메뉴 건너뛰기




Volumn 12, Issue 8, 2013, Pages 672-684

Bidirectional transcription of trinucleotide repeats: Roles for excision repair

Author keywords

Bidirectional transcription; Coding; Excision repair; Neurodegenerative; RNA transcript; Trinucleotide

Indexed keywords

ANTISENSE OLIGONUCLEOTIDE; METHYL CPG BINDING PROTEIN; METHYL CPG BINDING PROTEIN 4; NUCLEAR PROTEIN; NUCLEAR PROTEIN TET1; RNA; THYMINE DNA GLYCOSYLASE; UNCLASSIFIED DRUG;

EID: 84880577665     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2013.04.019     Document Type: Article
Times cited : (27)

References (158)
  • 1
    • 77958109197 scopus 로고    scopus 로고
    • Mechanisms of trinucleotide repeat instability during human development
    • McMurray C.T. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 2010, 11(11):786-799.
    • (2010) Nat. Rev. Genet. , vol.11 , Issue.11 , pp. 786-799
    • McMurray, C.T.1
  • 2
    • 77949775195 scopus 로고    scopus 로고
    • Repeat expansion disease: progress and puzzles in disease pathogenesis
    • La Spada A.R., Taylor J.P. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 2010, 11(4):247-258.
    • (2010) Nat. Rev. Genet. , vol.11 , Issue.4 , pp. 247-258
    • La Spada, A.R.1    Taylor, J.P.2
  • 3
    • 67649983121 scopus 로고    scopus 로고
    • Instability and chromatin structure of expanded trinucleotide repeats
    • Dion V., Wilson J.H. Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet. 2009, 25(7):288-297.
    • (2009) Trends Genet. , vol.25 , Issue.7 , pp. 288-297
    • Dion, V.1    Wilson, J.H.2
  • 4
    • 65549134765 scopus 로고    scopus 로고
    • Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1
    • Zoghbi H.Y., Orr H.T. Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J. Biol. Chem. 2009, 284(12):7425-7429.
    • (2009) J. Biol. Chem. , vol.284 , Issue.12 , pp. 7425-7429
    • Zoghbi, H.Y.1    Orr, H.T.2
  • 5
    • 44449131447 scopus 로고    scopus 로고
    • Huntington's disease: from pathology and genetics to potential therapies
    • Imarisio S., et al. Huntington's disease: from pathology and genetics to potential therapies. Biochem. J. 2008, 412(2):191-209.
    • (2008) Biochem. J. , vol.412 , Issue.2 , pp. 191-209
    • Imarisio, S.1
  • 6
    • 67349104211 scopus 로고    scopus 로고
    • Molecular mechanisms underlying polyalanine diseases
    • Messaed C., Rouleau G.A. Molecular mechanisms underlying polyalanine diseases. Neurobiol. Dis. 2009, 34(3):397-405.
    • (2009) Neurobiol. Dis. , vol.34 , Issue.3 , pp. 397-405
    • Messaed, C.1    Rouleau, G.A.2
  • 7
    • 0347135948 scopus 로고    scopus 로고
    • An abundance of bidirectional promoters in the human genome
    • Trinklein N.D., et al. An abundance of bidirectional promoters in the human genome. Genome Res. 2004, 14(1):62-66.
    • (2004) Genome Res. , vol.14 , Issue.1 , pp. 62-66
    • Trinklein, N.D.1
  • 8
    • 57849105533 scopus 로고    scopus 로고
    • The antisense transcriptomes of human cells
    • He Y., et al. The antisense transcriptomes of human cells. Science 2008, 322(5909):1855-1857.
    • (2008) Science , vol.322 , Issue.5909 , pp. 1855-1857
    • He, Y.1
  • 9
    • 61449238441 scopus 로고    scopus 로고
    • Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes
    • Ikeda Y., Daughters R.S., Ranum L.P. Bidirectional expression of the SCA8 expansion mutation: one mutation, two genes. Cerebellum 2008, 7(2):150-158.
    • (2008) Cerebellum , vol.7 , Issue.2 , pp. 150-158
    • Ikeda, Y.1    Daughters, R.S.2    Ranum, L.P.3
  • 10
    • 77953887860 scopus 로고    scopus 로고
    • Partners in crime: bidirectional transcription in unstable microsatellite disease
    • Batra R., Charizanis K., Swanson M.S. Partners in crime: bidirectional transcription in unstable microsatellite disease. Hum. Mol. Genet. 2010, 19(R1):R77-R82.
    • (2010) Hum. Mol. Genet. , vol.19 , Issue.R1
    • Batra, R.1    Charizanis, K.2    Swanson, M.S.3
  • 11
    • 78651099242 scopus 로고    scopus 로고
    • Bidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats
    • Nakamori M., Pearson C.E., Thornton C.A. Bidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats. Hum. Mol. Genet. 2011, 20(3):580-588.
    • (2011) Hum. Mol. Genet. , vol.20 , Issue.3 , pp. 580-588
    • Nakamori, M.1    Pearson, C.E.2    Thornton, C.A.3
  • 12
    • 78651105614 scopus 로고    scopus 로고
    • Non-ATG-initiated translation directed by microsatellite expansions
    • Zu T., et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(1):260-265.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , Issue.1 , pp. 260-265
    • Zu, T.1
  • 13
    • 79953745706 scopus 로고    scopus 로고
    • Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!
    • Pearson C.E. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities!. PLoS Genet. 2011, 7(3):e1002018.
    • (2011) PLoS Genet. , vol.7 , Issue.3
    • Pearson, C.E.1
  • 14
    • 27644525713 scopus 로고    scopus 로고
    • Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF
    • Cho D.H., et al. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell 2005, 20(3):483-489.
    • (2005) Mol. Cell , vol.20 , Issue.3 , pp. 483-489
    • Cho, D.H.1
  • 15
    • 79955660764 scopus 로고    scopus 로고
    • An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington's disease-like 2 mice
    • Wilburn B., et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington's disease-like 2 mice. Neuron 2011, 70(3):427-440.
    • (2011) Neuron , vol.70 , Issue.3 , pp. 427-440
    • Wilburn, B.1
  • 16
    • 36248967098 scopus 로고    scopus 로고
    • An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals
    • Ladd P.D., et al. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum. Mol. Genet. 2007, 16(24):3174-3187.
    • (2007) Hum. Mol. Genet. , vol.16 , Issue.24 , pp. 3174-3187
    • Ladd, P.D.1
  • 17
    • 80051695536 scopus 로고    scopus 로고
    • A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression
    • Chung D.W., et al. A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression. Hum. Mol. Genet. 2011, 20(17):3467-3477.
    • (2011) Hum. Mol. Genet. , vol.20 , Issue.17 , pp. 3467-3477
    • Chung, D.W.1
  • 18
    • 79959306523 scopus 로고    scopus 로고
    • CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA
    • Sopher B.L., et al. CTCF regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA. Neuron 2011, 70(6):1071-1084.
