메뉴 건너뛰기




Volumn 62, Issue 3, 2013, Pages 837-844

Decreased transcription of ChREBP-a/b isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes associations with insulin resistance and hyperglycemia

Author keywords

[No Author keywords available]

Indexed keywords

BINDING PROTEIN; BIOLOGICAL MARKER; CARBOHYDRATE RESPONSIVE ELEMENT BINDING PROTEIN; GLUCOSE; UNCLASSIFIED DRUG;

EID: 84874428179     PISSN: 00121797     EISSN: 1939327X     Source Type: Journal    
DOI: 10.2337/db12-0889     Document Type: Article
Times cited : (91)

References (42)
  • 1
    • 0033817811 scopus 로고    scopus 로고
    • Failure of adipocyte differentiation causes type II diabetes mellitus?
    • Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 2000;26:13
    • (2000) Nat Genet , vol.26 , pp. 13
    • Danforth Jr., E.1
  • 2
    • 0033927667 scopus 로고    scopus 로고
    • Cellular mechanisms of insulin resistance
    • Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106:171-176
    • (2000) J Clin Invest , vol.106 , pp. 171-176
    • Shulman, G.I.1
  • 3
    • 77956383646 scopus 로고    scopus 로고
    • Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: Association with insulin resistance and hepatic steatosis
    • Kursawe R, Eszlinger M, Narayan D, et al. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: Association with insulin resistance and hepatic steatosis. Diabetes 2010;59:2288-2296
    • (2010) Diabetes , vol.59 , pp. 2288-2296
    • Kursawe, R.1    Eszlinger, M.2    Narayan, D.3
  • 4
    • 84859921736 scopus 로고    scopus 로고
    • A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
    • Herman MA, Peroni OD, Villoria J, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012;484:333-338
    • (2012) Nature , vol.484 , pp. 333-338
    • Herman, M.A.1    Peroni, O.D.2    Villoria, J.3
  • 5
    • 51349156218 scopus 로고    scopus 로고
    • Insulin sensitivity: Modulation by nutrients and inflammation
    • Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: Modulation by nutrients and inflammation. J Clin Invest 2008;118:2992-3002
    • (2008) J Clin Invest , vol.118 , pp. 2992-3002
    • Schenk, S.1    Saberi, M.2    Olefsky, J.M.3
  • 6
    • 0035825643 scopus 로고    scopus 로고
    • Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver
    • Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001;409:729-733
    • (2001) Nature , vol.409 , pp. 729-733
    • Abel, E.D.1    Peroni, O.2    Kim, J.K.3
  • 7
    • 0033595121 scopus 로고    scopus 로고
    • Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus
    • Shepherd PR, Kahn BB. Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N Engl J Med 1999;341:248-257
    • (1999) N Engl J Med , vol.341 , pp. 248-257
    • Shepherd, P.R.1    Kahn, B.B.2
  • 8
    • 0025910841 scopus 로고
    • Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity
    • Garvey WT, Maianu L, Huecksteadt TP, Birnbaum MJ, Molina JM, Ciaraldi TP. Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J Clin Invest 1991;87:1072-1081
    • (1991) J Clin Invest , vol.87 , pp. 1072-1081
    • Garvey, W.T.1    Maianu, L.2    Huecksteadt, T.P.3    Birnbaum, M.J.4    Molina, J.M.5    Ciaraldi, T.P.6
  • 9
    • 43249108322 scopus 로고    scopus 로고
    • Metabolic abnormalities underlying the different prediabetic phenotypes in obese adolescents
    • Cali AM, Bonadonna RC, Trombetta M, Weiss R, Caprio S. Metabolic abnormalities underlying the different prediabetic phenotypes in obese adolescents. J Clin Endocrinol Metab 2008;93:1767-1773
    • (2008) J Clin Endocrinol Metab , vol.93 , pp. 1767-1773
    • Cali, A.M.1    Bonadonna, R.C.2    Trombetta, M.3    Weiss, R.4    Caprio, S.5
  • 10
    • 0032821965 scopus 로고    scopus 로고
    • Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp
    • Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462-1470
    • (1999) Diabetes Care , vol.22 , pp. 1462-1470
    • Matsuda, M.1    DeFronzo, R.A.2
  • 11
    • 0141763847 scopus 로고    scopus 로고
    • Prediabetes in obese youth: A syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning
