메뉴 건너뛰기




Volumn 19, Issue 1, 2009, Pages 29-41

Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information

Author keywords

[No Author keywords available]

Indexed keywords

CHROMATIN ASSEMBLY FACTOR 1; DNA; HISTONE;

EID: 58149522909     PISSN: 09628924     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tcb.2008.10.002     Document Type: Review
Times cited : (126)

References (136)
  • 1
    • 0016221697 scopus 로고
    • Chromatin structure: a repeating unit of histones and DNA
    • Kornberg R.D. Chromatin structure: a repeating unit of histones and DNA. Science 184 (1974) 868-871
    • (1974) Science , vol.184 , pp. 868-871
    • Kornberg, R.D.1
  • 2
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 A resolution
    • Luger K., et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389 (1997) 251-260
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1
  • 3
    • 34548433964 scopus 로고    scopus 로고
    • Marking histone H3 variants: how, when and why?
    • Loyola A., and Almouzni G. Marking histone H3 variants: how, when and why?. Trends Biochem. Sci. 32 (2007) 425-433
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 425-433
    • Loyola, A.1    Almouzni, G.2
  • 4
    • 33847076248 scopus 로고    scopus 로고
    • Chromatin challenges during DNA replication and repair
    • Groth A., et al. Chromatin challenges during DNA replication and repair. Cell 128 (2007) 721-733
    • (2007) Cell , vol.128 , pp. 721-733
    • Groth, A.1
  • 5
    • 33745790132 scopus 로고    scopus 로고
    • Chromatin remodelling: the industrial revolution of DNA around histones
    • Saha A., et al. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7 (2006) 437-447
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 437-447
    • Saha, A.1
  • 6
    • 35848964068 scopus 로고    scopus 로고
    • Histone chaperones: an escort network regulating histone traffic
    • De Koning L., et al. Histone chaperones: an escort network regulating histone traffic. Nat. Struct. Mol. Biol. 14 (2007) 997-1007
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 997-1007
    • De Koning, L.1
  • 7
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T. Chromatin modifications and their function. Cell 128 (2007) 693-705
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 8
    • 0036898897 scopus 로고    scopus 로고
    • Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences
    • Marzluff W.F., and Duronio R.J. Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr. Opin. Cell Biol. 14 (2002) 692-699
    • (2002) Curr. Opin. Cell Biol. , vol.14 , pp. 692-699
    • Marzluff, W.F.1    Duronio, R.J.2
  • 9
    • 21244491441 scopus 로고    scopus 로고
    • Regulation of histone synthesis and nucleosome assembly
    • Gunjan A., et al. Regulation of histone synthesis and nucleosome assembly. Biochimie 87 (2005) 625-635
    • (2005) Biochimie , vol.87 , pp. 625-635
    • Gunjan, A.1
  • 10
    • 37549049820 scopus 로고    scopus 로고
    • Regulation of replication fork progression through histone supply and demand
    • Groth A., et al. Regulation of replication fork progression through histone supply and demand. Science 318 (2007) 1928-1931
    • (2007) Science , vol.318 , pp. 1928-1931
    • Groth, A.1
  • 11
    • 0344688414 scopus 로고    scopus 로고
    • A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae
    • Gunjan A., and Verreault A. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115 (2003) 537-549
    • (2003) Cell , vol.115 , pp. 537-549
    • Gunjan, A.1    Verreault, A.2
  • 12
    • 0022482135 scopus 로고
    • Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission
    • Meeks-Wagner D., and Hartwell L.H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44 (1986) 43-52
    • (1986) Cell , vol.44 , pp. 43-52
    • Meeks-Wagner, D.1    Hartwell, L.H.2
  • 13
    • 0017617464 scopus 로고
    • Assembly of SV40 chromatin in a cell-free system from Xenopus eggs
    • Laskey R.A., et al. Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10 (1977) 237-243
    • (1977) Cell , vol.10 , pp. 237-243
    • Laskey, R.A.1
  • 14
    • 0022519177 scopus 로고
    • Chromatin assembly during SV40 DNA replication in vitro
    • Stillman B. Chromatin assembly during SV40 DNA replication in vitro. Cell 45 (1986) 555-565
    • (1986) Cell , vol.45 , pp. 555-565
    • Stillman, B.1
  • 15
    • 0024372060 scopus 로고
    • Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro
    • Smith S., and Stillman B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58 (1989) 15-25
    • (1989) Cell , vol.58 , pp. 15-25
    • Smith, S.1    Stillman, B.2
  • 16
    • 0029011919 scopus 로고
    • The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication
    • Kaufman P.D., et al. The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81 (1995) 1105-1114
