메뉴 건너뛰기




Volumn 38, Issue 8, 2013, Pages 378-385

Huntington's disease: Underlying molecular mechanisms and emerging concepts

Author keywords

Huntington's disease; Molecular mechanisms; Therapeutic approaches

Indexed keywords

AGENTS AFFECTING METABOLISM; ANTISENSE OLIGONUCLEOTIDE; DYNAMIN I; HEAT SHOCK PROTEIN 70; HEAT SHOCK TRANSCRIPTION FACTOR 1; HSF1 ACTIVATOR; HUNTINGTIN; KYNURENIC ACID; KYNURENINE 3 MONOOXYGENASE; MEMANTINE; N METHYL DEXTRO ASPARTIC ACID RECEPTOR; N METHYL DEXTRO ASPARTIC ACID RECEPTOR BLOCKING AGENT; OXYGENASE INHIBITOR; PLATINUM DICHLOROBIS(ISOPROPYLAMINE); POLYGLUTAMINE; PROTEIN DNAJ; QUINOLINIC ACID; SIRTUIN 1; SMALL INTERFERING RNA; UNCLASSIFIED DRUG;

EID: 84880730823     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.05.003     Document Type: Review
Times cited : (283)

References (85)
  • 1
    • 79551554590 scopus 로고    scopus 로고
    • The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease
    • Munoz-Sanjuan I., Bates G.P. The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J. Clin. Invest. 2011, 121:476-483.
    • (2011) J. Clin. Invest. , vol.121 , pp. 476-483
    • Munoz-Sanjuan, I.1    Bates, G.P.2
  • 2
    • 79955758366 scopus 로고    scopus 로고
    • HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia
    • Warby S.C., et al. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur. J. Hum. Genet. 2011, 19:561-566.
    • (2011) Eur. J. Hum. Genet. , vol.19 , pp. 561-566
    • Warby, S.C.1
  • 3
    • 52049093169 scopus 로고    scopus 로고
    • Polyglutamine neurodegeneration: protein misfolding revisited
    • Williams A.J., Paulson H.L. Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci. 2008, 31:521-528.
    • (2008) Trends Neurosci. , vol.31 , pp. 521-528
    • Williams, A.J.1    Paulson, H.L.2
  • 4
    • 18544410106 scopus 로고    scopus 로고
    • Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation
    • Davies S.W., et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997, 90:537-548.
    • (1997) Cell , vol.90 , pp. 537-548
    • Davies, S.W.1
  • 5
    • 0030752709 scopus 로고    scopus 로고
    • Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain
    • DiFiglia M., et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997, 277:1990-1993.
    • (1997) Science , vol.277 , pp. 1990-1993
    • DiFiglia, M.1
  • 6
    • 0037264120 scopus 로고    scopus 로고
    • Unfolding the role of protein misfolding in neurodegenerative diseases
    • Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 2003, 4:49-60.
    • (2003) Nat. Rev. Neurosci. , vol.4 , pp. 49-60
    • Soto, C.1
  • 7
    • 81355160169 scopus 로고    scopus 로고
    • Identifying polyglutamine protein species in situ that best predict neurodegeneration
    • Miller J., et al. Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat. Chem. Biol. 2011, 7:925-934.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 925-934
    • Miller, J.1
  • 8
    • 63049132756 scopus 로고    scopus 로고
    • Acetylation targets mutant huntingtin to autophagosomes for degradation
    • Jeong H., et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009, 137:60-72.
    • (2009) Cell , vol.137 , pp. 60-72
    • Jeong, H.1
  • 9
    • 72149107077 scopus 로고    scopus 로고
    • Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice
    • Gu X., et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009, 64:828-840.
