메뉴 건너뛰기




Volumn 8, Issue 4, 2012, Pages 285-293

FGF21: The center of a transcriptional nexus in metabolic regulation

Author keywords

Expression regulation; FGF21; Metabolism

Indexed keywords

3 HYDROXYBUTYRIC ACID; 4 (4 FLUOROPHENYL) 2 (4 HYDROXYPHENYL) 5 (4 PYRIDYL)IMIDAZOLE; 5 [2 [[2 (3 CHLOROPHENYL) 2 HYDROXYETHYL]AMINO]PROPYL] 1,3 BENZODIOXOLE 2,2 DICARBOXYLIC ACID; ACTIVATING TRANSCRIPTION FACTOR 2; CHOLESTEROL; DACTINOMYCIN; FIBRIC ACID DERIVATIVE; FIBROBLAST GROWTH FACTOR 21; GLUCOCORTICOID RECEPTOR; ISOPRENALINE; MESSENGER RNA; NORADRENALIN; NUCLEAR RESPIRATORY FACTOR 1; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PIOGLITAZONE; RETINOID RELATED ORPHAN RECEPTOR ALPHA; ROSIGLITAZONE; TRANSCRIPTION FACTOR FKHR; TROGLITAZONE; UNCOUPLING PROTEIN 1;

EID: 84862622024     PISSN: 15733998     EISSN: 18756417     Source Type: Journal    
DOI: 10.2174/157339912800840505     Document Type: Review
Times cited : (58)

References (90)
  • 1
    • 82955239833 scopus 로고    scopus 로고
    • Identifying novel transcriptional components controlling energy metabolism
    • Gupta RK, Rosen ED, Spiegelman BM. Identifying novel transcriptional components controlling energy metabolism. Cell Metab 2011; 14(6): 739-45.
    • (2011) Cell Metab , vol.14 , Issue.6 , pp. 739-745
    • Gupta, R.K.1    Rosen, E.D.2    Spiegelman, B.M.3
  • 2
    • 77955814651 scopus 로고    scopus 로고
    • Hormone-like (endocrine) Fgfs: Their evolutionary history and roles in development, metabolism, and disease
    • Itoh N, Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res 2010; 342(1): 1-11.
    • (2010) Cell Tissue Res , vol.342 , Issue.1 , pp. 1-11
    • Itoh, N.1
  • 3
    • 38549092079 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases
    • Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 2008; 22(1): 37-44.
    • (2008) BioDrugs , vol.22 , Issue.1 , pp. 37-44
    • Kharitonenkov, A.1    Shanafelt, A.B.2
  • 5
    • 77949328590 scopus 로고    scopus 로고
    • FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation
    • Wu X, Ge H, Lemon B, et al. FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem 2010; 285(8): 5165-70.
    • (2010) J Biol Chem , vol.285 , Issue.8 , pp. 5165-5170
    • Wu, X.1    Ge, H.2    Lemon, B.3
  • 6
    • 33845380799 scopus 로고    scopus 로고
    • Forced expression of hepatocytespecific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis
    • Huang X, Yu C, Jin C, et al. Forced expression of hepatocytespecific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol Carcinog 2006; 45(12): 934-42.
    • (2006) Mol Carcinog , vol.45 , Issue.12 , pp. 934-942
    • Huang, X.1    Yu, C.2    Jin, C.3
  • 7
    • 55249119775 scopus 로고    scopus 로고
    • The Klotho gene family and the endocrine fibroblast growth factors
    • Kurosu H, Kuro-o M. The Klotho gene family and the endocrine fibroblast growth factors. Curr Opin Nephrol Hypertens 2008; 17(4): 368-72.
    • (2008) Curr Opin Nephrol Hypertens , vol.17 , Issue.4 , pp. 368-372
    • Kurosu, H.1    Kuro-O, M.2
  • 8
    • 34249697012 scopus 로고    scopus 로고
    • BetaKlotho is required for metabolic activity of fibroblast growth factor 21
    • Ogawa Y, Kurosu H, Yamamoto M, et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 2007; 104(18): 7432-37.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.18 , pp. 7432-7437
    • Ogawa, Y.1    Kurosu, H.2    Yamamoto, M.3
  • 9
    • 0034333526 scopus 로고    scopus 로고
    • Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein
    • Ito S, Kinoshita S, Shiraishi N, et al. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev 2000; 98(1-2): 115-19.