    • (1995) Cell , vol.81 , pp. 1105-1114
    • Kaufman, P.D.1
  • 17
    • 0030272047 scopus 로고    scopus 로고
    • Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4
    • Verreault A., et al. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87 (1996) 95-104
    • (1996) Cell , vol.87 , pp. 95-104
    • Verreault, A.1
  • 18
    • 44149123117 scopus 로고    scopus 로고
    • Structural basis of histone H4 recognition by p55
    • Song J.J., et al. Structural basis of histone H4 recognition by p55. Genes Dev. 22 (2008) 1313-1318
    • (2008) Genes Dev. , vol.22 , pp. 1313-1318
    • Song, J.J.1
  • 19
    • 0033980133 scopus 로고    scopus 로고
    • A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage
    • Moggs J.G., et al. A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol. Cell. Biol. 20 (2000) 1206-1218
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 1206-1218
    • Moggs, J.G.1
  • 20
    • 0033582544 scopus 로고    scopus 로고
    • Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin
    • Shibahara K., and Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96 (1999) 575-585
    • (1999) Cell , vol.96 , pp. 575-585
    • Shibahara, K.1    Stillman, B.2
  • 21
    • 33747792063 scopus 로고    scopus 로고
    • The replication kinase Cdc7-Dbf4 promotes the interaction of the p150 subunit of chromatin assembly factor 1 with proliferating cell nuclear antigen
    • Gerard A., et al. The replication kinase Cdc7-Dbf4 promotes the interaction of the p150 subunit of chromatin assembly factor 1 with proliferating cell nuclear antigen. EMBO Rep. 7 (2006) 817-823
    • (2006) EMBO Rep. , vol.7 , pp. 817-823
    • Gerard, A.1
  • 22
    • 33751357219 scopus 로고    scopus 로고
    • CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells
    • Houlard M., et al. CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet. 2 (2006) e181
    • (2006) PLoS Genet. , vol.2
    • Houlard, M.1
  • 23
    • 0035901504 scopus 로고    scopus 로고
    • Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development
    • Quivy J.P., et al. Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J. 20 (2001) 2015-2027
    • (2001) EMBO J. , vol.20 , pp. 2015-2027
    • Quivy, J.P.1
  • 24
    • 35348960506 scopus 로고    scopus 로고
    • CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory
    • Song Y., et al. CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev. Biol. 311 (2007) 213-222
    • (2007) Dev. Biol. , vol.311 , pp. 213-222
    • Song, Y.1
  • 25
    • 0142091385 scopus 로고    scopus 로고
    • Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo
    • Hoek M., and Stillman B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 12183-12188
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 12183-12188
    • Hoek, M.1    Stillman, B.2
  • 26
    • 0030862060 scopus 로고    scopus 로고
    • Two new S-phase-specific genes from Saccharomyces cerevisiae
    • Le S., et al. Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13 (1997) 1029-1042
    • (1997) Yeast , vol.13 , pp. 1029-1042
    • Le, S.1
  • 27
    • 0033518179 scopus 로고    scopus 로고
    • The RCAF complex mediates chromatin assembly during DNA replication and repair
    • Tyler J.K., et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402 (1999) 555-560
    • (1999) Nature , vol.402 , pp. 555-560
    • Tyler, J.K.1
  • 28
    • 0036250827 scopus 로고    scopus 로고
    • Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway
    • Mello J.A., et al. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep. 3 (2002) 329-334
    • (2002) EMBO Rep. , vol.3 , pp. 329-334
    • Mello, J.A.1
  • 29
    • 46649121282 scopus 로고    scopus 로고
    • Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus
    • Malay A.D., et al. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus. J. Biol. Chem. 283 (2008) 14022-14031
    • (2008) J. Biol. Chem. , vol.283 , pp. 14022-14031
    • Malay, A.D.1
  • 30
    • 33744963245 scopus 로고    scopus 로고
    • Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells
    • Sanematsu F., et al. Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells. J. Biol. Chem. 281 (2006) 13817-13827
    • (2006) J. Biol. Chem. , vol.281 , pp. 13817-13827
    • Sanematsu, F.1
  • 31
    • 33749505109 scopus 로고    scopus 로고
    • Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly
    • Tang Y., et al. Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat. Struct. Mol. Biol. 13 (2006) 921-929
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 921-929
    • Tang, Y.1
  • 32
    • 0034809530 scopus 로고    scopus 로고
    • Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors
    • Tyler J.K., et al. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol. Cell. Biol. 21 (2001) 6574-6584
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 6574-6584
    • Tyler, J.K.1