    • (2009) Neuron , vol.64 , pp. 828-840
    • Gu, X.1
  • 10
    • 71449084004 scopus 로고    scopus 로고
    • The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation
    • Tam S., et al. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nat. Struct. Mol. Biol. 2009, 16:1279-1285.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1279-1285
    • Tam, S.1
  • 11
    • 64049119303 scopus 로고    scopus 로고
    • Polyglutamine disruption of the huntingtin exon 1N terminus triggers a complex aggregation mechanism
    • Thakur A.K., et al. Polyglutamine disruption of the huntingtin exon 1N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol. 2009, 16:380-389.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 380-389
    • Thakur, A.K.1
  • 12
    • 79952360891 scopus 로고    scopus 로고
    • Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent
    • Kar K., et al. Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat. Struct. Mol. Biol. 2011, 18:328-336.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 328-336
    • Kar, K.1
  • 13
    • 59649095699 scopus 로고    scopus 로고
    • Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates
    • Ren P.H., et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat. Cell Biol. 2009, 11:219-225.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 219-225
    • Ren, P.H.1
  • 14
    • 84863833900 scopus 로고    scopus 로고
    • Network organization of the huntingtin proteomic interactome in mammalian brain
    • Shirasaki D.I., et al. Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron 2012, 75:41-57.
    • (2012) Neuron , vol.75 , pp. 41-57
    • Shirasaki, D.I.1
  • 15
    • 80255122786 scopus 로고    scopus 로고
    • Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development
    • Ehrnhoefer D.E., et al. Convergent pathogenic pathways in Alzheimer's and Huntington's diseases: shared targets for drug development. Nat. Rev. Drug Discov. 2011, 10:853-867.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 853-867
    • Ehrnhoefer, D.E.1
  • 16
    • 79551519277 scopus 로고    scopus 로고
    • Brain networks in Huntington disease
    • Eidelberg D., Surmeier D.J. Brain networks in Huntington disease. J. Clin. Invest. 2011, 121:484-492.
    • (2011) J. Clin. Invest. , vol.121 , pp. 484-492
    • Eidelberg, D.1    Surmeier, D.J.2
  • 17
    • 77958192164 scopus 로고    scopus 로고
    • Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease
    • Milnerwood A.J., Raymond L.A. Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease. Trends Neurosci. 2010, 33:513-523.
    • (2010) Trends Neurosci. , vol.33 , pp. 513-523
    • Milnerwood, A.J.1    Raymond, L.A.2
  • 18
    • 0035503511 scopus 로고    scopus 로고
    • Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice
    • Li H., et al. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 2001, 21:8473-8481.
    • (2001) J. Neurosci. , vol.21 , pp. 8473-8481
    • Li, H.1
  • 19
    • 67649826155 scopus 로고    scopus 로고
    • Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin
    • Morfini G.A., et al. Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat. Neurosci. 2009, 12:864-871.
    • (2009) Nat. Neurosci. , vol.12 , pp. 864-871
    • Morfini, G.A.1
  • 20
    • 71549143207 scopus 로고    scopus 로고
    • Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin
    • Okamoto S., et al. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat. Med. 2009, 15:1407-1413.
    • (2009) Nat. Med. , vol.15 , pp. 1407-1413
    • Okamoto, S.1
  • 21
    • 66749167799 scopus 로고    scopus 로고
    • Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity
    • Subramaniam S., et al. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 2009, 324:1327-1330.
    • (2009) Science , vol.324 , pp. 1327-1330
    • Subramaniam, S.1
  • 22
    • 68849083063 scopus 로고    scopus 로고
    • Brain-derived neurotrophic factor in neurodegenerative diseases
    • Zuccato C., Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 2009, 5:311-322.
    • (2009) Nat. Rev. Neurol. , vol.5 , pp. 311-322
    • Zuccato, C.1    Cattaneo, E.2
  • 23
    • 79958021894 scopus 로고    scopus 로고
    • Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration
    • Zwilling D., et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 2011, 145:863-874.
    • (2011) Cell , vol.145 , pp. 863-874
    • Zwilling, D.1
  • 24
    • 79958044624 scopus 로고    scopus 로고
    • The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease
    • Campesan S., et al. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease. Curr. Biol. 2011, 21:961-966.
    • (2011) Curr. Biol. , vol.21 , pp. 961-966
    • Campesan, S.1
  • 25
    • 84866297918 scopus 로고    scopus 로고
    • Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation
    • van der Goot A.T., et al. Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:14912-14917.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 14912-14917
    • van der Goot, A.T.1
  • 26
    • 44049095652 scopus 로고    scopus 로고
    • Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons
    • Prahlad V., et al. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 2008, 320:811-814.