    • (2000) Mech Dev , vol.98 , Issue.1-2 , pp. 115-119
    • Ito, S.1    Kinoshita, S.2    Shiraishi, N.3
  • 10
    • 70449506753 scopus 로고    scopus 로고
    • FGFs and metabolism
    • Kharitonenkov A. FGFs and metabolism. Curr Opin Pharmacol 2009; 9(6): 805-10.
    • (2009) Curr Opin Pharmacol , vol.9 , Issue.6 , pp. 805-810
    • Kharitonenkov, A.1
  • 11
    • 0034697846 scopus 로고    scopus 로고
    • Identification of a novel FGF, FGF-21, preferentially expressed in the liver
    • Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492(1): 203-6.
    • (2000) Biochim Biophys Acta , vol.1492 , Issue.1 , pp. 203-206
    • Nishimura, T.1    Nakatake, Y.2    Konishi, M.3    Itoh, N.4
  • 12
    • 37549052177 scopus 로고    scopus 로고
    • Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes
    • Wang H, Qiang L, Farmer SR. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol Cell Biol 2008; 28(1): 188-200.
    • (2008) Mol Cell Biol , vol.28 , Issue.1 , pp. 188-200
    • Wang, H.1    Qiang, L.2    Farmer, S.R.3
  • 13
    • 77249099832 scopus 로고    scopus 로고
    • Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat
    • Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 2010; 11(3): 206-12.
    • (2010) Cell Metab , vol.11 , Issue.3 , pp. 206-212
    • Hondares, E.1    Rosell, M.2    Gonzalez, F.J.3    Giralt, M.4    Iglesias, R.5    Villarroya, F.6
  • 15
    • 33750587755 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
    • Wente W, Efanov AM, Brenner M, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006; 55(9): 2470-78.
    • (2006) Diabetes , vol.55 , Issue.9 , pp. 2470-2478
    • Wente, W.1    Efanov, A.M.2    Brenner, M.3
  • 16
    • 70350093621 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice
    • Johnson CL, Weston JY, Chadi SA, et al. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 2009; 137(5): 1795-1804.
    • (2009) Gastroenterology , vol.137 , Issue.5 , pp. 1795-1804
    • Johnson, C.L.1    Weston, J.Y.2    Chadi, S.A.3
  • 17
    • 79952103793 scopus 로고    scopus 로고
    • FGF21 reloaded: Challenges of a rapidly growing field
    • Kharitonenkov A, Larsen P. FGF21 reloaded: challenges of a rapidly growing field. Trends Endocrinol Metab 2011; 22(3): 81-86.
    • (2011) Trends Endocrinol Metab , vol.22 , Issue.3 , pp. 81-86
    • Kharitonenkov, A.1    Larsen, P.2
  • 18
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
    • Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E, Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007; 5(6): 426-37.
    • (2007) Cell Metab , vol.5 , Issue.6 , pp. 426-437
    • Badman, M.K.1    Pissios, P.2    Kennedy, A.R.3    Koukos, G.4    Flier, J.S.5    Maratos-Flier, E.6
  • 19
    • 15444364763 scopus 로고    scopus 로고
    • Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae
    • Eckert-Boulet N, Regenberg B, Nielsen J. Grr1p is required for transcriptional induction of amino acid permease genes and proper transcriptional regulation of genes in carbon metabolism of Saccharomyces cerevisiae. Curr Genet 2005; 47(3): 139-49.
    • (2005) Curr Genet , vol.47 , Issue.3 , pp. 139-149
    • Eckert-Boulet, N.1    Regenberg, B.2    Nielsen, J.3
  • 20
    • 79955052166 scopus 로고    scopus 로고
    • Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis
    • Dasarathy S, Yang Y, McCullough AJ, Marczewski S, Bennett C, Kalhan SC. Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol 2011; 23(5): 382-88.
    • (2011) Eur J Gastroenterol Hepatol , vol.23 , Issue.5 , pp. 382-388
    • Dasarathy, S.1    Yang, Y.2    McCullough, A.J.3    Marczewski, S.4    Bennett, C.5    Kalhan, S.C.6
  • 21
    • 77957743736 scopus 로고    scopus 로고
    • Mitochondrial myopathy induces a starvation-like response
    • Tyynismaa H, Carroll CJ, Raimundo N, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet 2010; 19(20): 3948-58.