    • (2011) Neuron , vol.70 , Issue.6 , pp. 1071-1084
    • Sopher, B.L.1
  • 19
    • 79959937861 scopus 로고    scopus 로고
    • Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair
    • Cortellino S., et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146(1):67-79.
    • (2011) Cell , vol.146 , Issue.1 , pp. 67-79
    • Cortellino, S.1
  • 20
    • 79951810964 scopus 로고    scopus 로고
    • Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability
    • Cortazar D., et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 2011, 470(7334):419-423.
    • (2011) Nature , vol.470 , Issue.7334 , pp. 419-423
    • Cortazar, D.1
  • 21
    • 77950443318 scopus 로고    scopus 로고
    • NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack
    • Le May N., et al. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol. Cell 2010, 38(1):54-66.
    • (2010) Mol. Cell , vol.38 , Issue.1 , pp. 54-66
    • Le May, N.1
  • 22
    • 0035896610 scopus 로고    scopus 로고
    • RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1
    • Timchenko N.A., et al. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1. J. Biol. Chem. 2001, 276(11):7820-7826.
    • (2001) J. Biol. Chem. , vol.276 , Issue.11 , pp. 7820-7826
    • Timchenko, N.A.1
  • 23
    • 33745288299 scopus 로고    scopus 로고
    • MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1
    • de Haro M., et al. MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Hum. Mol. Genet. 2006, 15(13):2138-2145.
    • (2006) Hum. Mol. Genet. , vol.15 , Issue.13 , pp. 2138-2145
    • de Haro, M.1
  • 24
    • 33644858553 scopus 로고    scopus 로고
    • The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing
    • Pascual M., et al. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 2006, 74(2/3):65-80.
    • (2006) Differentiation , vol.74 , Issue.2-3 , pp. 65-80
    • Pascual, M.1
  • 25
    • 71049162902 scopus 로고    scopus 로고
    • MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1
    • Kino Y., et al. MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1. Nucleic Acids Res. 2009, 37(19):6477-6490.
    • (2009) Nucleic Acids Res. , vol.37 , Issue.19 , pp. 6477-6490
    • Kino, Y.1
  • 26
    • 76249102027 scopus 로고    scopus 로고
    • Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy
    • Du H., et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat. Struct. Mol. Biol. 2010, 17(2):187-193.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , Issue.2 , pp. 187-193
    • Du, H.1
  • 27
    • 84863275756 scopus 로고    scopus 로고
    • Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain
    • Suenaga K., et al. Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain. PLoS ONE 2012, 7(3):e33218.
    • (2012) PLoS ONE , vol.7 , Issue.3
    • Suenaga, K.1
  • 28
    • 65949106802 scopus 로고    scopus 로고
    • Molecular effects of the CTG repeats in mutant Dystrophia Myotonica protein kinase gene
    • Llamusi B., Artero R. Molecular effects of the CTG repeats in mutant Dystrophia Myotonica protein kinase gene. Curr. Genomics 2008, 9(8):509-516.
    • (2008) Curr. Genomics , vol.9 , Issue.8 , pp. 509-516
    • Llamusi, B.1    Artero, R.2
  • 30
    • 34548039992 scopus 로고    scopus 로고
    • Huntington's disease like-2 neuropathology
    • Greenstein P.E., et al. Huntington's disease like-2 neuropathology. Mov. Disord. 2007, 22(10):1416-1423.
    • (2007) Mov. Disord. , vol.22 , Issue.10 , pp. 1416-1423
    • Greenstein, P.E.1
  • 31
    • 41949137715 scopus 로고    scopus 로고
    • A comparison of huntington disease and huntington disease-like 2 neuropathology
    • Rudnicki D.D., et al. A comparison of huntington disease and huntington disease-like 2 neuropathology. J. Neuropathol. Exp. Neurol. 2008, 67(4):366-374.
    • (2008) J. Neuropathol. Exp. Neurol. , vol.67 , Issue.4 , pp. 366-374
    • Rudnicki, D.D.1
  • 32
    • 18344379670 scopus 로고    scopus 로고
    • A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2
    • Holmes S.E., et al. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat. Genet. 2001, 29(4):377-378.
    • (2001) Nat. Genet. , vol.29 , Issue.4 , pp. 377-378
    • Holmes, S.E.1
  • 33
    • 0032900772 scopus 로고    scopus 로고
    • An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8)
    • Koob M.D., et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat. Genet. 1999, 21(4):379-384.
    • (1999) Nat. Genet. , vol.21 , Issue.4 , pp. 379-384
    • Koob, M.D.1
  • 34
    • 33745545413 scopus 로고    scopus 로고
    • Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8
    • Moseley M.L., et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 2006, 38(7):758-769.
    • (2006) Nat. Genet. , vol.38 , Issue.7 , pp. 758-769
    • Moseley, M.L.1
  • 35
    • 1542380523 scopus 로고    scopus 로고
    • The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila
    • Mutsuddi M., et al. The spinocerebellar ataxia 8 noncoding RNA causes neurodegeneration and associates with staufen in Drosophila. Curr. Biol. 2004, 14(4):302-308.
    • (2004) Curr. Biol. , vol.14 , Issue.4 , pp. 302-308
    • Mutsuddi, M.1
  • 36
    • 70149112363 scopus 로고    scopus 로고
    • RNA gain-of-function in spinocerebellar ataxia type 8
    • Daughters R.S., et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 2009, 5(8):e1000600.
    • (2009) PLoS Genet. , vol.5 , Issue.8
    • Daughters, R.S.1
  • 37
    • 33749170168 scopus 로고    scopus 로고
    • Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits
    • He Y., et al. Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J. Neurosci. 2006, 26(39):9975-9982.
    • (2006) J. Neurosci. , vol.26 , Issue.39 , pp. 9975-9982
    • He, Y.1
  • 38
    • 83555164884 scopus 로고    scopus 로고
    • Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila
    • Cernilogar F.M., et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 2011, 480(7377):391-395.
    • (2011) Nature , vol.480 , Issue.7377 , pp. 391-395
    • Cernilogar, F.M.1
  • 39
    • 79953762028 scopus 로고    scopus 로고
    • Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophy
    • Yu Z., Teng X., Bonini N.M. Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophy. PLoS Genet. 2011, 7(3):e1001340.
    • (2011) PLoS Genet. , vol.7 , Issue.3
    • Yu, Z.1    Teng, X.2    Bonini, N.M.3
  • 40
    • 0034282958 scopus 로고    scopus 로고
    • Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy
    • Miller J.W., et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 2000, 19(17):4439-4448.
    • (2000) EMBO J. , vol.19 , Issue.17 , pp. 4439-4448
    • Miller, J.W.1
  • 41
    • 0034935016 scopus 로고    scopus 로고
    • CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus
    • Filippova G.N., et al. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet. 2001, 28(4):335-343.
