-
1
-
-
79551554590
-
The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease
-
Munoz-Sanjuan I., Bates G.P. The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J. Clin. Invest. 2011, 121:476-483.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 476-483
-
-
Munoz-Sanjuan, I.1
Bates, G.P.2
-
2
-
-
79955758366
-
HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia
-
Warby S.C., et al. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur. J. Hum. Genet. 2011, 19:561-566.
-
(2011)
Eur. J. Hum. Genet.
, vol.19
, pp. 561-566
-
-
Warby, S.C.1
-
3
-
-
52049093169
-
Polyglutamine neurodegeneration: protein misfolding revisited
-
Williams A.J., Paulson H.L. Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci. 2008, 31:521-528.
-
(2008)
Trends Neurosci.
, vol.31
, pp. 521-528
-
-
Williams, A.J.1
Paulson, H.L.2
-
4
-
-
18544410106
-
Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation
-
Davies S.W., et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997, 90:537-548.
-
(1997)
Cell
, vol.90
, pp. 537-548
-
-
Davies, S.W.1
-
5
-
-
0030752709
-
Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain
-
DiFiglia M., et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997, 277:1990-1993.
-
(1997)
Science
, vol.277
, pp. 1990-1993
-
-
DiFiglia, M.1
-
6
-
-
0037264120
-
Unfolding the role of protein misfolding in neurodegenerative diseases
-
Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 2003, 4:49-60.
-
(2003)
Nat. Rev. Neurosci.
, vol.4
, pp. 49-60
-
-
Soto, C.1
-
7
-
-
81355160169
-
Identifying polyglutamine protein species in situ that best predict neurodegeneration
-
Miller J., et al. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat. Chem. Biol. 2011, 7:925-934.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 925-934
-
-
Miller, J.1
-
8
-
-
63049132756
-
Acetylation targets mutant huntingtin to autophagosomes for degradation
-
Jeong H., et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009, 137:60-72.
-
(2009)
Cell
, vol.137
, pp. 60-72
-
-
Jeong, H.1
-
9
-
-
72149107077
-
Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice
-
Gu X., et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009, 64:828-840.
-
(2009)
Neuron
, vol.64
, pp. 828-840
-
-
Gu, X.1
-
10
-
-
71449084004
-
The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation
-
Tam S., et al. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat. Struct. Mol. Biol. 2009, 16:1279-1285.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 1279-1285
-
-
Tam, S.1
-
11
-
-
64049119303
-
Polyglutamine disruption of the huntingtin exon 1N terminus triggers a complex aggregation mechanism
-
Thakur A.K., et al. Polyglutamine disruption of the huntingtin exon 1N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 2009, 16:380-389.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 380-389
-
-
Thakur, A.K.1
-
12
-
-
79952360891
-
Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent
-
Kar K., et al. Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat. Struct. Mol. Biol. 2011, 18:328-336.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 328-336
-
-
Kar, K.1
-
13
-
-
59649095699
-
Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates
-
Ren P.H., et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 2009, 11:219-225.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 219-225
-
-
Ren, P.H.1
-
14
-
-
84863833900
-
Network organization of the huntingtin proteomic interactome in mammalian brain
-
Shirasaki D.I., et al. Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron 2012, 75:41-57.
-
(2012)
Neuron
, vol.75
, pp. 41-57
-
-
Shirasaki, D.I.1
-
15
-
-
80255122786
-
Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development
-
Ehrnhoefer D.E., et al. Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development. Nat. Rev. Drug Discov. 2011, 10:853-867.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 853-867
-
-
Ehrnhoefer, D.E.1
-
16
-
-
79551519277
-
Brain networks in Huntington disease
-
Eidelberg D., Surmeier D.J. Brain networks in Huntington disease. J. Clin. Invest. 2011, 121:484-492.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 484-492
-
-
Eidelberg, D.1
Surmeier, D.J.2
-
17
-
-
77958192164
-
Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease
-
Milnerwood A.J., Raymond L.A. Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci. 2010, 33:513-523.
-
(2010)
Trends Neurosci.