    • (2010) Hum Mol Genet , vol.19 , Issue.20 , pp. 3948-3958
    • Tyynismaa, H.1    Carroll, C.J.2    Raimundo, N.3
  • 22
    • 33750110683 scopus 로고    scopus 로고
    • Fuel metabolism in starvation
    • Cahill GF, Jr. Fuel metabolism in starvation. Annu Rev Nutr 2006; 26: 1-22.
    • (2006) Annu Rev Nutr , vol.26 , pp. 1-22
    • Cahill Jr., G.F.1
  • 23
  • 24
    • 77951623316 scopus 로고    scopus 로고
    • Unexpected effects of fasting on murine lipid homeostasis--transcriptomic and lipid profiling
    • Sokolovic M, Sokolovic A, van Roomen CP, et al. Unexpected effects of fasting on murine lipid homeostasis--transcriptomic and lipid profiling. J Hepatol 2010; 52(5): 737-44.
    • (2010) J Hepatol , vol.52 , Issue.5 , pp. 737-744
    • Sokolovic, M.1    Sokolovic, A.2    van Roomen, C.P.3
  • 25
    • 57049127028 scopus 로고    scopus 로고
    • The transcriptomic signature of fasting murine liver
    • Sokolovic M, Sokolovic A, Wehkamp D, et al., The transcriptomic signature of fasting murine liver. BMC Genomics 2008; 9: 528.
    • (2008) BMC Genomics , vol.9 , pp. 528
    • Sokolovic, M.1    Sokolovic, A.2    Wehkamp, D.3
  • 26
    • 79955539414 scopus 로고    scopus 로고
    • Interorgan coordination of the murine adaptive response to fasting
    • Hakvoort TB, Moerland PD, Frijters R, et al., Interorgan coordination of the murine adaptive response to fasting. J Biol Chem 2011; 286(18): 16332-343.
    • (2011) J Biol Chem , vol.286 , Issue.18 , pp. 16332-16343
    • Hakvoort, T.B.1    Moerland, P.D.2    Frijters, R.3
  • 27
    • 0034666132 scopus 로고    scopus 로고
    • Defect in peroxisome proliferator-activated receptor alphainducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting
    • Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS, Defect in peroxisome proliferator-activated receptor alphainducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 2000; 275(37): 28918-28.
    • (2000) J Biol Chem , vol.275 , Issue.37 , pp. 28918-28928
    • Hashimoto, T.1    Cook, W.S.2    Qi, C.3    Yeldandi, A.V.4    Reddy, J.K.5    Rao, M.S.6
  • 28
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
    • Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5(6): 415-25.
    • (2007) Cell Metab , vol.5 , Issue.6 , pp. 415-425
    • Inagaki, T.1    Dutchak, P.2    Zhao, G.3
  • 30
    • 48349127924 scopus 로고    scopus 로고
    • The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man
    • Galman C, Lundasen T, Kharitonenkov A, et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 2008; 8(2): 169-74.
    • (2008) Cell Metab , vol.8 , Issue.2 , pp. 169-174
    • Galman, C.1    Lundasen, T.2    Kharitonenkov, A.3
  • 31
    • 77955474305 scopus 로고    scopus 로고
    • Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
    • Dushay J, Chui PC, Gopalakrishnan GS, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010; 139(2): 456-63.
    • (2010) Gastroenterology , vol.139 , Issue.2 , pp. 456-463
    • Dushay, J.1    Chui, P.C.2    Gopalakrishnan, G.S.3
  • 32
    • 73249138414 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia
    • Hojman P, Pedersen M, Nielsen AR, et al. Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 2009; 58(12): 2797-801.
    • (2009) Diabetes , vol.58 , Issue.12 , pp. 2797-2801
    • Hojman, P.1    Pedersen, M.2    Nielsen, A.R.3
  • 33
    • 33845407972 scopus 로고    scopus 로고
    • Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling
    • Moyers JS, Shiyanova TL, Mehrbod F, et al. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J Cell Physiol 2007; 210(1): 1-6.
    • (2007) J Cell Physiol , vol.210 , Issue.1 , pp. 1-6
    • Moyers, J.S.1    Shiyanova, T.L.2    Mehrbod, F.3
  • 34
    • 47949111205 scopus 로고    scopus 로고
    • Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states
    • Muise ES, Azzolina B, Kuo DW, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol 2008; 74(2): 403-12.