    • (2001) Nat. Genet. , vol.28 , Issue.4 , pp. 335-343
    • Filippova, G.N.1
  • 42
    • 0026566108 scopus 로고
    • Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member
    • Brook J.D., et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell 1992, 68(4):799-808.
    • (1992) Cell , vol.68 , Issue.4 , pp. 799-808
    • Brook, J.D.1
  • 43
    • 0026773612 scopus 로고
    • Physical and genetic characterization of the distal segment of the myotonic dystrophy area on 19q
    • Jansen G., et al. Physical and genetic characterization of the distal segment of the myotonic dystrophy area on 19q. Genomics 1992, 13(3):509-517.
    • (1992) Genomics , vol.13 , Issue.3 , pp. 509-517
    • Jansen, G.1
  • 44
    • 0026603841 scopus 로고
    • Myotonic dystrophy mutation: an unstable CTG repeat in the 3'untranslated region of the gene
    • Mahadevan M., et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3'untranslated region of the gene. Science 1992, 255(5049):1253-1255.
    • (1992) Science , vol.255 , Issue.5049 , pp. 1253-1255
    • Mahadevan, M.1
  • 45
    • 34948839944 scopus 로고    scopus 로고
    • Facultative heterochromatin: is there a distinctive molecular signature?
    • Trojer P., Reinberg D. Facultative heterochromatin: is there a distinctive molecular signature?. Mol. Cell 2007, 28(1):1-13.
    • (2007) Mol. Cell , vol.28 , Issue.1 , pp. 1-13
    • Trojer, P.1    Reinberg, D.2
  • 46
    • 79960484375 scopus 로고    scopus 로고
    • Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation
    • Wutz A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat. Rev. Genet. 2011, 12(8):542-553.
    • (2011) Nat. Rev. Genet. , vol.12 , Issue.8 , pp. 542-553
    • Wutz, A.1
  • 47
    • 73049159343 scopus 로고
    • Correlations between sex chromatin and sex chromosomes
    • Barr M.L., Carr D.H. Correlations between sex chromatin and sex chromosomes. Acta Cytol. 1962, 6:34-45.
    • (1962) Acta Cytol. , vol.6 , pp. 34-45
    • Barr, M.L.1    Carr, D.H.2
  • 48
    • 0022544604 scopus 로고
    • The relative intranuclear positions of Barr bodies in XXX non-transformed human fibroblasts
    • Belmont A.S., Bignone F., Ts'o P.O. The relative intranuclear positions of Barr bodies in XXX non-transformed human fibroblasts. Exp. Cell Res. 1986, 165(1):165-179.
    • (1986) Exp. Cell Res. , vol.165 , Issue.1 , pp. 165-179
    • Belmont, A.S.1    Bignone, F.2    Ts'o, P.O.3
  • 49
    • 0029742502 scopus 로고    scopus 로고
    • DNA exposure and condensation in the X and 21 chromosomes
    • Puck T.T., Johnson R. DNA exposure and condensation in the X and 21 chromosomes. Stem Cells 1996, 14(5):548-557.
    • (1996) Stem Cells , vol.14 , Issue.5 , pp. 548-557
    • Puck, T.T.1    Johnson, R.2
  • 50
    • 80052423475 scopus 로고    scopus 로고
    • XIST RNA and architecture of the inactive X chromosome: implications for the repeat genome
    • Hall L.L., Lawrence J.B. XIST RNA and architecture of the inactive X chromosome: implications for the repeat genome. Cold Spring Harb. Symp. Quant. Biol. 2010, 75:345-356.
    • (2010) Cold Spring Harb. Symp. Quant. Biol. , vol.75 , pp. 345-356
    • Hall, L.L.1    Lawrence, J.B.2
  • 51
    • 84867163018 scopus 로고    scopus 로고
    • Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations
    • Pinter S.F., et al. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res. 2012, 22:1864-1876.
    • (2012) Genome Res. , vol.22 , pp. 1864-1876
    • Pinter, S.F.1
  • 52
    • 79961028059 scopus 로고    scopus 로고
    • Xist regulation and function explored
    • Pontier D.B., Gribnau J. Xist regulation and function explored. Hum. Genet. 2011, 130(2):223-236.
    • (2011) Hum. Genet. , vol.130 , Issue.2 , pp. 223-236
    • Pontier, D.B.1    Gribnau, J.2
  • 53
    • 0344442391 scopus 로고    scopus 로고
    • The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer
    • Handa V., Saha T., Usdin K. The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res. 2003, 31(21):6243-6248.
    • (2003) Nucleic Acids Res. , vol.31 , Issue.21 , pp. 6243-6248
    • Handa, V.1    Saha, T.2    Usdin, K.3
  • 54
    • 33745615104 scopus 로고    scopus 로고
    • First in vivo evidence of microRNA-induced fragile X mental retardation syndrome
    • Lin S.L., Chang S.J., Ying S.Y. First in vivo evidence of microRNA-induced fragile X mental retardation syndrome. Mol. Psychiatry 2006, 11(7):616-617.
    • (2006) Mol. Psychiatry , vol.11 , Issue.7 , pp. 616-617
    • Lin, S.L.1    Chang, S.J.2    Ying, S.Y.3
  • 55
    • 33847077134 scopus 로고    scopus 로고
    • Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets
    • Krol J., et al. Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol. Cell 2007, 25(4):575-586.
    • (2007) Mol. Cell , vol.25 , Issue.4 , pp. 575-586
    • Krol, J.1
  • 57
    • 38449116843 scopus 로고    scopus 로고
    • Intron-mediated RNA interference and microRNA (miRNA)
    • Lin S.L., Kim H., Ying S.Y. Intron-mediated RNA interference and microRNA (miRNA). Front. Biosci. 2008, 13:2216-2230.
    • (2008) Front. Biosci. , vol.13 , pp. 2216-2230
    • Lin, S.L.1    Kim, H.2    Ying, S.Y.3
  • 58
    • 0141534299 scopus 로고    scopus 로고
    • A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution
    • Lin S.L., et al. A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem. Biophys. Res. Commun. 2003, 310(3):754-760.
    • (2003) Biochem. Biophys. Res. Commun. , vol.310 , Issue.3 , pp. 754-760
    • Lin, S.L.1
  • 59
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: genomics, biogenesis, mechanism, and function
    • Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
    • (2004) Cell , vol.116 , Issue.2 , pp. 281-297
    • Bartel, D.P.1
  • 60
    • 0347361541 scopus 로고    scopus 로고
    • Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs
    • Yi R., et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17(24):3011-3016.
    • (2003) Genes Dev. , vol.17 , Issue.24 , pp. 3011-3016
    • Yi, R.1
  • 61
    • 0347988235 scopus 로고    scopus 로고
    • Nuclear export of microRNA precursors
    • Lund E., et al. Nuclear export of microRNA precursors. Science 2004, 303(5654):95-98.
