang, X.2    Chen, X.3
  • 58
    • 78651477706 scopus 로고    scopus 로고
    • Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold
    • Liang X, Lee CJ, Chen X, et al. Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold. Bioorg Med Chem 2011; 19: 852-60.
    • (2011) Bioorg Med Chem , vol.19 , pp. 852-860
    • Liang, X.1    Lee, C.J.2    Chen, X.3
  • 59
    • 79851511830 scopus 로고    scopus 로고
    • Design and synthesis of potent Gram-negative specific LpxC inhibitors
    • Mansoor UF, Vitharana D, Reddy PA, et al. Design and synthesis of potent Gram-negative specific LpxC inhibitors. Bioorg Med Chem Lett 2011; 21: 1155-61.
    • (2011) Bioorg Med Chem Lett , vol.21 , pp. 1155-1161
    • Mansoor, U.F.1    Vitharana, D.2    Reddy, P.A.3
  • 60
    • 19944399431 scopus 로고    scopus 로고
    • A comprehensive listing of bioactivation pathways of organic functional groups
    • Kalgutkar AS, Gardner I, Obach RS, et al. A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 2005; 6: 161-225.
    • (2005) Curr Drug Metab , vol.6 , pp. 161-225
    • Kalgutkar, A.S.1    Gardner, I.2    Obach, R.S.3
  • 61
    • 84858707707 scopus 로고    scopus 로고
    • Structure based design of an in vivo active hydroxamic acid inhibitor of P. aeruginosa LpxC
    • Warmus JS, Quinn CL, Taylor C, et al. Structure based design of an in vivo active hydroxamic acid inhibitor of P. aeruginosa LpxC. Bioorg Med Chem Lett 2012; 22: 2536-43.
    • (2012) Bioorg Med Chem Lett , vol.22 , pp. 2536-2543
    • Warmus, J.S.1    Quinn, C.L.2    Taylor, C.3
  • 62
    • 84863012639 scopus 로고    scopus 로고
    • Potent inhibitors of LpxC for the treatment of Gram-negative infections
    • Brown MF, Reilly U, Abramite JA, et al. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J Med Chem 2012; 55: 914-23.
    • (2012) J Med Chem , vol.55 , pp. 914-923
    • Brown, M.F.1    Reilly, U.2    Abramite, J.A.3
  • 63
    • 84867841679 scopus 로고    scopus 로고
    • Heterocyclic methylsulfone hydroxamic acid LpxC inhibitors as Gram-negative antibacterial agents
    • McAllister LA, Montgomery JI, Abramite JA, et al. Heterocyclic methylsulfone hydroxamic acid LpxC inhibitors as Gram-negative antibacterial agents. Bioorg Med Chem Lett 2012; 22: 6832-8.
    • (2012) Bioorg Med Chem Lett , vol.22 , pp. 6832-6838
    • McAllister, L.A.1    Montgomery, J.I.2    Abramite, J.A.3
  • 64
    • 84863119192 scopus 로고    scopus 로고
    • Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections
    • Montgomery JI, Brown MF, Reilly U, et al. Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J Med Chem 2012; 55: 1662-70.
    • (2012) J Med Chem , vol.55 , pp. 1662-1670
    • Montgomery, J.I.1    Brown, M.F.2    Reilly, U.3
  • 66
    • 47349084576 scopus 로고    scopus 로고
    • Progress in the development of matrix metalloproteinase inhibitors
    • Tu G, Xu W, Huang H, Li S. Progress in the development of matrix metalloproteinase inhibitors. Curr Med Chem 2008; 15: 1388-95.
    • (2008) Curr Med Chem , vol.15 , pp. 1388-1395
    • Tu, G.1    Xu, W.2    Huang, H.3    Li, S.4
  • 67
    • 0034649432 scopus 로고    scopus 로고
    • Principles of hydroxamate inhibition of metalloproteases: Carboxypeptidase A
    • Mock WL, Cheng H. Principles of hydroxamate inhibition of metalloproteases: carboxypeptidase A. Biochemistry 2000; 39: 13945-52.
    • (2000) Biochemistry , vol.39 , pp. 13945-13952
    • Mock, W.L.1    Cheng, H.2
  • 68
    • 33644875741 scopus 로고    scopus 로고
    • Aminopeptidase-N/CD13 (EC 3. 4. 11. 2) inhibitors: Chemistry, biological evaluations, and therapeutic prospects
    • Bauvois B, Dauzonne D. Aminopeptidase-N/CD13 (EC 3. 4. 11. 2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 2006; 26: 88-130.
    • (2006) Med Res Rev , vol.26 , pp. 88-130
    • Bauvois, B.1    Dauzonne, D.2
  • 69
    • 0042833023 scopus 로고    scopus 로고
    • Reversed hydroxamate-bearing thermolysin inhibitors mimic a high-energy intermediate along the enzymecatalyzed proteolytic reaction pathway
    • Park JD, Kim DH. Reversed hydroxamate-bearing thermolysin inhibitors mimic a high-energy intermediate along the enzymecatalyzed proteolytic reaction pathway. Bioorg Med Chem Lett 2003; 13: 3161-6.