    • (2008) Science , vol.320 , pp. 811-814
    • Prahlad, V.1
  • 27
    • 80052137410 scopus 로고    scopus 로고
    • Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins
    • Prahlad V., Morimoto R.I. Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14204-14209.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14204-14209
    • Prahlad, V.1    Morimoto, R.I.2
  • 28
    • 36248980418 scopus 로고    scopus 로고
    • Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells
    • Garcia S.M., et al. Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells. Genes Dev. 2007, 21:3006-3016.
    • (2007) Genes Dev. , vol.21 , pp. 3006-3016
    • Garcia, S.M.1
  • 29
    • 79952163901 scopus 로고    scopus 로고
    • Neuronal degeneration in striatal transplants and Huntington's disease: potential mechanisms and clinical implications
    • Cicchetti F., et al. Neuronal degeneration in striatal transplants and Huntington's disease: potential mechanisms and clinical implications. Brain 2011, 134:641-652.
    • (2011) Brain , vol.134 , pp. 641-652
    • Cicchetti, F.1
  • 30
    • 79551518229 scopus 로고    scopus 로고
    • Energy deficit in Huntington disease: why it matters
    • Mochel F., Haller R.G. Energy deficit in Huntington disease: why it matters. J. Clin. Invest. 2011, 121:493-499.
    • (2011) J. Clin. Invest. , vol.121 , pp. 493-499
    • Mochel, F.1    Haller, R.G.2
  • 31
    • 40849147435 scopus 로고    scopus 로고
    • N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking
    • Orr A.L., et al. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J. Neurosci. 2008, 28:2783-2792.
    • (2008) J. Neurosci. , vol.28 , pp. 2783-2792
    • Orr, A.L.1
  • 32
    • 33750437278 scopus 로고    scopus 로고
    • Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration
    • Weydt P., et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1α in Huntington's disease neurodegeneration. Cell Metab. 2006, 4:349-362.
    • (2006) Cell Metab. , vol.4 , pp. 349-362
    • Weydt, P.1
  • 33
    • 33749042331 scopus 로고    scopus 로고
    • Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
    • Cui L., et al. Transcriptional repression of PGC-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006, 127:59-69.
    • (2006) Cell , vol.127 , pp. 59-69
    • Cui, L.1
  • 34
    • 84859904873 scopus 로고    scopus 로고
    • Shaping the role of mitochondria in the pathogenesis of Huntington's disease
    • Costa V., Scorrano L. Shaping the role of mitochondria in the pathogenesis of Huntington's disease. EMBO J. 2012, 31:1853-1864.
    • (2012) EMBO J. , vol.31 , pp. 1853-1864
    • Costa, V.1    Scorrano, L.2
  • 35
    • 79952443408 scopus 로고    scopus 로고
    • Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity
    • Song W., et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med. 2011, 17:377-382.
    • (2011) Nat. Med. , vol.17 , pp. 377-382
    • Song, W.1
  • 36
    • 78650503526 scopus 로고    scopus 로고
    • ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import
    • Li Q., et al. ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:21146-21151.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 21146-21151
    • Li, Q.1
  • 37
    • 84858791998 scopus 로고    scopus 로고
    • Mitochondrial quality control: a matter of life and death for neurons
    • Rugarli E.I., Langer T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 2012, 31:1336-1349.
    • (2012) EMBO J. , vol.31 , pp. 1336-1349
    • Rugarli, E.I.1    Langer, T.2
  • 38
    • 81955162960 scopus 로고    scopus 로고
    • What have we learned from gene expression profiles in Huntington's disease?
    • Seredenina T., Luthi-Carter R. What have we learned from gene expression profiles in Huntington's disease?. Neurobiol. Dis. 2012, 45:83-98.
    • (2012) Neurobiol. Dis. , vol.45 , pp. 83-98
    • Seredenina, T.1    Luthi-Carter, R.2
  • 39
    • 0037150687 scopus 로고    scopus 로고
    • Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease
    • Dunah A.W., et al. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 2002, 296:2238-2243.
    • (2002) Science , vol.296 , pp. 2238-2243
    • Dunah, A.W.1
  • 40
    • 3042717240 scopus 로고    scopus 로고
    • Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation
    • Schaffar G., et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 2004, 15:95-105.