    • (2004) Science , vol.303 , Issue.5654 , pp. 95-98
    • Lund, E.1
  • 62
    • 23844530681 scopus 로고    scopus 로고
    • Asymmetry of intronic pre-miRNA structures in functional RISC assembly
    • Lin S.L., Chang D., Ying S.Y. Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 2005, 356:32-38.
    • (2005) Gene , vol.356 , pp. 32-38
    • Lin, S.L.1    Chang, D.2    Ying, S.Y.3
  • 63
    • 78650306521 scopus 로고    scopus 로고
    • Small RNA sorting: matchmaking for Argonautes
    • Czech B., Hannon G.J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 2011, 12(1):19-31.
    • (2011) Nat. Rev. Genet. , vol.12 , Issue.1 , pp. 19-31
    • Czech, B.1    Hannon, G.J.2
  • 64
    • 82955231555 scopus 로고    scopus 로고
    • RITS-connecting transcription, RNA interference, and heterochromatin assembly in fission yeast
    • Creamer K.M., Partridge J.F. RITS-connecting transcription, RNA interference, and heterochromatin assembly in fission yeast. Wiley Interdiscip. Rev. RNA 2011, 2(5):632-646.
    • (2011) Wiley Interdiscip. Rev. RNA , vol.2 , Issue.5 , pp. 632-646
    • Creamer, K.M.1    Partridge, J.F.2
  • 65
    • 10744225153 scopus 로고    scopus 로고
    • Asymmetry in the assembly of the RNAi enzyme complex
    • Schwarz D.S., et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115(2):199-208.
    • (2003) Cell , vol.115 , Issue.2 , pp. 199-208
    • Schwarz, D.S.1
  • 66
    • 0142165224 scopus 로고    scopus 로고
    • Functional siRNAs and miRNAs exhibit strand bias
    • Khvorova A., Reynolds A., Jayasena S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003, 115(2):209-216.
    • (2003) Cell , vol.115 , Issue.2 , pp. 209-216
    • Khvorova, A.1    Reynolds, A.2    Jayasena, S.D.3
  • 67
    • 23044437498 scopus 로고    scopus 로고
    • RNA meets chromatin
    • Bernstein E., Allis C.D. RNA meets chromatin. Genes Dev. 2005, 19(14):1635-1655.
    • (2005) Genes Dev. , vol.19 , Issue.14 , pp. 1635-1655
    • Bernstein, E.1    Allis, C.D.2
  • 68
    • 4544242851 scopus 로고    scopus 로고
    • Induction of DNA methylation and gene silencing by short interfering RNAs in human cells
    • Kawasaki H., Taira K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 2004, 431(7005):211-217.
    • (2004) Nature , vol.431 , Issue.7005 , pp. 211-217
    • Kawasaki, H.1    Taira, K.2
  • 69
    • 4344705410 scopus 로고    scopus 로고
    • Small interfering RNA-induced transcriptional gene silencing in human cells
    • Morris K.V., et al. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004, 305(5688):1289-1292.
    • (2004) Science , vol.305 , Issue.5688 , pp. 1289-1292
    • Morris, K.V.1
  • 70
    • 0029943141 scopus 로고    scopus 로고
    • Perturbation of nuclear architecture by long-distance chromosome interactions
    • Dernburg A.F., et al. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 1996, 85(5):745-759.
    • (1996) Cell , vol.85 , Issue.5 , pp. 745-759
    • Dernburg, A.F.1
  • 71
    • 84860548726 scopus 로고    scopus 로고
    • Mating-type genes and MAT switching in Saccharomyces cerevisiae
    • Haber J.E. Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics 2012, 191(1):33-64.
    • (2012) Genetics , vol.191 , Issue.1 , pp. 33-64
    • Haber, J.E.1
  • 72
    • 0037058955 scopus 로고    scopus 로고
    • The insulation of genes from external enhancers and silencing chromatin
    • Burgess-Beusse B., et al. The insulation of genes from external enhancers and silencing chromatin. Proc. Natl. Acad. Sci. U.S.A. 2002, 99(Suppl. 4):16433-16437.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , Issue.SUPPL. 4 , pp. 16433-16437
    • Burgess-Beusse, B.1
  • 73
    • 0029059218 scopus 로고
    • Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure
    • Otten A.D., Tapscott S.J. Triplet repeat expansion in myotonic dystrophy alters the adjacent chromatin structure. Proc. Natl. Acad. Sci. U.S.A. 1995, 92(12):5465-5469.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , Issue.12 , pp. 5465-5469
    • Otten, A.D.1    Tapscott, S.J.2
  • 74
    • 0032076126 scopus 로고    scopus 로고
    • Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy
    • Philips A.V., Timchenko L.T., Cooper T.A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998, 280(5364):737-741.
    • (1998) Science , vol.280 , Issue.5364 , pp. 737-741
    • Philips, A.V.1    Timchenko, L.T.2    Cooper, T.A.3
  • 75
    • 78149272981 scopus 로고    scopus 로고
    • The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome
    • Kumari D., Usdin K. The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome. Hum. Mol. Genet. 2010, 19(23):4634-4642.
    • (2010) Hum. Mol. Genet. , vol.19 , Issue.23 , pp. 4634-4642
    • Kumari, D.1    Usdin, K.2
  • 76
    • 27944486578 scopus 로고    scopus 로고
    • Gene activation and deactivation related changes in the three-dimensional structure of chromatin
    • Wegel E., Shaw P. Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma 2005, 114(5):331-337.
    • (2005) Chromosoma , vol.114 , Issue.5 , pp. 331-337
    • Wegel, E.1    Shaw, P.2
  • 77
    • 33646849431 scopus 로고    scopus 로고
    • The relationship between higher-order chromatin structure and transcription
    • Gilbert N., Bickmore W.A. The relationship between higher-order chromatin structure and transcription. Biochem. Soc. Symp. 2006, (73):59-66.
    • (2006) Biochem. Soc. Symp. , Issue.73 , pp. 59-66
    • Gilbert, N.1    Bickmore, W.A.2
  • 78
    • 4444258534 scopus 로고    scopus 로고
    • Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers
    • Gilbert N., et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 2004, 118(5):555-566.
    • (2004) Cell , vol.118 , Issue.5 , pp. 555-566
    • Gilbert, N.1
  • 79
    • 65849122227 scopus 로고    scopus 로고
    • Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration
    • Garden G.A., La Spada A.R. Molecular pathogenesis and cellular pathology of spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 2008, 7(2):138-149.
    • (2008) Cerebellum , vol.7 , Issue.2 , pp. 138-149
    • Garden, G.A.1    La Spada, A.R.2
  • 80
    • 57149089871 scopus 로고    scopus 로고
    • CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination
    • Libby R.T., et al. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet. 2008, 4(11):e1000257.
