메뉴 건너뛰기




Volumn 12, Issue 2, 2013, Pages 85-93

Bandgap nanoengineering of graphene tunnel diodes and tunnel transistors to control the negative differential resistance

Author keywords

Dirac fermions; Graphene device; Green's function; Negative differential resistance; Quantum transport; Tunnel diode; Tunnel transistor

Indexed keywords

DIRAC FERMIONS; GRAPHENE DEVICES; NEGATIVE DIFFERENTIAL RESISTANCES; QUANTUM TRANSPORT; TUNNEL TRANSISTORS;

EID: 84879015877     PISSN: 15698025     EISSN: 15728137     Source Type: Journal    
DOI: 10.1007/s10825-013-0434-2     Document Type: Article
Times cited : (31)

References (52)
  • 2
    • 33748296088 scopus 로고    scopus 로고
    • Chiral tunnelling and the Klein paradox in graphene
    • DOI 10.1038/nphys384, PII NPHYS384
    • Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620-625 (2006) (Pubitemid 44328348)
    • (2006) Nature Physics , vol.2 , Issue.9 , pp. 620-625
    • Katsnelson, M.I.1    Novoselov, K.S.2    Geim, A.K.3
  • 3
    • 77955231284 scopus 로고    scopus 로고
    • Graphene transistors
    • 10.1038/nnano.2010.89
    • Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487-496 (2010)
    • (2010) Nat. Nanotechnol. , vol.5 , pp. 487-496
    • Schwierz, F.1
  • 4
    • 45249109068 scopus 로고    scopus 로고
    • Valley-valve effect and even-odd chain parity in p-n graphene junctions
    • 233402 10.1103/PhysRevB.77.233402
    • Cresti, A., Grosso, G., Parravicini, G.P.: Valley-valve effect and even-odd chain parity in p-n graphene junctions. Phys. Rev. B 77, 233402 (2008)
    • (2008) Phys. Rev. B , vol.77
    • Cresti, A.1    Grosso, G.2    Parravicini, G.P.3
  • 5
    • 41649111500 scopus 로고    scopus 로고
    • Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: A theoretical study
    • DOI 10.1063/1.2904701
    • Wang, Z.F., Li, Q., Shi, Q.W., Wang, X., Yang, J., Hou, J.G., Chen, J.: Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: a theoretical study. Appl. Phys. Lett. 92, 133114 (2008) (Pubitemid 351483689)
    • (2008) Applied Physics Letters , vol.92 , Issue.13 , pp. 133114
    • Wang, Z.F.1    Li, Q.2    Shi, Q.W.3    Wang, X.4    Yang, J.5    Hou, J.G.6    Chen, J.7
  • 6
    • 77950591040 scopus 로고    scopus 로고
    • Negative differential resistance in zigzag-edge graphene nanoribbon junctions
    • 063705 10.1063/1.3340834
    • Nam Do, V., Dollfus, P.: Negative differential resistance in zigzag-edge graphene nanoribbon junctions. J. Appl. Phys. 107, 063705 (2010)
    • (2010) J. Appl. Phys. , vol.107
    • Nam Do, V.1    Dollfus, P.2
  • 7
    • 77951605826 scopus 로고    scopus 로고
    • A gate-induced switch in zigzag graphene nanoribbons and charging effects
    • 205306 10.1088/0957-4484/21/20/205306
    • Cheraghchi, H., Esmailzade, H.: A gate-induced switch in zigzag graphene nanoribbons and charging effects. Nanotechnology 21, 205306 (2010)
    • (2010) Nanotechnology , vol.21
    • Cheraghchi, H.1    Esmailzade, H.2
  • 8
    • 79959632567 scopus 로고    scopus 로고
    • Negative differential resistance in bilayer graphene nanoribbons
    • 192112 10.1063/1.3590772
    • Habib, K.M.M., Zahid, F., Lake, R.K.: Negative differential resistance in bilayer graphene nanoribbons. Appl. Phys. Lett. 98, 192112 (2011)
    • (2011) Appl. Phys. Lett. , vol.98
    • Habib, K.M.M.1    Zahid, F.2    Lake, R.K.3
  • 9
    • 65449166838 scopus 로고    scopus 로고
    • Graphene nanoribbon as a negative differential resistance device
    • 173110 10.1063/1.3126451
    • Ren, H., Li, Q.-X., Luo, Y., Yang, J.: Graphene nanoribbon as a negative differential resistance device. Appl. Phys. Lett. 94, 173110 (2009)