    • (2008) Mol Pharmacol , vol.74 , Issue.2 , pp. 403-412
    • Muise, E.S.1    Azzolina, B.2    Kuo, D.W.3
  • 35
    • 79960334459 scopus 로고    scopus 로고
    • Thiazolidinediones are potent inducers of fibroblast growth factor 21 expression in the liver
    • Oishi K, Tomita T. Thiazolidinediones are potent inducers of fibroblast growth factor 21 expression in the liver. Biol Pharm Bull 2011; 34(7): 1120-21.
    • (2011) Biol Pharm Bull , vol.34 , Issue.7 , pp. 1120-1121
    • Oishi, K.1    Tomita, T.2
  • 36
    • 2442753376 scopus 로고    scopus 로고
    • The structure and function of the brown fat uncoupling protein UCP1: Current status
    • Rial E, Gonzalez-Barroso MM, Fleury C, Bouillaud F. The structure and function of the brown fat uncoupling protein UCP1: current status. Biofactors 1998; 8(3-4): 209-19.
    • (1998) Biofactors , vol.8 , Issue.3-4 , pp. 209-219
    • Rial, E.1    Gonzalez-Barroso, M.M.2    Fleury, C.3    Bouillaud, F.4
  • 37
    • 79953886306 scopus 로고    scopus 로고
    • Thermogenic activation induces FGF21 expression and release in brown adipose tissue
    • Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011; 286(15): 12983-990.
    • (2011) J Biol Chem , vol.286 , Issue.15 , pp. 12983-12990
    • Hondares, E.1    Iglesias, R.2    Giralt, A.3
  • 38
    • 0037251008 scopus 로고    scopus 로고
    • Cold-induced recruitment of brown adipose tissue thermogenesis
    • Klingenspor M. Cold-induced recruitment of brown adipose tissue thermogenesis. Exp Physiol 2003; 88(1): 141-48.
    • (2003) Exp Physiol , vol.88 , Issue.1 , pp. 141-148
    • Klingenspor, M.1
  • 39
    • 0029872696 scopus 로고    scopus 로고
    • Thermoregulation with age: Restoration of beta(3)-adrenergic responsiveness in brown adipose tissue by cold exposure
    • Scarpace PJ, Tse C, Matheny M. Thermoregulation with age: restoration of beta(3)-adrenergic responsiveness in brown adipose tissue by cold exposure. Proc Soc Exp Biol Med 1996; 211(4): 374-80.
    • (1996) Proc Soc Exp Biol Med , vol.211 , Issue.4 , pp. 374-380
    • Scarpace, P.J.1    Tse, C.2    Matheny, M.3
  • 40
    • 0027030305 scopus 로고
    • Importance of sympathetic nerves for the stimulatory effect of cold exposure on glucose utilization in brown adipose tissue
    • Takahashi A, Shimazu T, Maruyama Y. Importance of sympathetic nerves for the stimulatory effect of cold exposure on glucose utilization in brown adipose tissue. Jpn J Physiol 1992; 42(4): 653-64.
    • (1992) Jpn J Physiol , vol.42 , Issue.4 , pp. 653-664
    • Takahashi, A.1    Shimazu, T.2    Maruyama, Y.3
  • 42
    • 76049093949 scopus 로고    scopus 로고
    • PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis
    • Estall JL, Ruas JL, Choi CS, et al. PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis. Proc Natl Acad Sci U S A 2009; 106(52): 22510-515.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.52 , pp. 22510-22515
    • Estall, J.L.1    Ruas, J.L.2    Choi, C.S.3
  • 43
    • 50249100374 scopus 로고    scopus 로고
    • The meter of metabolism
    • Green CB, Takahashi JS, Bass J. The meter of metabolism. Cell 2008; 134(5): 728-42.
    • (2008) Cell , vol.134 , Issue.5 , pp. 728-742
    • Green, C.B.1    Takahashi, J.S.2    Bass, J.3
  • 44
    • 84855228995 scopus 로고    scopus 로고
    • Regulation of metabolism: The circadian clock dictates the time
    • Sahar S, Sassone-Corsi P. Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab 2012; 23(1): 1-8.