  • 33
    • 33750477650 scopus 로고    scopus 로고
    • Structural basis for the histone chaperone activity of Asf1
    • English C.M., et al. Structural basis for the histone chaperone activity of Asf1. Cell 127 (2006) 495-508
    • (2006) Cell , vol.127 , pp. 495-508
    • English, C.M.1
  • 34
    • 33847226680 scopus 로고    scopus 로고
    • Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4
    • Natsume R., et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446 (2007) 338-341
    • (2007) Nature , vol.446 , pp. 338-341
    • Natsume, R.1
  • 35
    • 0025840592 scopus 로고
    • 2 tetramer: dependence on ionic environment
    • 2 tetramer: dependence on ionic environment. Biochemistry 30 (1991) 8817-8823
    • (1991) Biochemistry , vol.30 , pp. 8817-8823
    • Baxevanis, A.D.1
  • 36
    • 0742304304 scopus 로고    scopus 로고
    • Histone H3, 1 and H3. 3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis
    • Tagami H., et al. Histone H3, 1 and H3. 3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116 (2004) 51-61
    • (2004) Cell , vol.116 , pp. 51-61
    • Tagami, H.1
  • 37
    • 34548267126 scopus 로고    scopus 로고
    • Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells
    • Dalal Y., et al. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5 (2007) e218
    • (2007) PLoS Biol. , vol.5
    • Dalal, Y.1
  • 38
    • 27144453690 scopus 로고    scopus 로고
    • ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA
    • English C.M., et al. ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 44 (2005) 13673-13682
    • (2005) Biochemistry , vol.44 , pp. 13673-13682
    • English, C.M.1
  • 39
    • 33947127598 scopus 로고    scopus 로고
    • The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways
    • Mousson F., et al. The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 116 (2007) 79-93
    • (2007) Chromosoma , vol.116 , pp. 79-93
    • Mousson, F.1
  • 40
    • 34648828645 scopus 로고    scopus 로고
    • The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts
    • Ray-Gallet D., et al. The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts. Chromosoma 116 (2007) 487-496
    • (2007) Chromosoma , vol.116 , pp. 487-496
    • Ray-Gallet, D.1
  • 41
    • 34247619728 scopus 로고    scopus 로고
    • Nap1: taking a closer look at a juggler protein of extraordinary skills
    • Zlatanova J., et al. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J. 21 (2007) 1294-1310
    • (2007) FASEB J. , vol.21 , pp. 1294-1310
    • Zlatanova, J.1
  • 42
    • 0035954427 scopus 로고    scopus 로고
    • Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B
    • Kimura H., and Cook P.R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153 (2001) 1341-1353
    • (2001) J. Cell Biol. , vol.153 , pp. 1341-1353
    • Kimura, H.1    Cook, P.R.2
  • 43
    • 0029971350 scopus 로고    scopus 로고
    • The stability of nucleosomes at the replication fork
    • Gasser R., et al. The stability of nucleosomes at the replication fork. J. Mol. Biol. 258 (1996) 224-239
    • (1996) J. Mol. Biol. , vol.258 , pp. 224-239
    • Gasser, R.1
  • 44
    • 0022457421 scopus 로고
    • Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures
    • Sogo J.M., et al. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189 (1986) 189-204
    • (1986) J. Mol. Biol. , vol.189 , pp. 189-204
    • Sogo, J.M.1
  • 45
    • 16844384065 scopus 로고    scopus 로고
    • Split decision: what happens to nucleosomes during DNA replication?
    • Annunziato A.T. Split decision: what happens to nucleosomes during DNA replication?. J. Biol. Chem. 280 (2005) 12065-12068
    • (2005) J. Biol. Chem. , vol.280 , pp. 12065-12068
    • Annunziato, A.T.1
  • 46
    • 0034677955 scopus 로고    scopus 로고
    • Histone octamer dissociation is not required for in vitro replication of simian virus 40 minichromosomes
    • Vestner B., et al. Histone octamer dissociation is not required for in vitro replication of simian virus 40 minichromosomes. J. Biol. Chem. 275 (2000) 8190-8195
    • (2000) J. Biol. Chem. , vol.275 , pp. 8190-8195
    • Vestner, B.1
  • 47
    • 0027507943 scopus 로고
    • Disruption of the nucleosomes at the replication fork
    • Gruss C., et al. Disruption of the nucleosomes at the replication fork. EMBO J. 12 (1993) 4533-4545
    • (1993) EMBO J. , vol.12 , pp. 4533-4545
    • Gruss, C.1
  • 48
    • 0026628370 scopus 로고
    • The fate of parental nucleosomes during SV40 DNA replication
    • Randall S.K., and Kelly T.J. The fate of parental nucleosomes during SV40 DNA replication. J. Biol. Chem. 267 (1992) 14259-14265
    • (1992) J. Biol. Chem. , vol.267 , pp. 14259-14265
    • Randall, S.K.1    Kelly, T.J.2
  • 49
    • 0036899341 scopus 로고    scopus 로고
    • An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin
    • Collins N., et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32 (2002) 627-632
    • (2002) Nat. Genet. , vol.32 , pp. 627-632
    • Collins, N.1
  • 50
    • 10344261484 scopus 로고    scopus 로고
    • The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci
    • Poot R.A., et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat. Cell Biol. 6 (2004) 1236-1244
    • (2004) Nat. Cell Biol. , vol.6 , pp. 1236-1244
    • Poot, R.A.1
  • 51
    • 41649111513 scopus 로고    scopus 로고
    • The Ino80 chromatin-remodeling enzyme regulates replisome function and stability
    • Papamichos-Chronakis M., and Peterson C.L. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat. Struct. Mol. Biol. 15 (2008) 338-345
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 338-345
    • Papamichos-Chronakis, M.1    Peterson, C.L.2
  • 52
    • 42049094866 scopus 로고    scopus 로고
    • Ino80 chromatin remodeling complex promotes recovery of stalled replication forks
    • Shimada K., et al. Ino80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol. 18 (2008) 566-575
    • (2008) Curr. Biol. , vol.18 , pp. 566-575
    • Shimada, K.1
  • 53
    • 43249095257 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling shapes the DNA replication landscape
    • Vincent J.A., et al. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat. Struct. Mol. Biol. 15 (2008) 477-484
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 477-484
    • Vincent, J.A.1
  • 54
    • 34147101544 scopus 로고    scopus 로고
    • INO80 subfamily of chromatin remodeling complexes
    • Bao Y., and Shen X. INO80 subfamily of chromatin remodeling complexes. Mutat. Res. 618 (2007) 18-29
    • (2007) Mutat. Res. , vol.618 , pp. 18-29
    • Bao, Y.1    Shen, X.2
  • 55
    • 10944224673 scopus 로고    scopus 로고
    • INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair
    • Morrison A.J., et al. INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119 (2004) 767-775
    • (2004) Cell , vol.119 , pp. 767-775
    • Morrison, A.J.1
  • 56
    • 52049112825 scopus 로고    scopus 로고
    • Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex
    • Yao T., et al. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol. Cell 31 (2008) 909-917
    • (2008) Mol. Cell , vol.31 , pp. 909-917
    • Yao, T.1
  • 57
    • 2442417331 scopus 로고    scopus 로고
    • Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage
    • Kannouche P.L., et al. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14 (2004) 491-500
    • (2004) Mol. Cell , vol.14 , pp. 491-500
    • Kannouche, P.L.1
  • 58
    • 0037291295 scopus 로고    scopus 로고
    • Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest
    • Ye X., et al. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell 11 (2003) 341-351
    • (2003) Mol. Cell , vol.11 , pp. 341-351
    • Ye, X.1
  • 59
    • 1542298303 scopus 로고    scopus 로고
    • Transcription through chromatin: understanding a complex FACT
    • Belotserkovskaya R., et al. Transcription through chromatin: understanding a complex FACT. Biochim. Biophys. Acta 1677 (2004) 87-99
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 87-99
    • Belotserkovskaya, R.1
  • 60
    • 33645717628 scopus 로고    scopus 로고
    • GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
    • Gambus A., et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8 (2006) 358-366
    • (2006) Nat. Cell Biol. , vol.8 , pp. 358-366
    • Gambus, A.1
  • 61
    • 33748357745 scopus 로고    scopus 로고
    • Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication
    • Tan B.C., et al. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J. 25 (2006) 3975-3985
    • (2006) EMBO J. , vol.25 , pp. 3975-3985
    • Tan, B.C.1
  • 62
    • 47349114465 scopus 로고    scopus 로고
    • The Mcm2-7 complex has in vitro helicase activity
    • Bochman M.L., and Schwacha A. The Mcm2-7 complex has in vitro helicase activity. Mol. Cell 31 (2008) 287-293
    • (2008) Mol. Cell , vol.31 , pp. 287-293
    • Bochman, M.L.1    Schwacha, A.2
  • 63
    • 48249141467 scopus 로고    scopus 로고
    • The FACT Spt16 "peptidase" domain is a histone H3-H4 binding module
    • Stuwe T., et al. The FACT Spt16 "peptidase" domain is a histone H3-H4 binding module. Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 8884-8889
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 8884-8889
    • Stuwe, T.1
  • 64
    • 33745004786 scopus 로고    scopus 로고
    • The human CENP-A centromeric nucleosome-associated complex
    • Foltz D.R., et al. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8 (2006) 458-469
    • (2006) Nat. Cell Biol. , vol.8 , pp. 458-469
    • Foltz, D.R.1
  • 65
    • 22344434704 scopus 로고    scopus 로고
    • Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C
    • Franco A.A., et al. Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev. 19 (2005) 1365-1375
