-
2
-
-
33748296088
-
Chiral tunnelling and the Klein paradox in graphene
-
DOI 10.1038/nphys384, PII NPHYS384
-
Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620-625 (2006) (Pubitemid 44328348)
-
(2006)
Nature Physics
, vol.2
, Issue.9
, pp. 620-625
-
-
Katsnelson, M.I.1
Novoselov, K.S.2
Geim, A.K.3
-
3
-
-
77955231284
-
Graphene transistors
-
10.1038/nnano.2010.89
-
Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487-496 (2010)
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 487-496
-
-
Schwierz, F.1
-
4
-
-
45249109068
-
Valley-valve effect and even-odd chain parity in p-n graphene junctions
-
233402 10.1103/PhysRevB.77.233402
-
Cresti, A., Grosso, G., Parravicini, G.P.: Valley-valve effect and even-odd chain parity in p-n graphene junctions. Phys. Rev. B 77, 233402 (2008)
-
(2008)
Phys. Rev. B
, vol.77
-
-
Cresti, A.1
Grosso, G.2
Parravicini, G.P.3
-
5
-
-
41649111500
-
Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: A theoretical study
-
DOI 10.1063/1.2904701
-
Wang, Z.F., Li, Q., Shi, Q.W., Wang, X., Yang, J., Hou, J.G., Chen, J.: Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: a theoretical study. Appl. Phys. Lett. 92, 133114 (2008) (Pubitemid 351483689)
-
(2008)
Applied Physics Letters
, vol.92
, Issue.13
, pp. 133114
-
-
Wang, Z.F.1
Li, Q.2
Shi, Q.W.3
Wang, X.4
Yang, J.5
Hou, J.G.6
Chen, J.7
-
6
-
-
77950591040
-
Negative differential resistance in zigzag-edge graphene nanoribbon junctions
-
063705 10.1063/1.3340834
-
Nam Do, V., Dollfus, P.: Negative differential resistance in zigzag-edge graphene nanoribbon junctions. J. Appl. Phys. 107, 063705 (2010)
-
(2010)
J. Appl. Phys.
, vol.107
-
-
Nam Do, V.1
Dollfus, P.2
-
7
-
-
77951605826
-
A gate-induced switch in zigzag graphene nanoribbons and charging effects
-
205306 10.1088/0957-4484/21/20/205306
-
Cheraghchi, H., Esmailzade, H.: A gate-induced switch in zigzag graphene nanoribbons and charging effects. Nanotechnology 21, 205306 (2010)
-
(2010)
Nanotechnology
, vol.21
-
-
Cheraghchi, H.1
Esmailzade, H.2
-
8
-
-
79959632567
-
Negative differential resistance in bilayer graphene nanoribbons
-
192112 10.1063/1.3590772
-
Habib, K.M.M., Zahid, F., Lake, R.K.: Negative differential resistance in bilayer graphene nanoribbons. Appl. Phys. Lett. 98, 192112 (2011)
-
(2011)
Appl. Phys. Lett.
, vol.98
-
-
Habib, K.M.M.1
Zahid, F.2
Lake, R.K.3
-
9
-
-
65449166838
-
Graphene nanoribbon as a negative differential resistance device
-
173110 10.1063/1.3126451
-
Ren, H., Li, Q.-X., Luo, Y., Yang, J.: Graphene nanoribbon as a negative differential resistance device. Appl. Phys. Lett. 94, 173110 (2009)
-
(2009)
Appl. Phys. Lett.
, vol.94
-
-
Ren, H.1
Li, Q.-X.2
Luo, Y.3
Yang, J.4
-
10
-
-
65449178727
-
Shape effects in graphene nanoribbon resonant tunneling diodes: A computational study
-
084317 10.1063/1.3115423
-
Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105, 084317 (2009)
-
(2009)
J. Appl. Phys.
, vol.105
-
-
Teong, H.1
Lam, K.-T.2
Khalid, S.B.3
Liang, G.4
-
11
-
-
81555220954
-
Resonant tunneling structures based on epitaxial graphene on SiC
-
125012 10.1088/0268-1242/26/12/125012
-
Hung Nguyen, V., Bournel, A., Dollfus, P.: Resonant tunneling structures based on epitaxial graphene on SiC. Semicond. Sci. Technol. 26, 125012 (2011)
-
(2011)
Semicond. Sci. Technol.