    • (2008) PLoS Genet. , vol.4 , Issue.11
    • Libby, R.T.1
  • 81
    • 34249337762 scopus 로고    scopus 로고
    • OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells
    • Kovtun I.V., et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 2007, 447(7143):447-452.
    • (2007) Nature , vol.447 , Issue.7143 , pp. 447-452
    • Kovtun, I.V.1
  • 82
    • 84858159676 scopus 로고    scopus 로고
    • Antioxidants in Huntington's disease
    • Johri A., Beal M.F. Antioxidants in Huntington's disease. Biochim. Biophys. Acta 2012, 1822(5):664-674.
    • (2012) Biochim. Biophys. Acta , vol.1822 , Issue.5 , pp. 664-674
    • Johri, A.1    Beal, M.F.2
  • 83
    • 84862792679 scopus 로고    scopus 로고
    • DNA base excision repair: a mechanism of trinucleotide repeat expansion
    • Liu Y., Wilson S.H. DNA base excision repair: a mechanism of trinucleotide repeat expansion. Trends Biochem. Sci. 2012, 37(4):162-172.
    • (2012) Trends Biochem. Sci. , vol.37 , Issue.4 , pp. 162-172
    • Liu, Y.1    Wilson, S.H.2
  • 84
    • 70349422148 scopus 로고    scopus 로고
    • Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease
    • Quintanilla R.A., Johnson G.V. Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Brain Res. Bull. 2009, 80(4/5):242-247.
    • (2009) Brain Res. Bull. , vol.80 , Issue.4-5 , pp. 242-247
    • Quintanilla, R.A.1    Johnson, G.V.2
  • 85
    • 77955267142 scopus 로고    scopus 로고
    • Chronic inflammation and mutagenesis
    • Ferguson L.R. Chronic inflammation and mutagenesis. Mutat. Res. 2010, 690(1/2):3-11.
    • (2010) Mutat. Res. , vol.690 , Issue.1-2 , pp. 3-11
    • Ferguson, L.R.1
  • 86
    • 80053252011 scopus 로고    scopus 로고
    • Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders
    • Doyle K.M., et al. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J. Cell. Mol. Med. 2011, 15(10):2025-2039.
    • (2011) J. Cell. Mol. Med. , vol.15 , Issue.10 , pp. 2025-2039
    • Doyle, K.M.1
  • 87
    • 80054856662 scopus 로고    scopus 로고
    • Mitochondria, reactive oxygen species, and chronological aging: a message from yeast
    • Pan Y. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp. Gerontol. 2011, 46(11):847-852.
    • (2011) Exp. Gerontol. , vol.46 , Issue.11 , pp. 847-852
    • Pan, Y.1
  • 88
    • 84868115310 scopus 로고    scopus 로고
    • Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice
    • Mollersen L., et al. Neil1 is a genetic modifier of somatic and germline CAG trinucleotide repeat instability in R6/1 mice. Hum. Mol. Genet. 2012, 21:4939-4947.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 4939-4947
    • Mollersen, L.1
  • 89
    • 80053215162 scopus 로고    scopus 로고
    • DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability
    • Salinas-Rios V., Belotserkovskii B.P., Hanawalt P.C. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res. 2011, 39(17):7444-7454.
    • (2011) Nucleic Acids Res. , vol.39 , Issue.17 , pp. 7444-7454
    • Salinas-Rios, V.1    Belotserkovskii, B.P.2    Hanawalt, P.C.3
  • 90
    • 79960328293 scopus 로고    scopus 로고
    • Cockayne syndrome B protein antagonizes OGG1 in modulating CAG repeat length in vivo
    • Kovtun I.V., Johnson K.O., McMurray C.T. Cockayne syndrome B protein antagonizes OGG1 in modulating CAG repeat length in vivo. Aging (Milano) 2011, 3(5):509-514.
    • (2011) Aging (Milano) , vol.3 , Issue.5 , pp. 509-514
    • Kovtun, I.V.1    Johnson, K.O.2    McMurray, C.T.3
  • 91
    • 81855206487 scopus 로고    scopus 로고
    • Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1
    • Hubert L., et al. Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1. Hum. Mol. Genet. 2011, 20(24):4822-4830.
    • (2011) Hum. Mol. Genet. , vol.20 , Issue.24 , pp. 4822-4830
    • Hubert, L.1
  • 92
    • 38049112778 scopus 로고    scopus 로고
    • Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells
    • Hegde M.L., Hazra T.K., Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 2008, 18(1):27-47.
    • (2008) Cell Res. , vol.18 , Issue.1 , pp. 27-47
    • Hegde, M.L.1    Hazra, T.K.2    Mitra, S.3
  • 93
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993, 362(6422):709-715.
    • (1993) Nature , vol.362 , Issue.6422 , pp. 709-715
    • Lindahl, T.1
  • 94
    • 0022456828 scopus 로고
    • DNA glycosylases in DNA repair
    • Lindahl T. DNA glycosylases in DNA repair. Basic Life Sci. 1986, 38:335-340.
    • (1986) Basic Life Sci. , vol.38 , pp. 335-340
    • Lindahl, T.1
  • 95
  • 96
    • 84859749531 scopus 로고    scopus 로고
    • DNA glycosylases: in DNA repair and beyond
    • Jacobs A.L., Schar P. DNA glycosylases: in DNA repair and beyond. Chromosoma 2012, 121(1):1-20.
    • (2012) Chromosoma , vol.121 , Issue.1 , pp. 1-20
    • Jacobs, A.L.1    Schar, P.2
  • 97
    • 33644530369 scopus 로고    scopus 로고
    • Transcriptional inhibition by an oxidized abasic site in DNA
    • Wang Y., et al. Transcriptional inhibition by an oxidized abasic site in DNA. Chem. Res. Toxicol. 2006, 19(2):234-241.
    • (2006) Chem. Res. Toxicol. , vol.19 , Issue.2 , pp. 234-241
    • Wang, Y.1
  • 98
    • 44949263779 scopus 로고    scopus 로고
    • The 8,5'-cyclopurine-2'-deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair
    • Brooks P.J. The 8,5'-cyclopurine-2'-deoxynucleosides: candidate neurodegenerative DNA lesions in xeroderma pigmentosum, and unique probes of transcription and nucleotide excision repair. DNA Repair (Amst.) 2008, 7(7):1168-1179.
    • (2008) DNA Repair (Amst.) , vol.7 , Issue.7 , pp. 1168-1179
    • Brooks, P.J.1
  • 99
    • 84870296240 scopus 로고    scopus 로고
    • A quantitative assay for assessing the effects of DNA lesions on transcription
    • You C., et al. A quantitative assay for assessing the effects of DNA lesions on transcription. Nat. Chem. Biol. 2012, 8:817-822.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 817-822
    • You, C.1
  • 100
    • 77953377798 scopus 로고    scopus 로고
    • Abasic sites in the transcribed strand of yeast DNA are removed by transcription-coupled nucleotide excision repair
    • Kim N., Jinks-Robertson S. Abasic sites in the transcribed strand of yeast DNA are removed by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 2010, 30(13):3206-3215.