    • (2005) Genes Dev. , vol.19 , pp. 1365-1375
    • Franco, A.A.1
  • 66
    • 29544444195 scopus 로고    scopus 로고
    • ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation
    • Doyon Y., et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol. Cell 21 (2006) 51-64
    • (2006) Mol. Cell , vol.21 , pp. 51-64
    • Doyon, Y.1
  • 67
    • 31344462362 scopus 로고    scopus 로고
    • Regulation of replication licensing by acetyltransferase Hbo1
    • Iizuka M., et al. Regulation of replication licensing by acetyltransferase Hbo1. Mol. Cell. Biol. 26 (2006) 1098-1108
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1098-1108
    • Iizuka, M.1
  • 68
    • 0035097884 scopus 로고    scopus 로고
    • MCM3AP, a novel acetyltransferase that acetylates replication protein MCM3
    • Takei Y., et al. MCM3AP, a novel acetyltransferase that acetylates replication protein MCM3. EMBO Rep. 2 (2001) 119-123
    • (2001) EMBO Rep. , vol.2 , pp. 119-123
    • Takei, Y.1
  • 69
    • 34250188803 scopus 로고    scopus 로고
    • Genomic patterns of DNA methylation: targets and function of an epigenetic mark
    • Weber M., and Schubeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol. 19 (2007) 273-280
    • (2007) Curr. Opin. Cell Biol. , vol.19 , pp. 273-280
    • Weber, M.1    Schubeler, D.2
  • 70
    • 0035282458 scopus 로고    scopus 로고
    • Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    • Bannister A.J., et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410 (2001) 120-124
    • (2001) Nature , vol.410 , pp. 120-124
    • Bannister, A.J.1
  • 71
    • 0035282573 scopus 로고    scopus 로고
    • Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins
    • Lachner M., et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410 (2001) 116-120
    • (2001) Nature , vol.410 , pp. 116-120
    • Lachner, M.1
  • 72
    • 0032722062 scopus 로고    scopus 로고
    • Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation
    • Pradhan S., et al. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 274 (1999) 33002-33010
    • (1999) J. Biol. Chem. , vol.274 , pp. 33002-33010
    • Pradhan, S.1
  • 73
    • 3743083805 scopus 로고
    • Clonal inheritance of the pattern of DNA methylation in mouse cells
    • Stein R., et al. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc. Natl. Acad. Sci. U. S. A. 79 (1982) 61-65
    • (1982) Proc. Natl. Acad. Sci. U. S. A. , vol.79 , pp. 61-65
    • Stein, R.1
  • 74
    • 0030770835 scopus 로고    scopus 로고
    • Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1
    • Chuang L.S., et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277 (1997) 1996-2000
    • (1997) Science , vol.277 , pp. 1996-2000
    • Chuang, L.S.1
  • 75
    • 33847348016 scopus 로고    scopus 로고
    • DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells
    • Spada F., et al. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J. Cell Biol. 176 (2007) 565-571
    • (2007) J. Cell Biol. , vol.176 , pp. 565-571
    • Spada, F.1
  • 76
    • 36849072573 scopus 로고    scopus 로고
    • The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA
    • Sharif J., et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450 (2007) 908-912
    • (2007) Nature , vol.450 , pp. 908-912
    • Sharif, J.1
  • 77
    • 34648833002 scopus 로고    scopus 로고
    • UHRF1 plays a role in maintaining DNA methylation in mammalian cells
    • Bostick M., et al. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317 (2007) 1760-1764
    • (2007) Science , vol.317 , pp. 1760-1764
    • Bostick, M.1
  • 78
    • 53649097070 scopus 로고    scopus 로고
    • Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism
    • Arita K., et al. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455 (2008) 818-821
    • (2008) Nature , vol.455 , pp. 818-821
    • Arita, K.1
  • 79
    • 53649088595 scopus 로고    scopus 로고
    • Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
    • Avvakumov G.V., et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455 (2008) 822-825
    • (2008) Nature , vol.455 , pp. 822-825
    • Avvakumov, G.V.1
  • 80
    • 53649089723 scopus 로고    scopus 로고
    • The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
    • Hashimoto H., et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455 (2008) 826-1826
    • (2008) Nature , vol.455 , pp. 826-1826
    • Hashimoto, H.1
  • 81
    • 33751209468 scopus 로고    scopus 로고
    • Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication
    • Esteve P.O., et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 20 (2006) 3089-3103
    • (2006) Genes Dev. , vol.20 , pp. 3089-3103
    • Esteve, P.O.1
  • 82
    • 0037405867 scopus 로고    scopus 로고
    • The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1
    • Reese B.E., et al. The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Mol. Cell. Biol. 23 (2003) 3226-3236