, vol.26
-
-
Hung Nguyen, V.1
Bournel, A.2
Dollfus, P.3
-
12
-
-
79961105646
-
Transport properties of graphene quantum dots
-
155450 10.1103/PhysRevB.83.155450
-
González, J.W., Pacheco, M., Rosales, L., Orellana, P.A.: Transport properties of graphene quantum dots. Phys. Rev. B 83, 155450 (2011)
-
(2011)
Phys. Rev. B
, vol.83
-
-
González, J.W.1
Pacheco, M.2
Rosales, L.3
Orellana, P.A.4
-
13
-
-
79961181998
-
Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons
-
235426 10.1103/PhysRevB.83.235426
-
Mazzamuto, F., Hung Nguyen, V., Apertet, Y., Caër, C., Chassat, C., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011)
-
(2011)
Phys. Rev. B
, vol.83
-
-
Mazzamuto, F.1
Hung Nguyen, V.2
Apertet, Y.3
Caër, C.4
Chassat, C.5
Saint-Martin, J.6
Dollfus, P.7
-
14
-
-
84867570160
-
Resonant tunneling through double barrier graphene systems: A comparative study of Klein and non-Klein tunneling structures
-
073711 10.1063/1.4757591
-
Rodríguez-Vargas, I., Madrigal-Melchor, J., Oubram, O.: Resonant tunneling through double barrier graphene systems: a comparative study of Klein and non-Klein tunneling structures. J. Appl. Phys. 112, 073711 (2012)
-
(2012)
J. Appl. Phys.
, vol.112
-
-
Rodríguez-Vargas, I.1
Madrigal-Melchor, J.2
Oubram, O.3
-
15
-
-
84864449193
-
Resonant tunneling diode based on graphene/h-BN heterostructure
-
325104 10.1088/0022-3727/45/32/325104
-
Hung Nguyen, V., Mazzamuto, F., Bournel, A., Dollfus, P.: Resonant tunneling diode based on graphene/h-BN heterostructure. J. Phys. D, Appl. Phys. 45, 325104 (2012)
-
(2012)
J. Phys. D, Appl. Phys.
, vol.45
-
-
Hung Nguyen, V.1
Mazzamuto, F.2
Bournel, A.3
Dollfus, P.4
-
16
-
-
80053896139
-
Low-bias negative differential resistance in graphene nanoribbon superlattices
-
125453 10.1103/PhysRevB.84.125453
-
Ferreira, G.J., Leuenberger, M.N., Loss, D., Egues, J.C.: Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys. Rev. B 84, 125453 (2011)
-
(2011)
Phys. Rev. B
, vol.84
-
-
Ferreira, G.J.1
Leuenberger, M.N.2
Loss, D.3
Egues, J.C.4
-
17
-
-
54749105473
-
Electronic transport and spin-polarized effects of relativistic-like particles in graphene structures
-
063708 10.1063/1.2980045
-
Nam Do, V., Hung Nguyen, V., Dollfus, P., Bournel, A.: Electronic transport and spin-polarized effects of relativistic-like particles in graphene structures. J. Appl. Phys. 104, 063708 (2008)
-
(2008)