    • (2003) Bioorg Med Chem Lett , vol.13 , pp. 3161-3166
    • Park, J.D.1    Kim, D.H.2
  • 70
    • 0037068502 scopus 로고    scopus 로고
    • Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): Isoxazoline zinc amidase inhibitors bearing diverse metal binding groups
    • Pirrung MC, Tumey LN, Raetz CR, et al. Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. J Med Chem 2002; 45: 4359-70.
    • (2002) J Med Chem , vol.45 , pp. 4359-4370
    • Pirrung, M.C.1    Tumey, L.N.2    Raetz, C.R.3
  • 71
    • 65249178328 scopus 로고    scopus 로고
    • Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC
    • Barb AW, Leavy TM, Robins LI, et al. Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry 2009; 48: 3068-77.
    • (2009) Biochemistry , vol.48 , pp. 3068-3077
    • Barb, A.W.1    Leavy, T.M.2    Robins, L.I.3
  • 73
    • 33847654341 scopus 로고    scopus 로고
    • Amphipathic benzoic acid derivatives: Synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC
    • Shin H, Gennadios HA, Whittington DA, Christianson DW. Amphipathic benzoic acid derivatives: synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC. Bioorg Med Chem 2007; 15: 2617-23.
    • (2007) Bioorg Med Chem , vol.15 , pp. 2617-2623
    • Shin, H.1    Gennadios, H.A.2    Whittington, D.A.3    Christianson, D.W.4
  • 75
    • 84858708631 scopus 로고    scopus 로고
    • 4D-LQTA-QSAR and docking study on potent Gram-negative specific LpxC inhibitors: A comparison to CoMFA modeling
    • Ghasemi JB, Safavi-Sohi R, Barbosa EG. 4D-LQTA-QSAR and docking study on potent Gram-negative specific LpxC inhibitors: a comparison to CoMFA modeling. Mol Divers 2012; 16: 203-13.
    • (2012) Mol Divers , vol.16 , pp. 203-213
    • Ghasemi, J.B.1    Safavi-Sohi, R.2    Barbosa, E.G.3
  • 76
    • 77949363962 scopus 로고    scopus 로고
    • Screening for antibacterial inhibitors of the UDP-3-O-(R-3-hydroxymyristoyl)-Nacetylglucosamine deacetylase (LpxC) using a high-throughput mass spectrometry assay
    • Langsdorf EF, Malikzay A, Lamarr WA, et al. Screening for antibacterial inhibitors of the UDP-3-O-(R-3-hydroxymyristoyl)-Nacetylglucosamine deacetylase (LpxC) using a high-throughput mass spectrometry assay. J Biomol Screen 2010; 15: 52-61.
    • (2010) J Biomol Screen , vol.15 , pp. 52-61
    • Langsdorf, E.F.1    Malikzay, A.2    Lamarr, W.A.3
  • 77
    • 84887868319 scopus 로고    scopus 로고
    • Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp.: Homology modeling, docking, and molecular dynamics study
    • Pradhan D, Priyadarshini V, Munikumar M, Swargam S, Umamaheswari A, Bitla A. Para-(benzoyl)-phenylalanine as a potential inhibitor against LpxC of Leptospira spp.: homology modeling, docking, and molecular dynamics study. J Biomol Struct Dyn 2013.
    • (2013) J Biomol Struct Dyn
    • Pradhan, D.1    Priyadarshini, V.2    Munikumar, M.3    Swargam, S.4    Umamaheswari, A.5    Bitla, A.6
  • 79
    • 0041922662 scopus 로고    scopus 로고
    • Intracellular expression of Peptide fusions for demonstration of protein essentiality in bacteria
    • Benson RE, Gottlin EB, Christensen DJ, Hamilton PT. Intracellular expression of Peptide fusions for demonstration of protein essentiality in bacteria. Antimicrob Agents Chemother 2003; 47: 2875-81.
    • (2003) Antimicrob Agents Chemother , vol.47 , pp. 2875-2881
    • Benson, R.E.1    Gottlin, E.B.2    Christensen, D.J.3    Hamilton, P.T.4
  • 80
    • 84864119662 scopus 로고    scopus 로고
    • Dual targeting antibacterial peptide inhibitor of early lipid a biosynthesis
    • Jenkins RJ, Dotson GD. Dual targeting antibacterial peptide inhibitor of early lipid a biosynthesis. ACS Chem Biol 2012; 7: 1170-7.
    • (2012) ACS Chem Biol , vol.7 , pp. 1170-1177
    • Jenkins, R.J.1    Dotson, G.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.