    • (2009) Appl. Phys. Lett. , vol.94
    • Ren, H.1    Li, Q.-X.2    Luo, Y.3    Yang, J.4
  • 10
    • 65449178727 scopus 로고    scopus 로고
    • Shape effects in graphene nanoribbon resonant tunneling diodes: A computational study
    • 084317 10.1063/1.3115423
    • Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105, 084317 (2009)
    • (2009) J. Appl. Phys. , vol.105
    • Teong, H.1    Lam, K.-T.2    Khalid, S.B.3    Liang, G.4
  • 11
    • 81555220954 scopus 로고    scopus 로고
    • Resonant tunneling structures based on epitaxial graphene on SiC
    • 125012 10.1088/0268-1242/26/12/125012
    • Hung Nguyen, V., Bournel, A., Dollfus, P.: Resonant tunneling structures based on epitaxial graphene on SiC. Semicond. Sci. Technol. 26, 125012 (2011)
    • (2011) Semicond. Sci. Technol. , vol.26
    • Hung Nguyen, V.1    Bournel, A.2    Dollfus, P.3
  • 13
  • 14
    • 84867570160 scopus 로고    scopus 로고
    • Resonant tunneling through double barrier graphene systems: A comparative study of Klein and non-Klein tunneling structures
    • 073711 10.1063/1.4757591
    • Rodríguez-Vargas, I., Madrigal-Melchor, J., Oubram, O.: Resonant tunneling through double barrier graphene systems: a comparative study of Klein and non-Klein tunneling structures. J. Appl. Phys. 112, 073711 (2012)
    • (2012) J. Appl. Phys. , vol.112
    • Rodríguez-Vargas, I.1    Madrigal-Melchor, J.2    Oubram, O.3
  • 15
    • 84864449193 scopus 로고    scopus 로고
    • Resonant tunneling diode based on graphene/h-BN heterostructure
    • 325104 10.1088/0022-3727/45/32/325104
    • Hung Nguyen, V., Mazzamuto, F., Bournel, A., Dollfus, P.: Resonant tunneling diode based on graphene/h-BN heterostructure. J. Phys. D, Appl. Phys. 45, 325104 (2012)
    • (2012) J. Phys. D, Appl. Phys. , vol.45
    • Hung Nguyen, V.1    Mazzamuto, F.2    Bournel, A.3    Dollfus, P.4
  • 16
    • 80053896139 scopus 로고    scopus 로고
    • Low-bias negative differential resistance in graphene nanoribbon superlattices
    • 125453 10.1103/PhysRevB.84.125453
    • Ferreira, G.J., Leuenberger, M.N., Loss, D., Egues, J.C.: Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys. Rev. B 84, 125453 (2011)
    • (2011) Phys. Rev. B , vol.84
    • Ferreira, G.J.1    Leuenberger, M.N.2    Loss, D.3    Egues, J.C.4
  • 17
    • 54749105473 scopus 로고    scopus 로고
    • Electronic transport and spin-polarized effects of relativistic-like particles in graphene structures
    • 063708 10.1063/1.2980045
    • Nam Do, V., Hung Nguyen, V., Dollfus, P., Bournel, A.: Electronic transport and spin-polarized effects of relativistic-like particles in graphene structures. J. Appl. Phys. 104, 063708 (2008)
    • (2008) J. Appl. Phys. , vol.104
    • Nam Do, V.1    Hung Nguyen, V.2    Dollfus, P.3    Bournel, A.4
  • 19
    • 84858247431 scopus 로고    scopus 로고
    • Quantum behavior of graphene transistors near the scaling limit
    • 10.1021/nl204088b
    • Wu, Y., Perebeinos, V., Lin, Y.-M., Low, T., Xia, F., Avouris, P.: Quantum behavior of graphene transistors near the scaling limit. Nano Lett. 12, 1417-1423 (2012)
    • (2012) Nano Lett. , vol.12 , pp. 1417-1423
    • Wu, Y.1    Perebeinos, V.2    Lin, Y.-M.3    Low, T.4    Xia, F.5    Avouris, P.6
  • 20
    • 84866872540 scopus 로고    scopus 로고
    • High field carrier transport in graphene: Insights from fast current transient
    • 123505 10.1063/1.4754103
    • Majumdar, K., Kallatt, S., Bhat, N.: High field carrier transport in graphene: insights from fast current transient. Appl. Phys. Lett. 101, 123505 (2012)
    • (2012) Appl. Phys. Lett. , vol.101