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3226-3236
    • Reese, B.E.1
  • 83
    • 4344685735 scopus 로고    scopus 로고
    • Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly
    • Sarraf S.A., and Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell 15 (2004) 595-605
    • (2004) Mol. Cell , vol.15 , pp. 595-605
    • Sarraf, S.A.1    Stancheva, I.2
  • 84
    • 0037591867 scopus 로고    scopus 로고
    • Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression
    • Fujita N., et al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J. Biol. Chem. 278 (2003) 24132-24138
    • (2003) J. Biol. Chem. , vol.278 , pp. 24132-24138
    • Fujita, N.1
  • 85
    • 0033212963 scopus 로고    scopus 로고
    • Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins
    • Murzina N., et al. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4 (1999) 529-540
    • (1999) Mol. Cell , vol.4 , pp. 529-540
    • Murzina, N.1
  • 86
    • 4143059590 scopus 로고    scopus 로고
    • A CAF-1 dependent pool of HP1 during heterochromatin duplication
    • Quivy J.P., et al. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 23 (2004) 3516-3526
    • (2004) EMBO J. , vol.23 , pp. 3516-3526
    • Quivy, J.P.1
  • 87
    • 58149510836 scopus 로고    scopus 로고
    • Quivy, J.P. et al. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat. Struct. Mol. Biol. (in press)
    • Quivy, J.P. et al. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat. Struct. Mol. Biol. (in press)
  • 88
    • 45549087777 scopus 로고    scopus 로고
    • Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication
    • Huen M.S., et al. Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J. Biol. Chem. 283 (2008) 11073-11077
    • (2008) J. Biol. Chem. , vol.283 , pp. 11073-11077
    • Huen, M.S.1
  • 89
    • 38049075810 scopus 로고    scopus 로고
    • The histone methyltransferase SET8 is required for S-phase progression
    • Jorgensen S., et al. The histone methyltransferase SET8 is required for S-phase progression. J. Cell Biol. 179 (2007) 1337-1345
    • (2007) J. Cell Biol. , vol.179 , pp. 1337-1345
    • Jorgensen, S.1
  • 90
    • 38049025837 scopus 로고    scopus 로고
    • PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase
    • Tardat M., et al. PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. J. Cell Biol. 179 (2007) 1413-1426
    • (2007) J. Cell Biol. , vol.179 , pp. 1413-1426
    • Tardat, M.1
  • 91
    • 58149489536 scopus 로고    scopus 로고
    • Hansen, K.H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. (in press)
    • Hansen, K.H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. (in press)
  • 92
    • 33947137710 scopus 로고    scopus 로고
    • Dynamics of replication-independent histone turnover in budding yeast
    • Dion M.F., et al. Dynamics of replication-independent histone turnover in budding yeast. Science 315 (2007) 1405-1408
    • (2007) Science , vol.315 , pp. 1405-1408
    • Dion, M.F.1
  • 93
    • 33846663256 scopus 로고    scopus 로고
    • Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication
    • Jamai A., et al. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol. Cell 25 (2007) 345-355
    • (2007) Mol. Cell , vol.25 , pp. 345-355
    • Jamai, A.1
  • 94
    • 33947098453 scopus 로고    scopus 로고
    • Histone replacement marks the boundaries of cis-regulatory domains
    • Mito Y., et al. Histone replacement marks the boundaries of cis-regulatory domains. Science 315 (2007) 1408-1411
    • (2007) Science , vol.315 , pp. 1408-1411
    • Mito, Y.1
  • 95
    • 2942746179 scopus 로고    scopus 로고
    • Histone variants, nucleosome assembly and epigenetic inheritance
    • Henikoff S., et al. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20 (2004) 320-326
    • (2004) Trends Genet. , vol.20 , pp. 320-326
    • Henikoff, S.1
  • 96
    • 0036299092 scopus 로고    scopus 로고
    • The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly
    • Ahmad K., and Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9 (2002) 1191-1200
    • (2002) Mol. Cell , vol.9 , pp. 1191-1200
    • Ahmad, K.1    Henikoff, S.2
  • 97
    • 37749051130 scopus 로고    scopus 로고
    • Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription
    • Ng R.K., and Gurdon J.B. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat. Cell Biol. 10 (2008) 102-109
    • (2008) Nat. Cell Biol. , vol.10 , pp. 102-109
    • Ng, R.K.1    Gurdon, J.B.2
  • 98
    • 33750449326 scopus 로고    scopus 로고
    • New histone incorporation marks sites of UV repair in human cells
    • Polo S.E., et al. New histone incorporation marks sites of UV repair in human cells. Cell 127 (2006) 481-493
    • (2006) Cell , vol.127 , pp. 481-493
    • Polo, S.E.1
  • 99
    • 0037459109 scopus 로고    scopus 로고
    • Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling
    • Cleveland D.W., et al. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112 (2003) 407-421
    • (2003) Cell , vol.112 , pp. 407-421
    • Cleveland, D.W.1
  • 100
    • 39149117031 scopus 로고    scopus 로고
    • The histone variant CENP-A and centromere specification
    • Black B.E., and Bassett E.A. The histone variant CENP-A and centromere specification. Curr. Opin. Cell Biol. 20 (2008) 91-100
    • (2008) Curr. Opin. Cell Biol. , vol.20 , pp. 91-100
    • Black, B.E.1    Bassett, E.A.2
  • 101
    • 33947274529 scopus 로고    scopus 로고
    • Propagation of centromeric chromatin requires exit from mitosis
    • Jansen L.E., et al. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176 (2007) 795-805
    • (2007) J. Cell Biol. , vol.176 , pp. 795-805
    • Jansen, L.E.1
  • 102
    • 33846638827 scopus 로고    scopus 로고
    • Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase
    • Schuh M., et al. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17 (2007) 237-243
    • (2007) Curr. Biol. , vol.17 , pp. 237-243
    • Schuh, M.1
  • 103
    • 33749657892 scopus 로고    scopus 로고
    • PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state
    • Loyola A., et al. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24 (2006) 309-316
    • (2006) Mol. Cell , vol.24 , pp. 309-316
    • Loyola, A.1
  • 104
    • 0028847955 scopus 로고
    • Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4
    • Sobel R.E., et al. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 1237-1241
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 1237-1241
    • Sobel, R.E.1
  • 105
    • 0034608938 scopus 로고    scopus 로고
    • The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1- mediated nucleosome assembly onto replicated DNA in vitro
    • Shibahara K., et al. The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1- mediated nucleosome assembly onto replicated DNA in vitro. Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 7766-7771
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 7766-7771
    • Shibahara, K.1
  • 106
    • 46149100263 scopus 로고    scopus 로고
    • Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109
    • Fillingham J., et al. Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol. Cell. Biol. 28 (2008) 4342-4353
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4342-4353
    • Fillingham, J.1
  • 107
    • 34547925170 scopus 로고    scopus 로고
    • Hat1: the emerging cellular roles of a type B histone acetyltransferase
    • Parthun M.R. Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26 (2007) 5319-5328
    • (2007) Oncogene , vol.26 , pp. 5319-5328
    • Parthun, M.R.1
  • 108
    • 0029835806 scopus 로고    scopus 로고
    • Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines
    • Kuo M.H., et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383 (1996) 269-272
    • (1996) Nature , vol.383 , pp. 269-272
    • Kuo, M.H.1
  • 109
    • 22444448143 scopus 로고    scopus 로고
    • A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response
    • Masumoto H., et al. A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436 (2005) 294-298
    • (2005) Nature , vol.436 , pp. 294-298
    • Masumoto, H.1
  • 110
    • 33745520486 scopus 로고    scopus 로고
    • The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation
    • Celic I., et al. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr. Biol. 16 (2006) 1280-1289
    • (2006) Curr. Biol. , vol.16 , pp. 1280-1289
    • Celic, I.1
  • 111
    • 33745496607 scopus 로고    scopus 로고
    • Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4
    • Maas N.L., et al. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol. Cell 23 (2006) 109-119
    • (2006) Mol. Cell , vol.23 , pp. 109-119
    • Maas, N.L.1
  • 112
    • 33846818840 scopus 로고    scopus 로고
    • Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56
    • Driscoll R., et al. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315 (2007) 649-652
    • (2007) Science , vol.315 , pp. 649-652
    • Driscoll, R.1
  • 113
    • 33846796258 scopus 로고    scopus 로고
    • Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication
    • Han J., et al. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315 (2007) 653-655
    • (2007) Science , vol.315 , pp. 653-655
    • Han, J.1
  • 114
    • 34547277498 scopus 로고    scopus 로고
    • Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1
    • Rufiange A., et al. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol. Cell 27 (2007) 393-405
    • (2007) Mol. Cell , vol.27 , pp. 393-405
    • Rufiange, A.1
  • 115
    • 18844413266 scopus 로고    scopus 로고
    • Acetylation in histone H3 globular domain regulates gene expression in yeast
    • Xu F., et al. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121 (2005) 375-385