J. Appl. Phys.
, vol.104
-
-
Nam Do, V.1
Hung Nguyen, V.2
Dollfus, P.3
Bournel, A.4
-
18
-
-
84859135564
-
Three-terminal graphene negative differential resistance devices
-
10.1021/nn205106z
-
Wu, Y., Farmer, D.B., Zhu, W., Han, S.J., Dimitrakopoulos, C.D., Bol, A.A., Avouris, P., Lin, Y.-M.: Three-terminal graphene negative differential resistance devices. ACS Nano 6, 2610-2616 (2012)
-
(2012)
ACS Nano
, vol.6
, pp. 2610-2616
-
-
Wu, Y.1
Farmer, D.B.2
Zhu, W.3
Han, S.J.4
Dimitrakopoulos, C.D.5
Bol, A.A.6
Avouris, P.7
Lin, Y.-M.8
-
19
-
-
84858247431
-
Quantum behavior of graphene transistors near the scaling limit
-
10.1021/nl204088b
-
Wu, Y., Perebeinos, V., Lin, Y.-M., Low, T., Xia, F., Avouris, P.: Quantum behavior of graphene transistors near the scaling limit. Nano Lett. 12, 1417-1423 (2012)
-
(2012)
Nano Lett.
, vol.12
, pp. 1417-1423
-
-
Wu, Y.1
Perebeinos, V.2
Lin, Y.-M.3
Low, T.4
Xia, F.5
Avouris, P.6
-
20
-
-
84866872540
-
High field carrier transport in graphene: Insights from fast current transient
-
123505 10.1063/1.4754103
-
Majumdar, K., Kallatt, S., Bhat, N.: High field carrier transport in graphene: insights from fast current transient. Appl. Phys. Lett. 101, 123505 (2012)
-
(2012)
Appl. Phys. Lett.
, vol.101
-
-
Majumdar, K.1
Kallatt, S.2
Bhat, N.3
-
21
-
-
84866559270
-
Negative differential conductance and chiral effects in graphene field-effect transistors
-
10.1109/IWCE.2012.6242820
-
Alarcón, A., Hung Nguyen, V., Berrada, S., Saint-Martin, J., Bournel, A., Dollfus, P.: Negative differential conductance and chiral effects in graphene field-effect transistors. In: Proc. IWCE 2012 (2012). doi: 10.1109/IWCE.2012.6242820
-
(2012)
Proc. IWCE 2012
-
-
Alarcón, A.1
Hung Nguyen, V.2
Berrada, S.3
Saint-Martin, J.4
Bournel, A.5
Dollfus, P.6
-
22
-
-
79959500346
-
Large peak-to-valley ratio of negative differential conductance in graphene p-n junctions
-
093706 10.1063/1.3587570
-
Hung Nguyen, V., Bournel, A., Dollfus, P.: Large peak-to-valley ratio of negative differential conductance in graphene p-n junctions. J. Appl. Phys. 109, 093706 (2011)
-
(2011)
J. Appl. Phys.
, vol.109
-
-
Hung Nguyen, V.1
Bournel, A.2
Dollfus, P.3
-
23
-
-
80053566711
-
Negative differential resistance in mono and bilayer graphene p-n junctions
-
2837586 10.1109/LED.2011.2162392
-
Fiori, G.: Negative differential resistance in mono and bilayer graphene p-n junctions. IEEE Electron Device Lett. 32, 1334-1336 (2011)
-
(2011)
IEEE Electron Device Lett.
, vol.32
, pp. 1334-1336
-
-
Fiori, G.1
-
24
-
-
79961037627
-
Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions
-
042105 10.1063/1.3616143
-
Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel, A., Dollfus, P.: Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions. Appl. Phys. Lett. 99, 042105 (2011)
-
(2011)
Appl. Phys. Lett.
, vol.99
-
-
Hung Nguyen, V.1
Mazzamuto, F.2
Saint-Martin, J.3
Bournel, A.4
Dollfus, P.5
-
25
-
-
84855949231
-
Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect
-
065201 10.1088/0957-4484/23/6/065201
-
Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel, A., Dollfus, P.: Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect. Nanotechnology 23, 065201 (2012)
-
(2012)
Nanotechnology
, vol.23
-
-
Hung Nguyen, V.1
Mazzamuto, F.2
Saint-Martin, J.3
Bournel, A.4
Dollfus, P.5
-
26
-
-
84866320563
-
Gate-controllable negative differential conductance in graphene tunneling transistors
-
105018 10.1088/0268-1242/27/10/105018
-
Hung Nguyen, V., Niquet, Y.-M., Dollfus, P.: Gate-controllable negative differential conductance in graphene tunneling transistors. Semicond. Sci. Technol. 27, 105018 (2012)
-
(2012)
Semicond. Sci. Technol.