    • Majumdar, K.1    Kallatt, S.2    Bhat, N.3
  • 21
    • 84866559270 scopus 로고    scopus 로고
    • Negative differential conductance and chiral effects in graphene field-effect transistors
    • 10.1109/IWCE.2012.6242820
    • Alarcón, A., Hung Nguyen, V., Berrada, S., Saint-Martin, J., Bournel, A., Dollfus, P.: Negative differential conductance and chiral effects in graphene field-effect transistors. In: Proc. IWCE 2012 (2012). doi: 10.1109/IWCE.2012.6242820
    • (2012) Proc. IWCE 2012
    • Alarcón, A.1    Hung Nguyen, V.2    Berrada, S.3    Saint-Martin, J.4    Bournel, A.5    Dollfus, P.6
  • 22
    • 79959500346 scopus 로고    scopus 로고
    • Large peak-to-valley ratio of negative differential conductance in graphene p-n junctions
    • 093706 10.1063/1.3587570
    • Hung Nguyen, V., Bournel, A., Dollfus, P.: Large peak-to-valley ratio of negative differential conductance in graphene p-n junctions. J. Appl. Phys. 109, 093706 (2011)
    • (2011) J. Appl. Phys. , vol.109
    • Hung Nguyen, V.1    Bournel, A.2    Dollfus, P.3
  • 23
    • 80053566711 scopus 로고    scopus 로고
    • Negative differential resistance in mono and bilayer graphene p-n junctions
    • 2837586 10.1109/LED.2011.2162392
    • Fiori, G.: Negative differential resistance in mono and bilayer graphene p-n junctions. IEEE Electron Device Lett. 32, 1334-1336 (2011)
    • (2011) IEEE Electron Device Lett. , vol.32 , pp. 1334-1336
    • Fiori, G.1
  • 24
    • 79961037627 scopus 로고    scopus 로고
    • Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions
    • 042105 10.1063/1.3616143
    • Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel, A., Dollfus, P.: Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions. Appl. Phys. Lett. 99, 042105 (2011)
    • (2011) Appl. Phys. Lett. , vol.99
    • Hung Nguyen, V.1    Mazzamuto, F.2    Saint-Martin, J.3    Bournel, A.4    Dollfus, P.5
  • 25
    • 84855949231 scopus 로고    scopus 로고
    • Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect
    • 065201 10.1088/0957-4484/23/6/065201
    • Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel, A., Dollfus, P.: Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect. Nanotechnology 23, 065201 (2012)
    • (2012) Nanotechnology , vol.23
    • Hung Nguyen, V.1    Mazzamuto, F.2    Saint-Martin, J.3    Bournel, A.4    Dollfus, P.5
  • 26
    • 84866320563 scopus 로고    scopus 로고
    • Gate-controllable negative differential conductance in graphene tunneling transistors
    • 105018 10.1088/0268-1242/27/10/105018
    • Hung Nguyen, V., Niquet, Y.-M., Dollfus, P.: Gate-controllable negative differential conductance in graphene tunneling transistors. Semicond. Sci. Technol. 27, 105018 (2012)
    • (2012) Semicond. Sci. Technol. , vol.27
    • Hung Nguyen, V.1    Niquet, Y.-M.2    Dollfus, P.3
  • 27
    • 35548976235 scopus 로고    scopus 로고
    • Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations
    • 073103 10.1103/PhysRevB.76.073103
    • Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., van den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007)
    • (2007) Phys. Rev. B , vol.76
    • Giovannetti, G.1    Khomyakov, P.A.2    Brocks, G.3    Kelly, P.J.4    Van Den Brink, J.5
  • 28
    • 83655172567 scopus 로고    scopus 로고
    • Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate
    • 10.1021/nl202725w
    • Kharche, N., Nayak, S.K.: Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11, 5274-5278 (2011)
    • (2011) Nano Lett. , vol.11 , pp. 5274-5278
    • Kharche, N.1    Nayak, S.K.2
  • 29
    • 80053467030 scopus 로고    scopus 로고