    • (2004) Mol. Cell , vol.15 , pp. 95-105
    • Schaffar, G.1
  • 41
    • 29244462838 scopus 로고    scopus 로고
    • In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets
    • Zhai W., et al. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 2005, 123:1241-1253.
    • (2005) Cell , vol.123 , pp. 1241-1253
    • Zhai, W.1
  • 42
    • 79959695334 scopus 로고    scopus 로고
    • Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor
    • Huang S., et al. Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain 2011, 134:1943-1958.
    • (2011) Brain , vol.134 , pp. 1943-1958
    • Huang, S.1
  • 43
    • 40949135766 scopus 로고    scopus 로고
    • Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor
    • Yamanaka T., et al. Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor. EMBO J. 2008, 27:827-839.
    • (2008) EMBO J. , vol.27 , pp. 827-839
    • Yamanaka, T.1
  • 44
    • 0035909330 scopus 로고    scopus 로고
    • Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila
    • Steffan J.S., et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001, 413:739-743.
    • (2001) Nature , vol.413 , pp. 739-743
    • Steffan, J.S.1
  • 45
    • 70350018325 scopus 로고    scopus 로고
    • Multiple roles of HDAC inhibition in neurodegenerative conditions
    • Chuang D.M., et al. Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci. 2009, 32:591-601.
    • (2009) Trends Neurosci. , vol.32 , pp. 591-601
    • Chuang, D.M.1
  • 46
    • 33644830913 scopus 로고    scopus 로고
    • Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity
    • Bates E.A., et al. Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. J. Neurosci. 2006, 26:2830-2838.
    • (2006) J. Neurosci. , vol.26 , pp. 2830-2838
    • Bates, E.A.1
  • 47
    • 53249114029 scopus 로고    scopus 로고
    • Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease
    • Pallos J., et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 2008, 17:3767-3775.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 3767-3775
    • Pallos, J.1
  • 48
    • 39349083915 scopus 로고    scopus 로고
    • Adapting proteostasis for disease intervention
    • Balch W.E., et al. Adapting proteostasis for disease intervention. Science 2008, 319:916-919.
    • (2008) Science , vol.319 , pp. 916-919
    • Balch, W.E.1
  • 49
    • 33644850056 scopus 로고    scopus 로고
    • Progressive disruption of cellular protein folding in models of polyglutamine diseases
    • Gidalevitz T., et al. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 2006, 311:1471-1474.
    • (2006) Science , vol.311 , pp. 1471-1474
    • Gidalevitz, T.1
  • 50
    • 80053371954 scopus 로고    scopus 로고
    • Firefly luciferase mutants as sensors of proteome stress
    • Gupta R., et al. Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 2011, 8:879-884.
    • (2011) Nat. Methods , vol.8 , pp. 879-884
    • Gupta, R.1
  • 51
    • 3242695184 scopus 로고    scopus 로고
    • Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach
    • Hay D.G., et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet. 2004, 13:1389-1405.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 1389-1405
    • Hay, D.G.1
  • 52
    • 62149129690 scopus 로고    scopus 로고
    • Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity
    • Gidalevitz T., et al. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet. 2009, 5:e1000399.
    • (2009) PLoS Genet. , vol.5
    • Gidalevitz, T.1
  • 53
    • 78650963274 scopus 로고    scopus 로고
    • Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions
    • Olzscha H., et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 2011, 144:67-78.
    • (2011) Cell , vol.144 , pp. 67-78
    • Olzscha, H.1
  • 54
    • 11144243412 scopus 로고    scopus 로고
    • Modulation of neurodegeneration by molecular chaperones
    • Muchowski P.J., Wacker J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 2005, 6:11-22.
    • (2005) Nat. Rev. Neurosci. , vol.6 , pp. 11-22
    • Muchowski, P.J.1    Wacker, J.L.2
  • 55
    • 75949094261 scopus 로고    scopus 로고
    • A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation
    • Hageman J., et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol. Cell 2010, 37:355-369.
    • (2010) Mol. Cell , vol.37 , pp. 355-369
    • Hageman, J.1
  • 56
    • 84860123776 scopus 로고    scopus 로고
    • Suppression of protein aggregation by chaperone modification of high molecular weight complexes
    • Labbadia J., et al. Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 2012, 135:1180-1196.