, vol.33
, pp. 513-523
-
-
Milnerwood, A.J.1
Raymond, L.A.2
-
18
-
-
0035503511
-
Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice
-
Li H., et al. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 2001, 21:8473-8481.
-
(2001)
J. Neurosci.
, vol.21
, pp. 8473-8481
-
-
Li, H.1
-
19
-
-
67649826155
-
Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin
-
Morfini G.A., et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat. Neurosci. 2009, 12:864-871.
-
(2009)
Nat. Neurosci.
, vol.12
, pp. 864-871
-
-
Morfini, G.A.1
-
20
-
-
71549143207
-
Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin
-
Okamoto S., et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 2009, 15:1407-1413.
-
(2009)
Nat. Med.
, vol.15
, pp. 1407-1413
-
-
Okamoto, S.1
-
21
-
-
66749167799
-
Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity
-
Subramaniam S., et al. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009, 324:1327-1330.
-
(2009)
Science
, vol.324
, pp. 1327-1330
-
-
Subramaniam, S.1
-
22
-
-
68849083063
-
Brain-derived neurotrophic factor in neurodegenerative diseases
-
Zuccato C., Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 2009, 5:311-322.
-
(2009)
Nat. Rev. Neurol.
, vol.5
, pp. 311-322
-
-
Zuccato, C.1
Cattaneo, E.2
-
23
-
-
79958021894
-
Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration
-
Zwilling D., et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 2011, 145:863-874.
-
(2011)
Cell
, vol.145
, pp. 863-874
-
-
Zwilling, D.1
-
24
-
-
79958044624
-
The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease
-
Campesan S., et al. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease. Curr. Biol. 2011, 21:961-966.
-
(2011)
Curr. Biol.
, vol.21
, pp. 961-966
-
-
Campesan, S.1
-
25
-
-
84866297918
-
Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation
-
van der Goot A.T., et al. Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14912-14917.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 14912-14917
-
-
van der Goot, A.T.1
-
26
-
-
44049095652
-
Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons
-
Prahlad V., et al. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 2008, 320:811-814.
-
(2008)
Science
, vol.320
, pp. 811-814
-
-
Prahlad, V.1
-
27
-
-
80052137410
-
Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins
-
Prahlad V., Morimoto R.I. Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14204-14209.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14204-14209
-
-
Prahlad, V.1
Morimoto, R.I.2
-
28
-
-
36248980418
-
Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells
-
Garcia S.M., et al. Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells. Genes Dev. 2007, 21:3006-3016.
-
(2007)
Genes Dev.
, vol.21
, pp. 3006-3016
-
-
Garcia, S.M.1
-
29
-
-
79952163901
-
Neuronal degeneration in striatal transplants and Huntington's disease: potential mechanisms and clinical implications
-
Cicchetti F., et al. Neuronal degeneration in striatal transplants and Huntington's disease: potential mechanisms and clinical implications. Brain 2011, 134:641-652.
-
(2011)
Brain
, vol.134
, pp. 641-652
-
-
Cicchetti, F.1
-
30
-
-
79551518229
-
Energy deficit in Huntington disease: why it matters
-
Mochel F., Haller R.G. Energy deficit in Huntington disease: why it matters. J. Clin. Invest. 2011, 121:493-499.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 493-499
-
-
Mochel, F.1
Haller, R.G.2
-
31
-
-
40849147435
-
N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking
-
Orr A.L., et al. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J. Neurosci. 2008, 28:2783-2792.
-
(2008)
J. Neurosci.
, vol.28
, pp. 2783-2792
-
-
Orr, A.L.1
-
32
-
-
33750437278
-
Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration
-
Weydt P., et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metab. 2006, 4:349-362.
-
(2006)
Cell Metab.
, vol.4
, pp. 349-362
-
-
Weydt, P.1
-
33
-
-
33749042331
-
Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
-
Cui L., et al. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006, 127:59-69.
-
(2006)
Cell
, vol.127
, pp. 59-69
-
-
Cui, L.1
-
34
-
-
84859904873
-
Shaping the role of mitochondria in the pathogenesis of Huntington's disease
-
Costa V., Scorrano L. Shaping the role of mitochondria in the pathogenesis of Huntington's disease. EMBO J. 2012, 31:1853-1864.