    • (2010) Mol. Cell. Biol. , vol.30 , Issue.13 , pp. 3206-3215
    • Kim, N.1    Jinks-Robertson, S.2
  • 101
    • 79960343567 scopus 로고    scopus 로고
    • Regulation of endonuclease activity in human nucleotide excision repair
    • Fagbemi A.F., Orelli B., Scharer O.D. Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair (Amst.) 2011, 10(7):722-729.
    • (2011) DNA Repair (Amst.) , vol.10 , Issue.7 , pp. 722-729
    • Fagbemi, A.F.1    Orelli, B.2    Scharer, O.D.3
  • 102
    • 67349212889 scopus 로고    scopus 로고
    • Coordination of dual incision and repair synthesis in human nucleotide excision repair
    • Staresincic L., et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 2009, 28(8):1111-1120.
    • (2009) EMBO J. , vol.28 , Issue.8 , pp. 1111-1120
    • Staresincic, L.1
  • 103
    • 84859368160 scopus 로고    scopus 로고
    • Energy landscapes of dynamic ensembles of rolling triplet repeat bulge loops: implications for DNA expansion associated with disease states
    • Volker J., et al. Energy landscapes of dynamic ensembles of rolling triplet repeat bulge loops: implications for DNA expansion associated with disease states. J. Am. Chem. Soc. 2012, 134(13):6033-6044.
    • (2012) J. Am. Chem. Soc. , vol.134 , Issue.13 , pp. 6033-6044
    • Volker, J.1
  • 104
    • 57449091694 scopus 로고    scopus 로고
    • Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes
    • Dragileva E., et al. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes. Neurobiol. Dis. 2009, 33(1):37-47.
    • (2009) Neurobiol. Dis. , vol.33 , Issue.1 , pp. 37-47
    • Dragileva, E.1
  • 105
    • 33745460647 scopus 로고    scopus 로고
    • Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling
    • Newman J.C., Bailey A.D., Weiner A.M. Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. Proc. Natl. Acad. Sci. U.S.A. 2006, 103(25):9613-9618.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , Issue.25 , pp. 9613-9618
    • Newman, J.C.1    Bailey, A.D.2    Weiner, A.M.3
  • 106
    • 34147136044 scopus 로고    scopus 로고
    • CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease
    • Jung J., Bonini N. CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease. Science 2007, 315(5820):1857-1859.
    • (2007) Science , vol.315 , Issue.5820 , pp. 1857-1859
    • Jung, J.1    Bonini, N.2
  • 107
    • 65249130165 scopus 로고    scopus 로고
    • Transcription destabilizes triplet repeats
    • Lin Y., Hubert L., Wilson J.H. Transcription destabilizes triplet repeats. Mol. Carcinog. 2009, 48(4):350-361.
    • (2009) Mol. Carcinog. , vol.48 , Issue.4 , pp. 350-361
    • Lin, Y.1    Hubert, L.2    Wilson, J.H.3
  • 108
    • 34548204316 scopus 로고    scopus 로고
    • Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair
    • Lin Y., Wilson J.H. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 2007, 27(17):6209-6217.
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.17 , pp. 6209-6217
    • Lin, Y.1    Wilson, J.H.2
  • 109
    • 33847673066 scopus 로고    scopus 로고
    • Crosstalk of DNA glycosylases with pathways other than base excision repair
    • Kovtun I.V., McMurray C.T. Crosstalk of DNA glycosylases with pathways other than base excision repair. DNA Repair (Amst.) 2007, 6(4):517-529.
    • (2007) DNA Repair (Amst.) , vol.6 , Issue.4 , pp. 517-529
    • Kovtun, I.V.1    McMurray, C.T.2
  • 110
    • 0344585940 scopus 로고    scopus 로고
    • The interacting pathways for prevention and repair of oxidative DNA damage
    • Slupphaug G., Kavli B., Krokan H.E. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat. Res. 2003, 531(1/2):231-251.
    • (2003) Mutat. Res. , vol.531 , Issue.1-2 , pp. 231-251
    • Slupphaug, G.1    Kavli, B.2    Krokan, H.E.3
  • 111
    • 34547627642 scopus 로고    scopus 로고
    • Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates
    • Wong H.K., et al. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 2007, 35(12):4103-4113.
    • (2007) Nucleic Acids Res. , vol.35 , Issue.12 , pp. 4103-4113
    • Wong, H.K.1
  • 112
    • 23844483200 scopus 로고    scopus 로고
    • Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress
    • Thorslund T., et al. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Mol. Cell. Biol. 2005, 25(17):7625-7636.
    • (2005) Mol. Cell. Biol. , vol.25 , Issue.17 , pp. 7625-7636
    • Thorslund, T.1
  • 113
    • 0028264043 scopus 로고
    • High functioning fragile X males: demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression
    • Hagerman R.J., et al. High functioning fragile X males: demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression. Am. J. Med. Genet. 1994, 51(4):298-308.
    • (1994) Am. J. Med. Genet. , vol.51 , Issue.4 , pp. 298-308
    • Hagerman, R.J.1
  • 114
    • 0028857169 scopus 로고
    • Normal phenotype in two brothers with a full FMR1 mutation
    • Smeets H.J., et al. Normal phenotype in two brothers with a full FMR1 mutation. Hum. Mol. Genet. 1995, 4(11):2103-2108.
    • (1995) Hum. Mol. Genet. , vol.4 , Issue.11 , pp. 2103-2108
    • Smeets, H.J.1
  • 115
    • 19944431036 scopus 로고    scopus 로고
    • Molecular dissection of the events leading to inactivation of the FMR1 gene
    • Pietrobono R., et al. Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum. Mol. Genet. 2005, 14(2):267-277.
    • (2005) Hum. Mol. Genet. , vol.14 , Issue.2 , pp. 267-277
    • Pietrobono, R.1
  • 116
    • 0031985868 scopus 로고    scopus 로고
    • In vitro reactivation of the FMR1 gene involved in fragile X syndrome
    • Chiurazzi P., et al. In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum. Mol. Genet. 1998, 7(1):109-113.
    • (1998) Hum. Mol. Genet. , vol.7 , Issue.1 , pp. 109-113
    • Chiurazzi, P.1
  • 117
    • 0032905253 scopus 로고    scopus 로고
    • Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells
    • Coffee B., et al. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nat. Genet. 1999, 22(1):98-101.
    • (1999) Nat. Genet. , vol.22 , Issue.1 , pp. 98-101
    • Coffee, B.1
  • 118
    • 0037100616 scopus 로고    scopus 로고
    • Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine
    • Pietrobono R., et al. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res. 2002, 30(14):3278-3285.