    • Weiss R, Dufour S, Taksali SE, et al. Prediabetes in obese youth: A syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 2003;362:951-957
    • (2003) Lancet , vol.362 , pp. 951-957
    • Weiss, R.1    Dufour, S.2    Taksali, S.E.3
  • 12
    • 33751519769 scopus 로고    scopus 로고
    • Alanine aminotransferase levels and fatty liver in childhood obesity: Associations with insulin resistance, adiponectin, and visceral fat
    • Burgert TS, Taksali SE, Dziura J, et al. Alanine aminotransferase levels and fatty liver in childhood obesity: Associations with insulin resistance, adiponectin, and visceral fat. J Clin Endocrinol Metab 2006;91:4287-4294
    • (2006) J Clin Endocrinol Metab , vol.91 , pp. 4287-4294
    • Burgert, T.S.1    Taksali, S.E.2    Dziura, J.3
  • 13
    • 68949136755 scopus 로고    scopus 로고
    • Glucose dysregulation and hepatic steatosis in obese adolescents: Is there a link?
    • Cali AM, De Oliveira AM, Kim H, et al. Glucose dysregulation and hepatic steatosis in obese adolescents: Is there a link? Hepatology 2009;49:1896-1903
    • (2009) Hepatology , vol.49 , pp. 1896-1903
    • Cali, A.M.1    De Oliveira, A.M.2    Kim, H.3
  • 14
    • 40449095940 scopus 로고    scopus 로고
    • Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL
    • Kim H, Taksali SE, Dufour S, et al. Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL. Magn Reson Med 2008;59:521-527
    • (2008) Magn Reson Med , vol.59 , pp. 521-527
    • Kim, H.1    Taksali, S.E.2    Dufour, S.3
  • 15
    • 33947547651 scopus 로고    scopus 로고
    • MRI and ultrasound for hepatic fat quantification:relationships to clinical and metabolic characteristics of pediatric nonalcoholic fatty liver disease
    • Pacifico L, Celestre M, Anania C, Paolantonio P, Chiesa C, Laghi A. MRI and ultrasound for hepatic fat quantification:relationships to clinical and metabolic characteristics of pediatric nonalcoholic fatty liver disease. Acta Paediatr 2007;96:542-547
    • (2007) Acta Paediatr , vol.96 , pp. 542-547
    • Pacifico, L.1    Celestre, M.2    Anania, C.3    Paolantonio, P.4    Chiesa, C.5    Laghi, A.6
  • 16
    • 33749064375 scopus 로고    scopus 로고
    • Adiponutrin gene is regulated by insulin and glucose in human adipose tissue
    • Moldes M, Beauregard G, Faraj M, et al. Adiponutrin gene is regulated by insulin and glucose in human adipose tissue. Eur J Endocrinol 2006;155: 461-468
    • (2006) Eur J Endocrinol , vol.155 , pp. 461-468
    • Moldes, M.1    Beauregard, G.2    Faraj, M.3
  • 17
    • 84860528183 scopus 로고    scopus 로고
    • PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis
    • Perttilä J, Huaman-Samanez C, Caron S, et al. PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. Am J Physiol Endocrinol Metab 2012;302:E1063-E1069
    • (2012) Am J Physiol Endocrinol Metab , vol.302
    • Perttilä, J.1    Huaman-Samanez, C.2    Caron, S.3
  • 18
    • 27844566646 scopus 로고    scopus 로고
    • Glucose as a regulator of eukaryotic gene transcription
    • Towle HC. Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab 2005;16:489-494
    • (2005) Trends Endocrinol Metab , vol.16 , pp. 489-494
    • Towle, H.C.1
  • 19
    • 17744367054 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis
    • Minn AH, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 2005;146:2397-2405
    • (2005) Endocrinology , vol.146 , pp. 2397-2405
    • Minn, A.H.1    Hafele, C.2    Shalev, A.3
  • 20
    • 79955380872 scopus 로고    scopus 로고
    • Regulator of G protein signaling (RGS16) inhibits hepatic fatty acid oxidation in a carbohydrate response element-binding protein (ChREBP)-dependent manner
    • Pashkov V, Huang J, Parameswara VK, et al. Regulator of G protein signaling (RGS16) inhibits hepatic fatty acid oxidation in a carbohydrate response element-binding protein (ChREBP)-dependent manner. J Biol Chem 2011;286:15116-15125
    • (2011) J Biol Chem , vol.286 , pp. 15116-15125
    • Pashkov, V.1    Huang, J.2    Parameswara, V.K.3