-
(2012)
EMBO J.
, vol.31
, pp. 1853-1864
-
-
Costa, V.1
Scorrano, L.2
-
35
-
-
79952443408
-
Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity
-
Song W., et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med. 2011, 17:377-382.
-
(2011)
Nat. Med.
, vol.17
, pp. 377-382
-
-
Song, W.1
-
36
-
-
78650503526
-
ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import
-
Li Q., et al. ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:21146-21151.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 21146-21151
-
-
Li, Q.1
-
37
-
-
84858791998
-
Mitochondrial quality control: a matter of life and death for neurons
-
Rugarli E.I., Langer T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 2012, 31:1336-1349.
-
(2012)
EMBO J.
, vol.31
, pp. 1336-1349
-
-
Rugarli, E.I.1
Langer, T.2
-
38
-
-
81955162960
-
What have we learned from gene expression profiles in Huntington's disease?
-
Seredenina T., Luthi-Carter R. What have we learned from gene expression profiles in Huntington's disease?. Neurobiol. Dis. 2012, 45:83-98.
-
(2012)
Neurobiol. Dis.
, vol.45
, pp. 83-98
-
-
Seredenina, T.1
Luthi-Carter, R.2
-
39
-
-
0037150687
-
Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease
-
Dunah A.W., et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002, 296:2238-2243.
-
(2002)
Science
, vol.296
, pp. 2238-2243
-
-
Dunah, A.W.1
-
40
-
-
3042717240
-
Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation
-
Schaffar G., et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 2004, 15:95-105.
-
(2004)
Mol. Cell
, vol.15
, pp. 95-105
-
-
Schaffar, G.1
-
41
-
-
29244462838
-
In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets
-
Zhai W., et al. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 2005, 123:1241-1253.
-
(2005)
Cell
, vol.123
, pp. 1241-1253
-
-
Zhai, W.1
-
42
-
-
79959695334
-
Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor
-
Huang S., et al. Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain 2011, 134:1943-1958.
-
(2011)
Brain
, vol.134
, pp. 1943-1958
-
-
Huang, S.1
-
43
-
-
40949135766
-
Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor
-
Yamanaka T., et al. Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor. EMBO J. 2008, 27:827-839.
-
(2008)
EMBO J.
, vol.27
, pp. 827-839
-
-
Yamanaka, T.1
-
44
-
-
0035909330
-
Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila
-
Steffan J.S., et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001, 413:739-743.
-
(2001)
Nature
, vol.413
, pp. 739-743
-
-
Steffan, J.S.1
-
45
-
-
70350018325
-
Multiple roles of HDAC inhibition in neurodegenerative conditions
-
Chuang D.M., et al. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009, 32:591-601.
-
(2009)
Trends Neurosci.
, vol.32
, pp. 591-601
-
-
Chuang, D.M.1
-
46
-
-
33644830913
-
Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity
-
Bates E.A., et al. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci. 2006, 26:2830-2838.
-
(2006)
J. Neurosci.
, vol.26
, pp. 2830-2838
-
-
Bates, E.A.1
-
47
-
-
53249114029
-
Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease
-
Pallos J., et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 2008, 17:3767-3775.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 3767-3775
-
-
Pallos, J.1
-
48
-
-
39349083915
-
Adapting proteostasis for disease intervention
-
Balch W.E., et al. Adapting proteostasis for disease intervention. Science 2008, 319:916-919.
-
(2008)
Science
, vol.319
, pp. 916-919
-
-
Balch, W.E.1
-
49
-
-
33644850056
-
Progressive disruption of cellular protein folding in models of polyglutamine diseases
-
Gidalevitz T., et al. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 2006, 311:1471-1474.
-
(2006)
Science
, vol.311
, pp. 1471-1474
-
-
Gidalevitz, T.1
-
50
-
-
80053371954
-
Firefly luciferase mutants as sensors of proteome stress
-
Gupta R., et al. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 2011, 8:879-884.
-
(2011)
Nat. Methods
, vol.8
, pp. 879-884
-
-
Gupta, R.1
-
51
-
-
3242695184
-
Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach
-
Hay D.G., et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet. 2004, 13:1389-1405.