, vol.27
-
-
Hung Nguyen, V.1
Niquet, Y.-M.2
Dollfus, P.3
-
27
-
-
35548976235
-
Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations
-
073103 10.1103/PhysRevB.76.073103
-
Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., van den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007)
-
(2007)
Phys. Rev. B
, vol.76
-
-
Giovannetti, G.1
Khomyakov, P.A.2
Brocks, G.3
Kelly, P.J.4
Van Den Brink, J.5
-
28
-
-
83655172567
-
Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate
-
10.1021/nl202725w
-
Kharche, N., Nayak, S.K.: Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11, 5274-5278 (2011)
-
(2011)
Nano Lett.
, vol.11
, pp. 5274-5278
-
-
Kharche, N.1
Nayak, S.K.2
-
29
-
-
80053467030
-
In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures
-
133109 10.1063/1.3643899
-
Xu, Y., Guo, Z., Chen, H., Yuan, Y., Lou, J., Lin, X., Gao, H., Chen, H., Yu, B.: In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 99, 133109 (2011)
-
(2011)
Appl. Phys. Lett.
, vol.99
-
-
Xu, Y.1
Guo, Z.2
Chen, H.3
Yuan, Y.4
Lou, J.5
Lin, X.6
Gao, H.7
Chen, H.8
Yu, B.9
-
30
-
-
79952079731
-
Tunable electronic structures of graphene/boron nitride heterobilayers
-
083103 10.1063/1.3556640
-
Fan, Y., Zhao, M., Wang, Z., Zhang, X., Zhang, H.: Tunable electronic structures of graphene/boron nitride heterobilayers. Appl. Phys. Lett. 98, 083103 (2011)
-
(2011)
Appl. Phys. Lett.
, vol.98
-
-
Fan, Y.1
Zhao, M.2
Wang, Z.3
Zhang, X.4
Zhang, H.5
-
31
-
-
83455172686
-
A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride
-
232104 10.1063/1.3665405
-
Zomer, P.J., Dash, S.P., Tombros, N., van Wees, B.J.: A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011)
-
(2011)
Appl. Phys. Lett.
, vol.99
-
-
Zomer, P.J.1
Dash, S.P.2
Tombros, N.3
Van Wees, B.J.4
-
32
-
-
77749323301
-
Graphene nanomesh
-
10.1038/nnano.2010.8
-
Bai, J., Zhong, X., Jiang, S., Huang, Y., Duan, X.: Graphene nanomesh. Nat. Nanotechnol. 5, 190-194 (2010)
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 190-194
-
-
Bai, J.1
Zhong, X.2
Jiang, S.3
Huang, Y.4
Duan, X.5
-
33
-
-
84859090240
-
Energy gaps in graphene nanomeshes
-
115431 10.1103/PhysRevB.85.115431
-
Oswald, W., Wu, Z.: Energy gaps in graphene nanomeshes. Phys. Rev. B 85, 115431 (2012)
-
(2012)
Phys. Rev. B
, vol.85
-
-
Oswald, W.1
Wu, Z.2
-
34
-
-
84872056164
-
Disorder effects on energy bandgap and electronic transport in graphene-nanomesh-based structures
-
013702 10.1063/1.4772609
-
Hung Nguyen, V., Chung Nguyen, M., Viet Nguyen, H., Dollfus, P.: Disorder effects on energy bandgap and electronic transport in graphene-nanomesh-based structures. J. Appl. Phys. 113, 013702 (2012)
-
(2012)