    • (2012) Trends Endocrinol Metab , vol.23 , Issue.1 , pp. 1-8
    • Sahar, S.1    Sassone-Corsi, P.2
  • 45
    • 40549086267 scopus 로고    scopus 로고
    • Integration of energy metabolism and the mammalian clock
    • Lin JD, Liu C, Li S. Integration of energy metabolism and the mammalian clock. Cell Cycle 2008; 7(4): 453-57.
    • (2008) Cell Cycle , vol.7 , Issue.4 , pp. 453-457
    • Lin, J.D.1    Liu, C.2    Li, S.3
  • 46
    • 34249275727 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
    • Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007; 447(7143): 477-81.
    • (2007) Nature , vol.447 , Issue.7143 , pp. 477-481
    • Liu, C.1    Li, S.2    Liu, T.3    Borjigin, J.4    Lin, J.D.5
  • 47
    • 0032589689 scopus 로고    scopus 로고
    • Activation of PPARgamma coactivator-1 through transcription factor docking
    • Puigserver P, Adelmant G, Wu Z, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 1999; 286(5443): 1368-71.
    • (1999) Science , vol.286 , Issue.5443 , pp. 1368-1371
    • Puigserver, P.1    Adelmant, G.2    Wu, Z.3
  • 48
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • Lin J, Handschin C, Spiegelman BM, Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005; 1(6): 361-70.
    • (2005) Cell Metab , vol.1 , Issue.6 , pp. 361-370
    • Lin, J.1    Handschin, C.2    Spiegelman, B.M.3
  • 49
    • 67650242167 scopus 로고    scopus 로고
    • Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression
    • Estall JL, Kahn M, Cooper MP, et al. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 2009; 58(7): 1499-1508.
    • (2009) Diabetes , vol.58 , Issue.7 , pp. 1499-1508
    • Estall, J.L.1    Kahn, M.2    Cooper, M.P.3
  • 50
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
    • Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413(6852): 131-38.
    • (2001) Nature , vol.413 , Issue.6852 , pp. 131-138
    • Yoon, J.C.1    Puigserver, P.2    Chen, G.3
  • 51
    • 2442701392 scopus 로고    scopus 로고
    • PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3
    • Koo SH, Satoh H, Herzig S, et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 2004; 10(5): 530-34.
    • (2004) Nat Med , vol.10 , Issue.5 , pp. 530-534
    • Koo, S.H.1    Satoh, H.2    Herzig, S.3
  • 52
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20(5): 1868-76.
    • (2000) Mol Cell Biol , vol.20 , Issue.5 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 53
    • 22344445394 scopus 로고    scopus 로고
    • The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene
    • Yin L, Lazar MA. The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol 2005; 19(6): 1452-59.
    • (2005) Mol Endocrinol , vol.19 , Issue.6 , pp. 1452-1459
    • Yin, L.1    Lazar, M.A.2
  • 54
    • 37249086610 scopus 로고    scopus 로고
    • Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways
    • Yin L, Wu N, Curtin JC, et al. Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 2007; 318(5857): 1786-89.
    • (2007) Science , vol.318 , Issue.5857 , pp. 1786-1789
    • Yin, L.1    Wu, N.2    Curtin, J.C.3
  • 55
    • 70349142240 scopus 로고    scopus 로고
    • Negative feedback maintenance of heme homeostasis by its receptor, Reverbalpha
    • Wu N, Yin L, Hanniman EA, Joshi S, Lazar MA, Negative feedback maintenance of heme homeostasis by its receptor, Reverbalpha. Genes Dev 2009; 23(18): 2201-9.
    • (2009) Genes Dev , vol.23 , Issue.18 , pp. 2201-2209
    • Wu, N.1    Yin, L.2    Hanniman, E.A.3    Joshi, S.4    Lazar, M.A.5
  • 56
    • 23944476164 scopus 로고    scopus 로고
    • Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha
    • Handschin C, Lin J, Rhee J, et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell 2005; 122(4): 505-15.
    • (2005) Cell , vol.122 , Issue.4 , pp. 505-515
    • Handschin, C.1    Lin, J.2    Rhee, J.3
  • 57
    • 77952334180 scopus 로고    scopus 로고
    • Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha
    • Wang Y, Solt LA, Burris TP. Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J Biol Chem 2010; 285(21): 15668-673.