    • (2012) Brain , vol.135 , pp. 1180-1196
    • Labbadia, J.1
  • 57
    • 77955647865 scopus 로고    scopus 로고
    • Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity
    • van Ham T.J., et al. Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity. Cell 2010, 142:601-612.
    • (2010) Cell , vol.142 , pp. 601-612
    • van Ham, T.J.1
  • 58
    • 79955955066 scopus 로고    scopus 로고
    • Proteasomal dysfunction in aging and Huntington disease
    • Li X.J., Li S. Proteasomal dysfunction in aging and Huntington disease. Neurobiol. Dis. 2011, 43:4-8.
    • (2011) Neurobiol. Dis. , vol.43 , pp. 4-8
    • Li, X.J.1    Li, S.2
  • 59
    • 34547807613 scopus 로고    scopus 로고
    • Global changes to the ubiquitin system in Huntington's disease
    • Bennett E.J., et al. Global changes to the ubiquitin system in Huntington's disease. Nature 2007, 448:704-708.
    • (2007) Nature , vol.448 , pp. 704-708
    • Bennett, E.J.1
  • 60
    • 84859983420 scopus 로고    scopus 로고
    • Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease
    • Hipp M.S., et al. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J. Cell Biol. 2012, 196:573-587.
    • (2012) J. Cell Biol. , vol.196 , pp. 573-587
    • Hipp, M.S.1
  • 61
    • 77951665859 scopus 로고    scopus 로고
    • Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
    • Martinez-Vicente M., et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 2010, 13:567-576.
    • (2010) Nat. Neurosci. , vol.13 , pp. 567-576
    • Martinez-Vicente, M.1
  • 62
    • 77954116814 scopus 로고    scopus 로고
    • Autophagy gone awry in neurodegenerative diseases
    • Wong E., Cuervo A.M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci. 2010, 13:805-811.
    • (2010) Nat. Neurosci. , vol.13 , pp. 805-811
    • Wong, E.1    Cuervo, A.M.2
  • 63
    • 84861369587 scopus 로고    scopus 로고
    • Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin
    • Chafekar S.M., Duennwald M.L. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin. PLoS ONE 2012, 7:e37929.
    • (2012) PLoS ONE , vol.7
    • Chafekar, S.M.1    Duennwald, M.L.2
  • 64
    • 79961013560 scopus 로고    scopus 로고
    • Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease
    • Labbadia J., et al. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Invest. 2011, 121:3306-3319.
    • (2011) J. Clin. Invest. , vol.121 , pp. 3306-3319
    • Labbadia, J.1
  • 65
    • 84880757782 scopus 로고    scopus 로고
    • Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1
    • Riva L., et al. Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1. J. Huntington's Dis. 2012, 1:33-45.
    • (2012) J. Huntington's Dis. , vol.1 , pp. 33-45
    • Riva, L.1
  • 66
    • 84855544817 scopus 로고    scopus 로고
    • Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
    • Jiang M., et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat. Med. 2012, 18:153-158.
    • (2012) Nat. Med. , vol.18 , pp. 153-158
    • Jiang, M.1
  • 67
    • 84855563516 scopus 로고    scopus 로고
    • Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
    • Jeong H., et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 2012, 18:159-165.
    • (2012) Nat. Med. , vol.18 , pp. 159-165
    • Jeong, H.1
  • 68
    • 60749101582 scopus 로고    scopus 로고
    • Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1
    • Westerheide S.D., et al. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 2009, 323:1063-1066.
    • (2009) Science , vol.323 , pp. 1063-1066
    • Westerheide, S.D.1
  • 69
    • 80053424337 scopus 로고    scopus 로고
    • IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease
    • Sadagurski M., et al. IRS2 increases mitochondrial dysfunction and oxidative stress in a mouse model of Huntington disease. J. Clin. Invest. 2011, 121:4070-4081.
    • (2011) J. Clin. Invest. , vol.121 , pp. 4070-4081
    • Sadagurski, M.1
  • 70
    • 71449108913 scopus 로고    scopus 로고
    • Reduced IGF-1 signaling delays age-associated proteotoxicity in mice
    • Cohen E., et al. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 2009, 139:1157-1169.