J. Appl. Phys.
, vol.113
-
-
Hung Nguyen, V.1
Chung Nguyen, M.2
Viet Nguyen, H.3
Dollfus, P.4
-
35
-
-
84855328671
-
Inducing and optimizing magnetism in graphene nanomeshes
-
214404 10.1103/PhysRevB.84.214404
-
Yang, H.-X., Chshiev, M., Boukhvalov, D.W., Waintal, X., Roche, S.: Inducing and optimizing magnetism in graphene nanomeshes. Phys. Rev. B 84, 214404 (2011)
-
(2011)
Phys. Rev. B
, vol.84
-
-
Yang, H.-X.1
Chshiev, M.2
Boukhvalov, D.W.3
Waintal, X.4
Roche, S.5
-
36
-
-
70349313508
-
Controllable spin-dependent transport in armchair graphene nanoribbon structures
-
053710 10.1063/1.3212984
-
Hung Nguyen, V., Nam Do, V., Bournel, A., Lien Nguyen, V., Dollfus, P.: Controllable spin-dependent transport in armchair graphene nanoribbon structures. J. Appl. Phys. 106, 053710 (2009)
-
(2009)
J. Appl. Phys.
, vol.106
-
-
Hung Nguyen, V.1
Nam Do, V.2
Bournel, A.3
Lien Nguyen, V.4
Dollfus, P.5
-
37
-
-
4043108064
-
Tight-binding description of graphene
-
035412 10.1103/PhysRevB.66.035412
-
Reich, S., Maultzsch, J., Thomsen, C.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002)
-
(2002)
Phys. Rev. B
, vol.66
-
-
Reich, S.1
Maultzsch, J.2
Thomsen, C.3
-
38
-
-
59949098337
-
The electronic properties of graphene
-
10.1103/RevModPhys.81.109
-
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162 (2009)
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109-162
-
-
Castro Neto, A.H.1
Guinea, F.2
Peres, N.M.R.3
Novoselov, K.S.4
Geim, A.K.5
-
39
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
DOI 10.1103/PhysRevLett.97.216803
-
Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006) (Pubitemid 44808139)
-
(2006)
Physical Review Letters
, vol.97
, Issue.21
, pp. 216803
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
40
-
-
62549134866
-
On the possibility of tunable-gap bilayer graphene FET
-
10.1109/LED.2008.2010629
-
Fiori, G., Iannaccone, G.: On the possibility of tunable-gap bilayer graphene FET. IEEE Electron Device Lett. 30, 261-264 (2009)
-
(2009)
IEEE Electron Device Lett.
, vol.30
, pp. 261-264
-
-
Fiori, G.1
Iannaccone, G.2
-
41
-
-
26244453976
-
Towards multi-scale modeling of carbon nanotube transistors
-
10.1615/IntJMultCompEng.v2.i2.60
-
Guo, J., Datta, S., Lundstrom, M., Anantram, M.P.: Towards multi-scale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2, 257-260 (2004)
-
(2004)
Int. J. Multiscale Comput. Eng.
, vol.2
, pp. 257-260
-
-
Guo, J.1
Datta, S.2
Lundstrom, M.3
Anantram, M.P.4
-
42
-
-
0000821265
-
Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100)
-
10.1088/0305-4608/14/5/016
-
Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F, Met. Phys. 14, 1205-1215 (1984)
-
(1984)
J. Phys. F, Met. Phys.
, vol.14
, pp. 1205-1215
-
-
Lopez Sancho, M.P.1
Lopez Sancho, J.M.2
Rubio, J.3
-
43
-
-
51649112866
-
Modeling of nanoscale devices
-
10.1109/JPROC.2008.927355
-
Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96, 1511-1550 (2008)
-
(2008)
Proc. IEEE
, vol.96
, pp. 1511-1550
-
-
Anantram, M.P.1
Lundstrom, M.S.2
Nikonov, D.E.3
-
44
-
-
0012118835
-
-
Ph.D. Dissertation, Purdue University, West Lafayette, USA
-
Ren, Z.: Nanoscale MOSFETs: physics, simulation, and design. Ph.D. Dissertation, Purdue University, West Lafayette, USA (2001)
-
(2001)
Nanoscale MOSFETs: Physics, Simulation, and Design
-
-
Ren, Z.1
-
45
-
-
34547314459
-
Transport measurements across a tunable potential barrier in graphene
-
DOI 10.1103/PhysRevLett.98.236803
-
Huard, B., Sulpizio, J.A., Stander, N., Todd, K., Yang, B., Goldhaber-Gordon, D.: Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007) (Pubitemid 47139782)
-
(2007)
Physical Review Letters
, vol.98
, Issue.23
, pp. 236803
-
-
Huard, B.1
Sulpizio, J.A.2
Stander, N.3
Todd, K.4
Yang, B.5
Goldhaber-Gordon, D.6
-
46
-
-
76749092020
-
Single step, complementary doping of graphene
-
063104 10.1063/1.3308482
-
Brenner, K., Murali, R.: Single step, complementary doping of graphene. Appl. Phys. Lett. 96, 063104 (2010)
-
(2010)
Appl. Phys. Lett.