    • (2010) J Biol Chem , vol.285 , Issue.21 , pp. 15668-15673
    • Wang, Y.1    Solt, L.A.2    Burris, T.P.3
  • 58
    • 80052036925 scopus 로고    scopus 로고
    • Time-imposed daily restricted feeding induces rhythmic expression of Fgf21 in white adipose tissue of mice
    • Oishi K, Konishi M, Murata Y, Itoh N. Time-imposed daily restricted feeding induces rhythmic expression of Fgf21 in white adipose tissue of mice. Biochem Biophys Res Commun 2011; 412(2): 396-400.
    • (2011) Biochem Biophys Res Commun , vol.412 , Issue.2 , pp. 396-400
    • Oishi, K.1    Konishi, M.2    Murata, Y.3    Itoh, N.4
  • 59
    • 53949110053 scopus 로고    scopus 로고
    • Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver
    • Oishi K, Uchida D, Ishida N. Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Lett 2008; 582(25-26): 3639-642.
    • (2008) FEBS Lett , vol.582 , Issue.25-26 , pp. 3639-3642
    • Oishi, K.1    Uchida, D.2    Ishida, N.3
  • 60
    • 78649687209 scopus 로고    scopus 로고
    • Circadian integration of metabolism and energetics
    • Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010; 330: 6009: 1349-54.
    • (2010) Science , vol.330 , Issue.6009 , pp. 1349-1354
    • Bass, J.1    Takahashi, J.S.2
  • 61
    • 20844461135 scopus 로고    scopus 로고
    • Obesity and metabolic syndrome in circadian Clock mutant mice
    • Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005; 308(5724): 1043-1045.
    • (2005) Science , vol.308 , Issue.5724 , pp. 1043-1045
    • Turek, F.W.1    Joshu, C.2    Kohsaka, A.3
  • 62
    • 80052519903 scopus 로고    scopus 로고
    • Plasma FGF21 displays a circadian rhythm during a 72-h fast in healthy female volunteers
    • Andersen B, Beck-Nielsen H, Hojlund K. Plasma FGF21 displays a circadian rhythm during a 72-h fast in healthy female volunteers. Clin Endocrinol (Oxf) 2011; 75(4): 514-19.
    • (2011) Clin Endocrinol (Oxf) , vol.75 , Issue.4 , pp. 514-519
    • Andersen, B.1    Beck-Nielsen, H.2    Hojlund, K.3
  • 63
    • 75149117017 scopus 로고    scopus 로고
    • Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice
    • Leiser SF, Miller RA. Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 2010; 30(3): 871-84.
    • (2010) Mol Cell Biol , vol.30 , Issue.3 , pp. 871-884
    • Leiser, S.F.1    Miller, R.A.2
  • 64
    • 77649275621 scopus 로고    scopus 로고
    • ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function
    • Pi J, Zhang Q, Fu J, et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol 2010; 244(1): 77-83.
    • (2010) Toxicol Appl Pharmacol , vol.244 , Issue.1 , pp. 77-83
    • Pi, J.1    Zhang, Q.2    Fu, J.3
  • 65
    • 28844469924 scopus 로고    scopus 로고
    • Molecular mechanism of nrf2 activation by oxidative stress
    • Kang KW, Lee SJ, Kim SG. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal 2005; 7(11-12): 1664-73.
    • (2005) Antioxid Redox Signal , vol.7 , Issue.11-12 , pp. 1664-1673
    • Kang, K.W.1    Lee, S.J.2    Kim, S.G.3
  • 66
    • 4544294365 scopus 로고    scopus 로고
    • The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase
    • Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004; 24(19): 8477-86.
    • (2004) Mol Cell Biol , vol.24 , Issue.19 , pp. 8477-8486
    • Cullinan, S.B.1    Gordan, J.D.2    Jin, J.3    Harper, J.W.4    Diehl, J.A.5
  • 67
    • 7244253081 scopus 로고    scopus 로고
    • Nrf2-Keap1 defines a physiologically important stress response mechanism
    • Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004; 10(11): 549-57.
    • (2004) Trends Mol Med , vol.10 , Issue.11 , pp. 549-557
    • Motohashi, H.1    Yamamoto, M.2
  • 68
    • 3142570440 scopus 로고    scopus 로고
    • The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress
    • Nguyen T, Yang CS, Pickett CB. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 2004; 37(4): 433-41.