-
(2004)
Hum. Mol. Genet.
, vol.13
, pp. 1389-1405
-
-
Hay, D.G.1
-
52
-
-
62149129690
-
Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity
-
Gidalevitz T., et al. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet. 2009, 5:e1000399.
-
(2009)
PLoS Genet.
, vol.5
-
-
Gidalevitz, T.1
-
53
-
-
78650963274
-
Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions
-
Olzscha H., et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 2011, 144:67-78.
-
(2011)
Cell
, vol.144
, pp. 67-78
-
-
Olzscha, H.1
-
54
-
-
11144243412
-
Modulation of neurodegeneration by molecular chaperones
-
Muchowski P.J., Wacker J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 2005, 6:11-22.
-
(2005)
Nat. Rev. Neurosci.
, vol.6
, pp. 11-22
-
-
Muchowski, P.J.1
Wacker, J.L.2
-
55
-
-
75949094261
-
A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation
-
Hageman J., et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol. Cell 2010, 37:355-369.
-
(2010)
Mol. Cell
, vol.37
, pp. 355-369
-
-
Hageman, J.1
-
56
-
-
84860123776
-
Suppression of protein aggregation by chaperone modification of high molecular weight complexes
-
Labbadia J., et al. Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 2012, 135:1180-1196.
-
(2012)
Brain
, vol.135
, pp. 1180-1196
-
-
Labbadia, J.1
-
57
-
-
77955647865
-
Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity
-
van Ham T.J., et al. Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity. Cell 2010, 142:601-612.
-
(2010)
Cell
, vol.142
, pp. 601-612
-
-
van Ham, T.J.1
-
58
-
-
79955955066
-
Proteasomal dysfunction in aging and Huntington disease
-
Li X.J., Li S. Proteasomal dysfunction in aging and Huntington disease. Neurobiol. Dis. 2011, 43:4-8.
-
(2011)
Neurobiol. Dis.
, vol.43
, pp. 4-8
-
-
Li, X.J.1
Li, S.2
-
59
-
-
34547807613
-
Global changes to the ubiquitin system in Huntington's disease
-
Bennett E.J., et al. Global changes to the ubiquitin system in Huntington's disease. Nature 2007, 448:704-708.
-
(2007)
Nature
, vol.448
, pp. 704-708
-
-
Bennett, E.J.1
-
60
-
-
84859983420
-
Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease
-
Hipp M.S., et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J. Cell Biol. 2012, 196:573-587.
-
(2012)
J. Cell Biol.
, vol.196
, pp. 573-587
-
-
Hipp, M.S.1
-
61
-
-
77951665859
-
Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
-
Martinez-Vicente M., et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 2010, 13:567-576.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 567-576
-
-
Martinez-Vicente, M.1
-
62
-
-
77954116814
-
Autophagy gone awry in neurodegenerative diseases
-
Wong E., Cuervo A.M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 2010, 13:805-811.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 805-811
-
-
Wong, E.1
Cuervo, A.M.2
-
63
-
-
84861369587
-
Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin
-
Chafekar S.M., Duennwald M.L. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS ONE 2012, 7:e37929.
-
(2012)
PLoS ONE
, vol.7
-
-
Chafekar, S.M.1
Duennwald, M.L.2
-
64
-
-
79961013560
-
Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease
-
Labbadia J., et al. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Invest. 2011, 121:3306-3319.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 3306-3319
-
-
Labbadia, J.1
-
65
-
-
84880757782
-
Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1
-
Riva L., et al. Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1. J. Huntington's Dis. 2012, 1:33-45.
-
(2012)
J. Huntington's Dis.
, vol.1
, pp. 33-45
-
-
Riva, L.1
-
66
-
-
84855544817
-
Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
-
Jiang M., et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat. Med. 2012, 18:153-158.
-
(2012)
Nat. Med.
, vol.18
, pp. 153-158
-
-
Jiang, M.1
-
67
-
-
84855563516
-
Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
-
Jeong H., et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 2012, 18:159-165.
-
(2012)
Nat. Med.
, vol.18
, pp. 159-165
-
-
Jeong, H.1
-
68
-
-
60749101582
-
Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1
-
Westerheide S.D., et al. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 2009, 323:1063-1066.