    • (2002) Nucleic Acids Res. , vol.30 , Issue.14 , pp. 3278-3285
    • Pietrobono, R.1
  • 119
    • 18844398832 scopus 로고    scopus 로고
    • Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments
    • Tabolacci E., et al. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. Eur. J. Hum. Genet. 2005, 13(5):641-648.
    • (2005) Eur. J. Hum. Genet. , vol.13 , Issue.5 , pp. 641-648
    • Tabolacci, E.1
  • 120
    • 33847688859 scopus 로고    scopus 로고
    • Repair of alkylated DNA: recent advances
    • Sedgwick B., et al. Repair of alkylated DNA: recent advances. DNA Repair (Amst.) 2007, 6(4):429-442.
    • (2007) DNA Repair (Amst.) , vol.6 , Issue.4 , pp. 429-442
    • Sedgwick, B.1
  • 121
    • 48249147403 scopus 로고    scopus 로고
    • Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition
    • Maiti A., et al. Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Proc. Natl. Acad. Sci. U.S.A. 2008, 105(26):8890-8895.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , Issue.26 , pp. 8890-8895
    • Maiti, A.1
  • 122
    • 45449114804 scopus 로고    scopus 로고
    • The colorful history of active DNA demethylation
    • Ooi S.K., Bestor T.H. The colorful history of active DNA demethylation. Cell 2008, 133(7):1145-1148.
    • (2008) Cell , vol.133 , Issue.7 , pp. 1145-1148
    • Ooi, S.K.1    Bestor, T.H.2
  • 123
    • 57649196594 scopus 로고    scopus 로고
    • DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45
    • Rai K., et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 2008, 135(7):1201-1212.
    • (2008) Cell , vol.135 , Issue.7 , pp. 1201-1212
    • Rai, K.1
  • 124
    • 0035942193 scopus 로고    scopus 로고
    • Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene
    • Zhu B., et al. Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proc. Natl. Acad. Sci. U.S.A. 2001, 98(9):5031-5036.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , Issue.9 , pp. 5031-5036
    • Zhu, B.1
  • 125
    • 0035504496 scopus 로고    scopus 로고
    • 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation
    • Jost J.P., et al. 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation. Nucleic Acids Res. 2001, 29(21):4452-4461.
    • (2001) Nucleic Acids Res. , vol.29 , Issue.21 , pp. 4452-4461
    • Jost, J.P.1
  • 126
    • 40449123137 scopus 로고    scopus 로고
    • Cyclical DNA methylation of a transcriptionally active promoter
    • Metivier R., et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008, 452(7183):45-50.
    • (2008) Nature , vol.452 , Issue.7183 , pp. 45-50
    • Metivier, R.1
  • 127
    • 33847663262 scopus 로고    scopus 로고
    • The enigmatic thymine DNA glycosylase
    • Cortazar D., et al. The enigmatic thymine DNA glycosylase. DNA Repair (Amst.) 2007, 6(4):489-504.
    • (2007) DNA Repair (Amst.) , vol.6 , Issue.4 , pp. 489-504
    • Cortazar, D.1
  • 129
    • 77954313084 scopus 로고    scopus 로고
    • Genome-wide DNA demethylation in mammals
    • Sanz L.A., Kota S.K., Feil R. Genome-wide DNA demethylation in mammals. Genome Biol. 2010, 11(3):110.
    • (2010) Genome Biol. , vol.11 , Issue.3 , pp. 110
    • Sanz, L.A.1    Kota, S.K.2    Feil, R.3
  • 130
    • 0035861728 scopus 로고    scopus 로고
    • Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor
    • Anant S., et al. Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J. Biol. Chem. 2001, 276(50):47338-47351.
    • (2001) J. Biol. Chem. , vol.276 , Issue.50 , pp. 47338-47351
    • Anant, S.1
  • 131
    • 10644282845 scopus 로고    scopus 로고
    • Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming
    • Morgan H.D., et al. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem. 2004, 279(50):52353-52360.
    • (2004) J. Biol. Chem. , vol.279 , Issue.50 , pp. 52353-52360
    • Morgan, H.D.1
  • 132
    • 84860510016 scopus 로고    scopus 로고
    • Mammalian mismatch repair: error-free or error-prone?
    • Pena-Diaz J., Jiricny J. Mammalian mismatch repair: error-free or error-prone?. Trends Biochem. Sci. 2012, 37(5):206-214.
    • (2012) Trends Biochem. Sci. , vol.37 , Issue.5 , pp. 206-214
    • Pena-Diaz, J.1    Jiricny, J.2
  • 133
    • 84934878322 scopus 로고    scopus 로고
    • Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair
    • Rechkunova N.I., Lavrik O.I. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell. Biochem. 2010, 50:251-277.
    • (2010) Subcell. Biochem. , vol.50 , pp. 251-277
    • Rechkunova, N.I.1    Lavrik, O.I.2
  • 134
    • 0034086023 scopus 로고    scopus 로고
    • Thymine-DNA glycosylase and G to A transition mutations at CpG sites
    • Waters T.R., Swann P.F. Thymine-DNA glycosylase and G to A transition mutations at CpG sites. Mutat. Res. 2000, 462(2/3):137-147.
    • (2000) Mutat. Res. , vol.462 , Issue.2-3 , pp. 137-147
    • Waters, T.R.1    Swann, P.F.2
  • 135
    • 33846885029 scopus 로고    scopus 로고
    • Substrate specificity of human thymine-DNA glycosylase on exocyclic cytosine adducts
    • Hang B., Guliaev A.B. Substrate specificity of human thymine-DNA glycosylase on exocyclic cytosine adducts. Chem. Biol. Interact. 2007, 165(3):230-238.
    • (2007) Chem. Biol. Interact. , vol.165 , Issue.3 , pp. 230-238
    • Hang, B.1    Guliaev, A.B.2
  • 136
    • 4344609697 scopus 로고    scopus 로고
    • Occupancy and synergistic activation of the FMR1 promoter by Nrf-1 and Sp1 in vivo
    • Smith K.T., Coffee B., Reines D. Occupancy and synergistic activation of the FMR1 promoter by Nrf-1 and Sp1 in vivo. Hum. Mol. Genet. 2004, 13(15):1611-1621.
    • (2004) Hum. Mol. Genet. , vol.13 , Issue.15 , pp. 1611-1621
    • Smith, K.T.1    Coffee, B.2    Reines, D.3
  • 137
    • 26444595255 scopus 로고    scopus 로고
    • AP-2alpha selectively regulates fragile X mental retardation-1 gene transcription during embryonic development
    • Lim J.H., et al. AP-2alpha selectively regulates fragile X mental retardation-1 gene transcription during embryonic development. Hum. Mol. Genet. 2005, 14(14):2027-2034.