    • (2004) Free Radic Biol Med , vol.37 , Issue.4 , pp. 433-441
    • Nguyen, T.1    Yang, C.S.2    Pickett, C.B.3
  • 69
    • 42449111723 scopus 로고    scopus 로고
    • NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a highfat diet
    • Tanaka Y, Aleksunes LM, Yeager RL, et al. NF-E2-related factor 2 inhibits lipid accumulation and oxidative stress in mice fed a highfat diet. J Pharmacol Exp Ther 2008; 325(2): 655-64.
    • (2008) J Pharmacol Exp Ther , vol.325 , Issue.2 , pp. 655-664
    • Tanaka, Y.1    Aleksunes, L.M.2    Yeager, R.L.3
  • 70
    • 66749112860 scopus 로고    scopus 로고
    • Genetic versus chemoprotective activation of Nrf2 signaling: Overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice
    • Yates MS, Tran QT, Dolan PM, et al. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis 2009; 30(6): 1024-31.
    • (2009) Carcinogenesis , vol.30 , Issue.6 , pp. 1024-1031
    • Yates, M.S.1    Tran, Q.T.2    Dolan, P.M.3
  • 71
    • 80053389113 scopus 로고    scopus 로고
    • Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice
    • Chartoumpekis DV, Ziros PG, Psyrogiannis AI, et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes 2011; 60(10): 2465-73.
    • (2011) Diabetes , vol.60 , Issue.10 , pp. 2465-2473
    • Chartoumpekis, D.V.1    Ziros, P.G.2    Psyrogiannis, A.I.3
  • 72
    • 77955845526 scopus 로고    scopus 로고
    • Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet
    • Milder JB, Liang LP, Patel M. Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol Dis 2010; 40(1): 238-44.
    • (2010) Neurobiol Dis , vol.40 , Issue.1 , pp. 238-244
    • Milder, J.B.1    Liang, L.P.2    Patel, M.3
  • 73
    • 77952952816 scopus 로고    scopus 로고
    • Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine-and choline-deficient diet
    • Zhang YK, Yeager RL, Tanaka Y, Klaassen CD. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine-and choline-deficient diet. Toxicol Appl Pharmacol 2010; 245(3): 326-34.
    • (2010) Toxicol Appl Pharmacol , vol.245 , Issue.3 , pp. 326-334
    • Zhang, Y.K.1    Yeager, R.L.2    Tanaka, Y.3    Klaassen, C.D.4
  • 74
    • 0035979214 scopus 로고    scopus 로고
    • A glucoseresponsive transcription factor that regulates carbohydrate metabolism in the liver
    • Yamashita H, Takenoshita M, Sakurai M, et al. A glucoseresponsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 2001; 98(16): 9116-21.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , Issue.16 , pp. 9116-9121
    • Yamashita, H.1    Takenoshita, M.2    Sakurai, M.3
  • 75
    • 0035923516 scopus 로고    scopus 로고
    • Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein
    • Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 2001; 98(24): 13710-715.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , Issue.24 , pp. 13710-13715
    • Kawaguchi, T.1    Takenoshita, M.2    Kabashima, T.3    Uyeda, K.4
  • 76
    • 51449106076 scopus 로고    scopus 로고
    • ChREBP: A glucose-activated transcription factor involved in the development of metabolic syndrome
    • Iizuka K, Horikawa Y. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr J 2008; 55(4): 617-24.
    • (2008) Endocr J , vol.55 , Issue.4 , pp. 617-624
    • Iizuka, K.1    Horikawa, Y.2
  • 77
    • 69249238074 scopus 로고    scopus 로고
    • Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes
    • Iizuka K, Takeda J, Horikawa Y. Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett 2009; 583(17): 2882-86.
    • (2009) FEBS Lett , vol.583 , Issue.17 , pp. 2882-2886
    • Iizuka, K.1    Takeda, J.2    Horikawa, Y.3
  • 78
    • 71949094496 scopus 로고    scopus 로고
    • Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: Striking effects on fibroblast growth factor-21 induction
    • Sanchez J, Palou A, Pico C. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology 2009; 150(12): 5341-50.
    • (2009) Endocrinology , vol.150 , Issue.12 , pp. 5341-5350
    • Sanchez, J.1    Palou, A.2    Pico, C.3
  • 79
    • 0037324340 scopus 로고    scopus 로고
    • Reciprocal regulation of inflammation and lipid metabolism by liver X receptors
    • Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003; 9(2): 213-19.