    • (2009) Cell , vol.139 , pp. 1157-1169
    • Cohen, E.1
  • 71
    • 82455210670 scopus 로고    scopus 로고
    • Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases
    • Neef D.W., et al. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat. Rev. Drug Discov. 2011, 10:930-944.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 930-944
    • Neef, D.W.1
  • 72
    • 75749136948 scopus 로고    scopus 로고
    • Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease
    • Neef D.W., et al. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol. 2010, 8:e1000291.
    • (2010) PLoS Biol. , vol.8
    • Neef, D.W.1
  • 73
    • 84856089134 scopus 로고    scopus 로고
    • Small-molecule proteostasis regulators for protein conformational diseases
    • Calamini B., et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 2012, 8:185-196.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 185-196
    • Calamini, B.1
  • 74
    • 77950584656 scopus 로고    scopus 로고
    • Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease
    • Landles C., et al. Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease. J. Biol. Chem. 2010, 285:8808-8823.
    • (2010) J. Biol. Chem. , vol.285 , pp. 8808-8823
    • Landles, C.1
  • 75
    • 82855175119 scopus 로고    scopus 로고
    • Caspase-6 and neurodegeneration
    • Graham R.K., et al. Caspase-6 and neurodegeneration. Trends Neurosci. 2011, 34:646-656.
    • (2011) Trends Neurosci. , vol.34 , pp. 646-656
    • Graham, R.K.1
  • 76
    • 79959802847 scopus 로고    scopus 로고
    • Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative
    • Tebbenkamp A.T., et al. Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative. Hum. Mol. Genet. 2011, 20:2770-2782.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 2770-2782
    • Tebbenkamp, A.T.1
  • 77
    • 77955500335 scopus 로고    scopus 로고
    • Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease
    • Miller J.P., et al. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease. Neuron 2010, 67:199-212.
    • (2010) Neuron , vol.67 , pp. 199-212
    • Miller, J.P.1
  • 78
    • 84873463075 scopus 로고    scopus 로고
    • Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease
    • Sathasivam K., et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:2366-2370.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 2366-2370
    • Sathasivam, K.1
  • 79
    • 0034737299 scopus 로고    scopus 로고
    • Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease
    • Yamamoto A., et al. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 2000, 101:57-66.
    • (2000) Cell , vol.101 , pp. 57-66
    • Yamamoto, A.1
  • 80
    • 84865688581 scopus 로고    scopus 로고
    • Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression
    • Yu D., et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 2012, 150:895-908.
    • (2012) Cell , vol.150 , pp. 895-908
    • Yu, D.1
  • 81
    • 84862663712 scopus 로고    scopus 로고
    • Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis
    • Kordasiewicz H.B., et al. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 2012, 74:1031-1044.
    • (2012) Neuron , vol.74 , pp. 1031-1044
    • Kordasiewicz, H.B.1
  • 82
    • 84863160228 scopus 로고    scopus 로고
    • Spt4 is selectively required for transcription of extended trinucleotide repeats
    • Liu C.R., et al. Spt4 is selectively required for transcription of extended trinucleotide repeats. Cell 2012, 148:690-701.
    • (2012) Cell , vol.148 , pp. 690-701
    • Liu, C.R.1
  • 83
    • 81255149512 scopus 로고    scopus 로고
    • Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function
    • Raymond L.A., et al. Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function. Neuroscience 2011, 198:252-273.
    • (2011) Neuroscience , vol.198 , pp. 252-273
    • Raymond, L.A.1
  • 84
    • 67650410543 scopus 로고    scopus 로고
    • Biological and chemical approaches to diseases of proteostasis deficiency
    • Powers E.T., et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 2009, 78:959-991.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 959-991
    • Powers, E.T.1
  • 85
    • 84865689559 scopus 로고    scopus 로고
    • Singles engage the RNA interference pathway
    • Davidson B.L., Monteys A.M. Singles engage the RNA interference pathway. Cell 2012, 150:873-875.
    • (2012) Cell , vol.150 , pp. 873-875
    • Davidson, B.L.1    Monteys, A.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.