    • (2005) Hum. Mol. Genet. , vol.14 , Issue.14 , pp. 2027-2034
    • Lim, J.H.1
  • 138
    • 33644860083 scopus 로고    scopus 로고
    • The gene encoding the fragile X RNA-binding protein is controlled by nuclear respiratory factor 2 and the CREB family of transcription factors
    • Smith K.T., Nicholls R.D., Reines D. The gene encoding the fragile X RNA-binding protein is controlled by nuclear respiratory factor 2 and the CREB family of transcription factors. Nucleic Acids Res. 2006, 34(4):1205-1215.
    • (2006) Nucleic Acids Res. , vol.34 , Issue.4 , pp. 1205-1215
    • Smith, K.T.1    Nicholls, R.D.2    Reines, D.3
  • 139
    • 0032718839 scopus 로고    scopus 로고
    • Sp1 and AP2 transcription factors are required for the human fragile mental retardation promoter activity in SK-N-SH neuronal cells
    • Carrillo C., Cisneros B., Montanez C. Sp1 and AP2 transcription factors are required for the human fragile mental retardation promoter activity in SK-N-SH neuronal cells. Neurosci. Lett. 1999, 276(3):149-152.
    • (1999) Neurosci. Lett. , vol.276 , Issue.3 , pp. 149-152
    • Carrillo, C.1    Cisneros, B.2    Montanez, C.3
  • 140
    • 0036184090 scopus 로고    scopus 로고
    • Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription
    • Tini M., et al. Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol. Cell 2002, 9(2):265-277.
    • (2002) Mol. Cell , vol.9 , Issue.2 , pp. 265-277
    • Tini, M.1
  • 141
    • 33845733594 scopus 로고    scopus 로고
    • SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment
    • Mohan R.D., et al. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Mol. Cell. Biol. 2007, 27(1):229-243.
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.1 , pp. 229-243
    • Mohan, R.D.1
  • 142
    • 0141755305 scopus 로고    scopus 로고
    • T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha
    • Chen D., et al. T:G mismatch-specific thymine-DNA glycosylase potentiates transcription of estrogen-regulated genes through direct interaction with estrogen receptor alpha. J. Biol. Chem. 2003, 278(40):38586-38592.
    • (2003) J. Biol. Chem. , vol.278 , Issue.40 , pp. 38586-38592
    • Chen, D.1
  • 143
    • 0348044518 scopus 로고    scopus 로고
    • Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase
    • Xiao W., et al. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev. Cell 2003, 5(6):891-901.
    • (2003) Dev. Cell , vol.5 , Issue.6 , pp. 891-901
    • Xiao, W.1
  • 144
    • 37249050851 scopus 로고    scopus 로고
    • Genetic interactions between DNA demethylation and methylation in Arabidopsis
    • Penterman J., Uzawa R., Fischer R.L. Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol. 2007, 145(4):1549-1557.
    • (2007) Plant Physiol. , vol.145 , Issue.4 , pp. 1549-1557
    • Penterman, J.1    Uzawa, R.2    Fischer, R.L.3
  • 145
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324(5929):930-935.
    • (2009) Science , vol.324 , Issue.5929 , pp. 930-935
    • Tahiliani, M.1
  • 146
    • 79551587102 scopus 로고    scopus 로고
    • Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells
    • Koh K.P., et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2011, 8(2):200-213.
    • (2011) Cell Stem Cell , vol.8 , Issue.2 , pp. 200-213
    • Koh, K.P.1
  • 147
    • 80052461558 scopus 로고    scopus 로고
    • Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
    • Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333(6047):1300-1303.
    • (2011) Science , vol.333 , Issue.6047 , pp. 1300-1303
    • Ito, S.1
  • 148
    • 77956189495 scopus 로고    scopus 로고
    • Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
    • Ito S., et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466(7310):1129-1133.
    • (2010) Nature , vol.466 , Issue.7310 , pp. 1129-1133
    • Ito, S.1
  • 149
    • 84555189745 scopus 로고    scopus 로고
    • DNA methylation: TET proteins-guardians of CpG islands?
    • Williams K., Christensen J., Helin K. DNA methylation: TET proteins-guardians of CpG islands?. EMBO Rep. 2012, 13(1):28-35.
    • (2012) EMBO Rep. , vol.13 , Issue.1 , pp. 28-35
    • Williams, K.1    Christensen, J.2    Helin, K.3
  • 150
    • 84860749868 scopus 로고    scopus 로고
    • Tet family proteins and 5-hydroxymethylcytosine in development and disease
    • Tan L., Shi Y.G. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 2012, 139(11):1895-1902.
    • (2012) Development , vol.139 , Issue.11 , pp. 1895-1902
    • Tan, L.1    Shi, Y.G.2
  • 151
    • 82955207588 scopus 로고    scopus 로고
    • Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation
    • Wu H., Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011, 25(23):2436-2452.
    • (2011) Genes Dev. , vol.25 , Issue.23 , pp. 2436-2452
    • Wu, H.1    Zhang, Y.2
  • 152
    • 80051712275 scopus 로고    scopus 로고
    • Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond
    • Guo J.U., et al. Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle 2011, 10(16):2662-2668.
    • (2011) Cell Cycle , vol.10 , Issue.16 , pp. 2662-2668
    • Guo, J.U.1
  • 153
    • 83855163995 scopus 로고    scopus 로고
    • Uncovering the role of 5-hydroxymethylcytosine in the epigenome
    • Branco M.R., Ficz G., Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat. Rev. Genet. 2012, 13(1):7-13.
    • (2012) Nat. Rev. Genet. , vol.13 , Issue.1 , pp. 7-13
    • Branco, M.R.1    Ficz, G.2    Reik, W.3
  • 154
    • 79956302047 scopus 로고    scopus 로고
    • TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
    • Williams K., et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 2011, 473(7347):343-348.
    • (2011) Nature , vol.473 , Issue.7347 , pp. 343-348
    • Williams, K.1
  • 155
    • 79956292024 scopus 로고    scopus 로고
    • Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells
    • Wu H., et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 2011, 473(7347):389-393.
    • (2011) Nature , vol.473 , Issue.7347 , pp. 389-393
    • Wu, H.1
  • 156
    • 79955948324 scopus 로고    scopus 로고
    • Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells
    • Xu Y., et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 2011, 42(4):451-464.
    • (2011) Mol. Cell , vol.42 , Issue.4 , pp. 451-464
    • Xu, Y.1
  • 157
    • 78650826181 scopus 로고    scopus 로고
    • Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
    • Globisch D., et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010, 5(12):e15367.
    • (2010) PLoS ONE , vol.5 , Issue.12
    • Globisch, D.1
  • 158
    • 66149123748 scopus 로고    scopus 로고
    • The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
    • Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324(5929):929-930.
    • (2009) Science , vol.324 , Issue.5929 , pp. 929-930
    • Kriaucionis, S.1    Heintz, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.