    • In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures
    • 133109 10.1063/1.3643899
    • Xu, Y., Guo, Z., Chen, H., Yuan, Y., Lou, J., Lin, X., Gao, H., Chen, H., Yu, B.: In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 99, 133109 (2011)
    • (2011) Appl. Phys. Lett. , vol.99
    • Xu, Y.1    Guo, Z.2    Chen, H.3    Yuan, Y.4    Lou, J.5    Lin, X.6    Gao, H.7    Chen, H.8    Yu, B.9
  • 30
    • 79952079731 scopus 로고    scopus 로고
    • Tunable electronic structures of graphene/boron nitride heterobilayers
    • 083103 10.1063/1.3556640
    • Fan, Y., Zhao, M., Wang, Z., Zhang, X., Zhang, H.: Tunable electronic structures of graphene/boron nitride heterobilayers. Appl. Phys. Lett. 98, 083103 (2011)
    • (2011) Appl. Phys. Lett. , vol.98
    • Fan, Y.1    Zhao, M.2    Wang, Z.3    Zhang, X.4    Zhang, H.5
  • 31
    • 83455172686 scopus 로고    scopus 로고
    • A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride
    • 232104 10.1063/1.3665405
    • Zomer, P.J., Dash, S.P., Tombros, N., van Wees, B.J.: A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011)
    • (2011) Appl. Phys. Lett. , vol.99
    • Zomer, P.J.1    Dash, S.P.2    Tombros, N.3    Van Wees, B.J.4
  • 33
    • 84859090240 scopus 로고    scopus 로고
    • Energy gaps in graphene nanomeshes
    • 115431 10.1103/PhysRevB.85.115431
    • Oswald, W., Wu, Z.: Energy gaps in graphene nanomeshes. Phys. Rev. B 85, 115431 (2012)
    • (2012) Phys. Rev. B , vol.85
    • Oswald, W.1    Wu, Z.2
  • 34
    • 84872056164 scopus 로고    scopus 로고
    • Disorder effects on energy bandgap and electronic transport in graphene-nanomesh-based structures
    • 013702 10.1063/1.4772609
    • Hung Nguyen, V., Chung Nguyen, M., Viet Nguyen, H., Dollfus, P.: Disorder effects on energy bandgap and electronic transport in graphene-nanomesh-based structures. J. Appl. Phys. 113, 013702 (2012)
    • (2012) J. Appl. Phys. , vol.113
    • Hung Nguyen, V.1    Chung Nguyen, M.2    Viet Nguyen, H.3    Dollfus, P.4
  • 35
  • 36
    • 70349313508 scopus 로고    scopus 로고
    • Controllable spin-dependent transport in armchair graphene nanoribbon structures
    • 053710 10.1063/1.3212984
    • Hung Nguyen, V., Nam Do, V., Bournel, A., Lien Nguyen, V., Dollfus, P.: Controllable spin-dependent transport in armchair graphene nanoribbon structures. J. Appl. Phys. 106, 053710 (2009)
    • (2009) J. Appl. Phys. , vol.106
    • Hung Nguyen, V.1    Nam Do, V.2    Bournel, A.3    Lien Nguyen, V.4    Dollfus, P.5
  • 37
    • 4043108064 scopus 로고    scopus 로고
    • Tight-binding description of graphene
    • 035412 10.1103/PhysRevB.66.035412
    • Reich, S., Maultzsch, J., Thomsen, C.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002)
    • (2002) Phys. Rev. B , vol.66
    • Reich, S.1    Maultzsch, J.2    Thomsen, C.3
  • 39
    • 33751348065 scopus 로고    scopus 로고
    • Energy gaps in graphene nanoribbons
    • DOI 10.1103/PhysRevLett.97.216803
    • Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006) (Pubitemid 44808139)
    • (2006) Physical Review Letters , vol.97 , Issue.21 , pp. 216803
    • Son, Y.-W.1    Cohen, M.L.2    Louie, S.G.3
  • 40
    • 62549134866 scopus 로고    scopus 로고
    • On the possibility of tunable-gap bilayer graphene FET
    • 10.1109/LED.2008.2010629
    • Fiori, G., Iannaccone, G.: On the possibility of tunable-gap bilayer graphene FET. IEEE Electron Device Lett. 30, 261-264 (2009)
    • (2009) IEEE Electron Device Lett. , vol.30 , pp. 261-264
    • Fiori, G.1    Iannaccone, G.2
  • 41
    • 26244453976 scopus 로고    scopus 로고