-
(2009)
Science
, vol.323
, pp. 1063-1066
-
-
Westerheide, S.D.1
-
69
-
-
80053424337
-
IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease
-
Sadagurski M., et al. IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. J. Clin. Invest. 2011, 121:4070-4081.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4070-4081
-
-
Sadagurski, M.1
-
70
-
-
71449108913
-
Reduced IGF-1 signaling delays age-associated proteotoxicity in mice
-
Cohen E., et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 2009, 139:1157-1169.
-
(2009)
Cell
, vol.139
, pp. 1157-1169
-
-
Cohen, E.1
-
71
-
-
82455210670
-
Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases
-
Neef D.W., et al. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat. Rev. Drug Discov. 2011, 10:930-944.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 930-944
-
-
Neef, D.W.1
-
72
-
-
75749136948
-
Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease
-
Neef D.W., et al. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol. 2010, 8:e1000291.
-
(2010)
PLoS Biol.
, vol.8
-
-
Neef, D.W.1
-
73
-
-
84856089134
-
Small-molecule proteostasis regulators for protein conformational diseases
-
Calamini B., et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 2012, 8:185-196.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 185-196
-
-
Calamini, B.1
-
74
-
-
77950584656
-
Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease
-
Landles C., et al. Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J. Biol. Chem. 2010, 285:8808-8823.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8808-8823
-
-
Landles, C.1
-
75
-
-
82855175119
-
Caspase-6 and neurodegeneration
-
Graham R.K., et al. Caspase-6 and neurodegeneration. Trends Neurosci. 2011, 34:646-656.
-
(2011)
Trends Neurosci.
, vol.34
, pp. 646-656
-
-
Graham, R.K.1
-
76
-
-
79959802847
-
Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative
-
Tebbenkamp A.T., et al. Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum. Mol. Genet. 2011, 20:2770-2782.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 2770-2782
-
-
Tebbenkamp, A.T.1
-
77
-
-
77955500335
-
Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease
-
Miller J.P., et al. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease. Neuron 2010, 67:199-212.
-
(2010)
Neuron
, vol.67
, pp. 199-212
-
-
Miller, J.P.1
-
78
-
-
84873463075
-
Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease
-
Sathasivam K., et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:2366-2370.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 2366-2370
-
-
Sathasivam, K.1
-
79
-
-
0034737299
-
Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease
-
Yamamoto A., et al. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 2000, 101:57-66.
-
(2000)
Cell
, vol.101
, pp. 57-66
-
-
Yamamoto, A.1
-
80
-
-
84865688581
-
Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression
-
Yu D., et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 2012, 150:895-908.
-
(2012)
Cell
, vol.150
, pp. 895-908
-
-
Yu, D.1
-
81
-
-
84862663712
-
Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis
-
Kordasiewicz H.B., et al. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 2012, 74:1031-1044.
-
(2012)
Neuron
, vol.74
, pp. 1031-1044
-
-
Kordasiewicz, H.B.1
-
82
-
-
84863160228
-
Spt4 is selectively required for transcription of extended trinucleotide repeats
-
Liu C.R., et al. Spt4 is selectively required for transcription of extended trinucleotide repeats. Cell 2012, 148:690-701.
-
(2012)
Cell
, vol.148
, pp. 690-701
-
-
Liu, C.R.1
-
83
-
-
81255149512
-
Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function
-
Raymond L.A., et al. Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011, 198:252-273.
-
(2011)
Neuroscience
, vol.198
, pp. 252-273
-
-
Raymond, L.A.1
-
84
-
-
67650410543
-
Biological and chemical approaches to diseases of proteostasis deficiency
-
Powers E.T., et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 2009, 78:959-991.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 959-991
-
-
Powers, E.T.1
-
85
-
-
84865689559
-
Singles engage the RNA interference pathway
-
Davidson B.L., Monteys A.M. Singles engage the RNA interference pathway. Cell 2012, 150:873-875.
-
(2012)
Cell
, vol.150
, pp. 873-875
-
-
Davidson, B.L.1
Monteys, A.M.2
|