    • (2003) Nat Med , vol.9 , Issue.2 , pp. 213-219
    • Joseph, S.B.1    Castrillo, A.2    Laffitte, B.A.3    Mangelsdorf, D.J.4    Tontonoz, P.5
  • 80
    • 0013199471 scopus 로고    scopus 로고
    • Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha
    • Peet DJ, Turley SD, Ma W, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998; 93(5): 693-704.
    • (1998) Cell , vol.93 , Issue.5 , pp. 693-704
    • Peet, D.J.1    Turley, S.D.2    Ma, W.3
  • 81
    • 0035976638 scopus 로고    scopus 로고
    • Nuclear receptors and lipid physiology: Opening the X-files
    • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science 2001; 294(5548): 1866-70.
    • (2001) Science , vol.294 , Issue.5548 , pp. 1866-1870
    • Chawla, A.1    Repa, J.J.2    Evans, R.M.3    Mangelsdorf, D.J.4
  • 82
    • 71049156621 scopus 로고    scopus 로고
    • Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development
    • Angelovici R, Fait A, Zhu X, et al. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. Plant Physiol 2009; 151(4): 2058-72.
    • (2009) Plant Physiol , vol.151 , Issue.4 , pp. 2058-2072
    • Angelovici, R.1    Fait, A.2    Zhu, X.3
  • 83
    • 24144490445 scopus 로고    scopus 로고
    • LXRs regulate the balance between fat storage and oxidation
    • Kalaany NY, Gauthier KC, Zavacki AM, et al. LXRs regulate the balance between fat storage and oxidation. Cell Metab 2005; 1(4): 231-44.
    • (2005) Cell Metab , vol.1 , Issue.4 , pp. 231-244
    • Kalaany, N.Y.1    Gauthier, K.C.2    Zavacki, A.M.3
  • 84
    • 0034669171 scopus 로고    scopus 로고
    • Role of LXRs in control of lipogenesis
    • Schultz JR, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis. Genes Dev 2000; 14(22): 2831-38.
    • (2000) Genes Dev , vol.14 , Issue.22 , pp. 2831-2838
    • Schultz, J.R.1    Tu, H.2    Luk, A.3
  • 85
    • 34447622686 scopus 로고    scopus 로고
    • Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages
    • Fontaine C, Rigamonti E, Nohara A, et al. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages. Circ Res 2007; 101(1): 40-49.
    • (2007) Circ Res , vol.101 , Issue.1 , pp. 40-49
    • Fontaine, C.1    Rigamonti, E.2    Nohara, A.3
  • 86
    • 84862323517 scopus 로고    scopus 로고
    • Liver X receptor negatively regulates fibroblast growth factor 21 in the fatty liver induced by cholesterol-enriched diet
    • Uebanso T, Taketani Y, Yamamoto H, et al. Liver X receptor negatively regulates fibroblast growth factor 21 in the fatty liver induced by cholesterol-enriched diet. J Nutr Biochem 2011.
    • (2011) J Nutr Biochem
    • Uebanso, T.1    Taketani, Y.2    Yamamoto, H.3
  • 87
    • 33947192418 scopus 로고    scopus 로고
    • 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism
    • Barthel TK, Mathern DR, Whitfield GK, et al. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol 2007; 103(3-5): 381-88.
    • (2007) J Steroid Biochem Mol Biol , vol.103 , Issue.3-5 , pp. 381-388
    • Barthel, T.K.1    Mathern, D.R.2    Whitfield, G.K.3
  • 88
    • 77953708142 scopus 로고    scopus 로고
    • The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity
    • Popescu IR, Helleboid-Chapman A, Lucas A, et al. The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity. FEBS Lett 2010; 584(13): 2845-51.
    • (2010) FEBS Lett , vol.584 , Issue.13 , pp. 2845-2851
    • Popescu, I.R.1    Helleboid-Chapman, A.2    Lucas, A.3
  • 89
    • 37349010675 scopus 로고    scopus 로고
    • FXR signaling in metabolic disease
    • Zhang Y, Edwards PA. FXR signaling in metabolic disease. FEBS Lett 2008; 582(1): 10-18.
    • (2008) FEBS Lett , vol.582 , Issue.1 , pp. 10-18
    • Zhang, Y.1    Edwards, P.A.2
  • 90
    • 32244447570 scopus 로고    scopus 로고
    • Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice
    • Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006; 103(4): 1006-11.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , Issue.4 , pp. 1006-1011
    • Zhang, Y.1    Lee, F.Y.2    Barrera, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.