, vol.96
-
-
Brenner, K.1
Murali, R.2
-
47
-
-
84865576217
-
Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography
-
10.1021/nn301515a
-
Liu, G., Wu, Y., Lin, Y.-M., Farmer, D.B., Ott, J.A., Bruley, J., Grill, A., Avouris, P., Pfeiffer, D., Balandin, A.A., Dimitrakopoulos, C.: Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography. ACS Nano 6, 6786-6792 (2012)
-
(2012)
ACS Nano
, vol.6
, pp. 6786-6792
-
-
Liu, G.1
Wu, Y.2
Lin, Y.-M.3
Farmer, D.B.4
Ott, J.A.5
Bruley, J.6
Grill, A.7
Avouris, P.8
Pfeiffer, D.9
Balandin, A.A.10
Dimitrakopoulos, C.11
-
48
-
-
77955340828
-
Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography
-
10.1021/nl100750v
-
Liang, X., Jung, Y.-S., Wu, S., Ismach, A., Olynick, D.L., Cabrini, S., Bokor, J.: Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454-2460 (2010)
-
(2010)
Nano Lett.
, vol.10
, pp. 2454-2460
-
-
Liang, X.1
Jung, Y.-S.2
Wu, S.3
Ismach, A.4
Olynick, D.L.5
Cabrini, S.6
Bokor, J.7
-
49
-
-
78650034452
-
Low-voltage tunnel transistors for beyond CMOS logic
-
10.1109/JPROC.2010.2070470
-
Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095-2110 (2010)
-
(2010)
Proc. IEEE
, vol.98
, pp. 2095-2110
-
-
Seabaugh, A.C.1
Zhang, Q.2
-
50
-
-
36549104654
-
Bipolar tunneling field-effect transistor: A three terminal negative differential resistance device for high-speed applications
-
10.1063/1.99056
-
Leburton, J.-P., Kolodzey, J., Briggs, S.: Bipolar tunneling field-effect transistor: a three terminal negative differential resistance device for high-speed applications. Appl. Phys. Lett. 52, 1608-1610 (1988)
-
(1988)
Appl. Phys. Lett.
, vol.52
, pp. 1608-1610
-
-
Leburton, J.-P.1
Kolodzey, J.2
Briggs, S.3
-
51
-
-
0030287254
-
Negative conductance properties in extremely thin silicon-on-insulator (SOI) insulated-gate pn-junction devices (SOI surface tunnel transistors)
-
10.1143/JJAP.35.L1401
-
Omura, Y.: Negative conductance properties in extremely thin silicon-on-insulator (SOI) insulated-gate pn-junction devices (SOI surface tunnel transistors). Jpn. J. Appl. Phys. 35, L1401-L1403 (1996)
-
(1996)
Jpn. J. Appl. Phys.
, vol.35
-
-
Omura, Y.1
-
52
-
-
0033341645
-
Three-terminal silicon surface junction tunneling device for room temperature operation
-
DOI 10.1109/55.791932
-
Koga, J., Toriumi, A.: Three-terminal silicon surface junction tunneling device for room temperature operation. IEEE Electron Device Lett. 20, 529-531 (1999) (Pubitemid 30504552)
-
(1999)
IEEE Electron Device Letters
, vol.20
, Issue.10
, pp. 529-531
-
-
Koga, J.1
Toriumi, A.2
|