    • Towards multi-scale modeling of carbon nanotube transistors
    • 10.1615/IntJMultCompEng.v2.i2.60
    • Guo, J., Datta, S., Lundstrom, M., Anantram, M.P.: Towards multi-scale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2, 257-260 (2004)
    • (2004) Int. J. Multiscale Comput. Eng. , vol.2 , pp. 257-260
    • Guo, J.1    Datta, S.2    Lundstrom, M.3    Anantram, M.P.4
  • 42
    • 0000821265 scopus 로고
    • Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100)
    • 10.1088/0305-4608/14/5/016
    • Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F, Met. Phys. 14, 1205-1215 (1984)
    • (1984) J. Phys. F, Met. Phys. , vol.14 , pp. 1205-1215
    • Lopez Sancho, M.P.1    Lopez Sancho, J.M.2    Rubio, J.3
  • 43
    • 51649112866 scopus 로고    scopus 로고
    • Modeling of nanoscale devices
    • 10.1109/JPROC.2008.927355
    • Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96, 1511-1550 (2008)
    • (2008) Proc. IEEE , vol.96 , pp. 1511-1550
    • Anantram, M.P.1    Lundstrom, M.S.2    Nikonov, D.E.3
  • 45
  • 46
    • 76749092020 scopus 로고    scopus 로고
    • Single step, complementary doping of graphene
    • 063104 10.1063/1.3308482
    • Brenner, K., Murali, R.: Single step, complementary doping of graphene. Appl. Phys. Lett. 96, 063104 (2010)
    • (2010) Appl. Phys. Lett. , vol.96
    • Brenner, K.1    Murali, R.2
  • 48
    • 77955340828 scopus 로고    scopus 로고
    • Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography
    • 10.1021/nl100750v
    • Liang, X., Jung, Y.-S., Wu, S., Ismach, A., Olynick, D.L., Cabrini, S., Bokor, J.: Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454-2460 (2010)
    • (2010) Nano Lett. , vol.10 , pp. 2454-2460
    • Liang, X.1    Jung, Y.-S.2    Wu, S.3    Ismach, A.4    Olynick, D.L.5    Cabrini, S.6    Bokor, J.7
  • 49
    • 78650034452 scopus 로고    scopus 로고
    • Low-voltage tunnel transistors for beyond CMOS logic
    • 10.1109/JPROC.2010.2070470
    • Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095-2110 (2010)
    • (2010) Proc. IEEE , vol.98 , pp. 2095-2110
    • Seabaugh, A.C.1    Zhang, Q.2
  • 50
    • 36549104654 scopus 로고
    • Bipolar tunneling field-effect transistor: A three terminal negative differential resistance device for high-speed applications
    • 10.1063/1.99056
    • Leburton, J.-P., Kolodzey, J., Briggs, S.: Bipolar tunneling field-effect transistor: a three terminal negative differential resistance device for high-speed applications. Appl. Phys. Lett. 52, 1608-1610 (1988)
    • (1988) Appl. Phys. Lett. , vol.52 , pp. 1608-1610
    • Leburton, J.-P.1    Kolodzey, J.2    Briggs, S.3
  • 51
    • 0030287254 scopus 로고    scopus 로고
    • Negative conductance properties in extremely thin silicon-on-insulator (SOI) insulated-gate pn-junction devices (SOI surface tunnel transistors)
    • 10.1143/JJAP.35.L1401
    • Omura, Y.: Negative conductance properties in extremely thin silicon-on-insulator (SOI) insulated-gate pn-junction devices (SOI surface tunnel transistors). Jpn. J. Appl. Phys. 35, L1401-L1403 (1996)
    • (1996) Jpn. J. Appl. Phys. , vol.35
    • Omura, Y.1
  • 52
    • 0033341645 scopus 로고    scopus 로고
    • Three-terminal silicon surface junction tunneling device for room temperature operation
    • DOI 10.1109/55.791932
    • Koga, J., Toriumi, A.: Three-terminal silicon surface junction tunneling device for room temperature operation. IEEE Electron Device Lett. 20, 529-531 (1999) (Pubitemid 30504552)
    • (1999) IEEE Electron Device Letters , vol.20 , Issue.10 , pp. 529-531
    • Koga, J.1    Toriumi, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.