  • 21
    • 84861809881 scopus 로고    scopus 로고
    • The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
    • Benhamed F, Denechaud PD, Lemoine M, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012;122:2176-2194
    • (2012) J Clin Invest , vol.122 , pp. 2176-2194
    • Benhamed, F.1    Denechaud, P.D.2    Lemoine, M.3
  • 22
    • 0036079637 scopus 로고    scopus 로고
    • Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity
    • Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab 2002;282:E46-E51
    • (2002) Am J Physiol Endocrinol Metab , vol.282
    • Diraison, F.1    Dusserre, E.2    Vidal, H.3    Sothier, M.4    Beylot, M.5
  • 23
    • 84860419950 scopus 로고    scopus 로고
    • ChREBP Expression In The Liver Adipose Tissue And Differentiated Preadipocytes In Human Obesity
    • Hurtado del Pozo C, Vesperinas-García G, Rubio MA, et al. ChREBP expression in the liver, adipose tissue and differentiated preadipocytes in human obesity. Biochim Biophys Acta 2011;1811:1194-1200
    • (2011) Biochim Biophys Acta , vol.1811 , pp. 1194-1200
    • Hurtado Del Pozo, C.1    Vesperinas-García, G.2    Rubio, M.A.3
  • 24
    • 0028085233 scopus 로고
    • Regulation of lipogenic enzyme gene expression by nutrients and hormones
    • Girard J, Perdereau D, Foufelle F, Prip-Buus C, Ferré P. Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J 1994;8:36-42
    • (1994) FASEB J , vol.8 , pp. 36-42
    • Girard, J.1    Perdereau, D.2    Foufelle, F.3    Prip-Buus, C.4    Ferré, P.5
  • 25
    • 0026783692 scopus 로고
    • Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate
    • Foufelle F, Gouhot B, Pégorier JP, Perdereau D, Girard J, Ferré P. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J Biol Chem 1992;267:20543-20546
    • (1992) J Biol Chem , vol.267 , pp. 20543-20546
    • Foufelle, F.1    Gouhot, B.2    Pégorier, J.P.3    Perdereau, D.4    Girard, J.5    Ferré, P.6
  • 26
    • 0032732347 scopus 로고    scopus 로고
    • Regulation of gene expression by glucose
    • Ferré P. Regulation of gene expression by glucose. Proc Nutr Soc 1999;58: 621-623
    • (1999) Proc Nutr Soc , vol.58 , pp. 621-623
    • Ferré, P.1
  • 27
    • 33749370739 scopus 로고    scopus 로고
    • Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
    • Dentin R, Benhamed F, Hainault I, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006;55:2159-2170
    • (2006) Diabetes , vol.55 , pp. 2159-2170
    • Dentin, R.1    Benhamed, F.2    Hainault, I.3
  • 28
    • 34347235098 scopus 로고    scopus 로고
    • Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver
    • Monetti M, Levin MC, Watt MJ, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 2007;6:69-78
    • (2007) Cell Metab , vol.6 , pp. 69-78
    • Monetti, M.1    Levin, M.C.2    Watt, M.J.3
  • 29
    • 36749082168 scopus 로고    scopus 로고
    • Mitochondrial dysfunction due to longchain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance
    • Zhang D, Liu ZX, Choi CS, et al. Mitochondrial dysfunction due to longchain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci USA 2007;104:17075-17080
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 17075-17080
    • Zhang, D.1    Liu, Z.X.2    Choi, C.S.3
  • 30
    • 27244440736 scopus 로고    scopus 로고
    • Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice
    • Neschen S, Morino K, Hammond LE, et al. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab 2005;2:55-65
    • (2005) Cell Metab , vol.2 , pp. 55-65
    • Neschen, S.1    Morino, K.2    Hammond, L.E.3
  • 31
    • 33644654777 scopus 로고    scopus 로고
    • Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2
    • Savage DB, Choi CS, Samuel VT, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest 2006;116:817-824
    • (2006) J Clin Invest , vol.116 , pp. 817-824
    • Savage, D.B.1    Choi, C.S.2    Samuel, V.T.3
  • 32
    • 33847404482 scopus 로고    scopus 로고
    • Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease
    • Samuel VT, Liu ZX, Wang A, et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007;117:739-745
    • (2007) J Clin Invest , vol.117 , pp. 739-745
    • Samuel, V.T.1    Liu, Z.X.2    Wang, A.3
  • 33
    • 3543029821 scopus 로고    scopus 로고
    • Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease
    • Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 2004;279:32345-32353
    • (2004) J Biol Chem , vol.279 , pp. 32345-32353
    • Samuel, V.T.1    Liu, Z.X.2    Qu, X.3
  • 34
    • 80053627289 scopus 로고    scopus 로고
    • Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
    • Kumashiro N, Erion DM, Zhang D, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA 2011; 108:16381-16385
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 16381-16385
    • Kumashiro, N.1    Erion, D.M.2    Zhang, D.3
  • 35
    • 75449094816 scopus 로고    scopus 로고
    • Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications
    • Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology 2010; 51:679-689
    • (2010) Hepatology , vol.51 , pp. 679-689
    • Fabbrini, E.1    Sullivan, S.2    Klein, S.3
  • 36
    • 0035029812 scopus 로고    scopus 로고
    • Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes
    • Ducluzeau PH, Perretti N, Laville M, et al. Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. Diabetes 2001;50:1134-1142
    • (2001) Diabetes , vol.50 , pp. 1134-1142
    • Ducluzeau, P.H.1    Perretti, N.2    Laville, M.3
  • 37
    • 2942653172 scopus 로고    scopus 로고
    • Adiponutrin: A new gene regulated by energy balance in human adipose tissue
    • Liu YM, Moldes M, Bastard JP, et al. Adiponutrin: A new gene regulated by energy balance in human adipose tissue. J Clin Endocrinol Metab 2004;89: 2684-2689
    • (2004) J Clin Endocrinol Metab , vol.89 , pp. 2684-2689
    • Liu, Y.M.1    Moldes, M.2    Bastard, J.P.3
  • 38
    • 0035823621 scopus 로고    scopus 로고
    • Adiponutrin, a transmembrane protein corresponding to a novel dietary-and obesity-linked mRNA specifically expressed in the adipose lineage
    • Baulande S, Lasnier F, Lucas M, Pairault J. Adiponutrin, a transmembrane protein corresponding to a novel dietary-and obesity-linked mRNA specifically expressed in the adipose lineage. J Biol Chem 2001;276:33336-33344
    • (2001) J Biol Chem , vol.276 , pp. 33336-33344
    • Baulande, S.1    Lasnier, F.2    Lucas, M.3    Pairault, J.4
  • 39
    • 0030007427 scopus 로고    scopus 로고
    • ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism
    • Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996; 10:1096-1107
    • (1996) Genes Dev , vol.10 , pp. 1096-1107
    • Kim, J.B.1    Spiegelman, B.M.2
  • 40
    • 0027648820 scopus 로고
    • ADD1: A novel helix-loophelix transcription factor associated with adipocyte determination and differentiation
    • Tontonoz P, Kim JB, Graves RA, Spiegelman BM. ADD1: A novel helix-loophelix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 1993;13:4753-4759
    • (1993) Mol Cell Biol , vol.13 , pp. 4753-4759
    • Tontonoz, P.1    Kim, J.B.2    Graves, R.A.3    Spiegelman, B.M.4
  • 41
    • 0030874014 scopus 로고    scopus 로고
    • Peroxovanadate and insulin action in adipocytes from NIDDM patients. Evidence against a primary defect in tyrosine phosphorylation
    • Yu ZW, Jansson PA, Posner BI, Smith U, Eriksson JW. Peroxovanadate and insulin action in adipocytes from NIDDM patients. Evidence against a primary defect in tyrosine phosphorylation. Diabetologia 1997;40:1197-1203
    • (1997) Diabetologia , vol.40 , pp. 1197-1203
    • Yu, Z.W.1    Jansson, P.A.2    Posner, B.I.3    Smith, U.4    Eriksson, J.W.5
  • 42
    • 77951665927 scopus 로고    scopus 로고
    • Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes
    • Samaras K, Botelho NK, Chisholm DJ, Lord RV. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity (Silver Spring) 2010;18:884-889
    • (2010) Obesity (Silver Spring) , vol.18 , pp. 884-889
    • Samaras, K.1    Botelho, N.K.2    Chisholm, D.J.3    Lord, R.V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.