    • (2005) Cell , vol.121 , pp. 375-385
    • Xu, F.1
  • 116
    • 34147217542 scopus 로고    scopus 로고
    • Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
    • Collins S.R., et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446 (2007) 806-810
    • (2007) Nature , vol.446 , pp. 806-810
    • Collins, S.R.1
  • 117
    • 33847412826 scopus 로고    scopus 로고
    • Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes
    • Tsubota T., et al. Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol. Cell 25 (2007) 703-712
    • (2007) Mol. Cell , vol.25 , pp. 703-712
    • Tsubota, T.1
  • 118
    • 58149485693 scopus 로고    scopus 로고
    • Berndsen, C.E. et al. Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75. Nat. Struct. Mol. Biol. (in press)
    • Berndsen, C.E. et al. Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75. Nat. Struct. Mol. Biol. (in press)
  • 119
    • 58149506612 scopus 로고    scopus 로고
    • Park, Y.J. et al. Histone chaperone specificity in Rtt109 activation. Nat. Struct. Mol. Biol. (in press)
    • Park, Y.J. et al. Histone chaperone specificity in Rtt109 activation. Nat. Struct. Mol. Biol. (in press)
  • 120
    • 47549092547 scopus 로고    scopus 로고
    • Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly
    • Li Q., et al. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134 (2008) 244-255
    • (2008) Cell , vol.134 , pp. 244-255
    • Li, Q.1
  • 121
    • 33847398682 scopus 로고    scopus 로고
    • The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase
    • Adkins M.W., et al. The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase. J. Biol. Chem. 282 (2007) 1334-1340
    • (2007) J. Biol. Chem. , vol.282 , pp. 1334-1340
    • Adkins, M.W.1
  • 122
    • 10644222646 scopus 로고    scopus 로고
    • The histone chaperone Asf1p mediates global chromatin disassembly in vivo
    • Adkins M.W., and Tyler J.K. The histone chaperone Asf1p mediates global chromatin disassembly in vivo. J. Biol. Chem. 279 (2004) 52069-52074
    • (2004) J. Biol. Chem. , vol.279 , pp. 52069-52074
    • Adkins, M.W.1    Tyler, J.K.2
  • 123
    • 34147177521 scopus 로고    scopus 로고
    • Organismal differences in post-translational modifications in histones H3 and H4
    • Garcia B.A., et al. Organismal differences in post-translational modifications in histones H3 and H4. J. Biol. Chem. 282 (2007) 7641-7655
    • (2007) J. Biol. Chem. , vol.282 , pp. 7641-7655
    • Garcia, B.A.1
  • 124
    • 0033552604 scopus 로고    scopus 로고
    • Duplication and maintenance of heterochromatin domains
    • Taddei A., et al. Duplication and maintenance of heterochromatin domains. J. Cell Biol. 147 (1999) 1153-1166
    • (1999) J. Cell Biol. , vol.147 , pp. 1153-1166
    • Taddei, A.1
  • 125
    • 0036850346 scopus 로고    scopus 로고
    • Deciphering the transcriptional histone acetylation code for a human gene
    • Agalioti T., et al. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111 (2002) 381-392
    • (2002) Cell , vol.111 , pp. 381-392
    • Agalioti, T.1
  • 126
    • 0031459979 scopus 로고    scopus 로고
    • Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres
    • Ekwall K., et al. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91 (1997) 1021-1032
    • (1997) Cell , vol.91 , pp. 1021-1032
    • Ekwall, K.1
  • 127
    • 0035147369 scopus 로고    scopus 로고
    • Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases
    • Taddei A., et al. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat. Cell Biol. 3 (2001) 114-120
    • (2001) Nat. Cell Biol. , vol.3 , pp. 114-120
    • Taddei, A.1
  • 128
    • 41549156540 scopus 로고    scopus 로고
    • Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control
    • Bhaskara S., et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol. Cell 30 (2008) 61-72
    • (2008) Mol. Cell , vol.30 , pp. 61-72
    • Bhaskara, S.1
  • 129
    • 55149098842 scopus 로고    scopus 로고
    • Histone h3 k56 hyperacetylation perturbs replisomes and causes DNA damage
    • Celic I., et al. Histone h3 k56 hyperacetylation perturbs replisomes and causes DNA damage. Genetics 179 (2008) 1769-1784
    • (2008) Genetics , vol.179 , pp. 1769-1784
    • Celic, I.1
  • 130
    • 33947109937 scopus 로고    scopus 로고
    • Np95 is implicated in pericentromeric heterochromatin replication and in major satellite silencing
    • Papait R., et al. Np95 is implicated in pericentromeric heterochromatin replication and in major satellite silencing. Mol. Biol. Cell 18 (2007) 1098-1106
    • (2007) Mol. Biol. Cell , vol.18 , pp. 1098-1106
    • Papait, R.1
  • 131
    • 0037036465 scopus 로고    scopus 로고
    • Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification
    • Milutinovic S., et al. Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J. Biol. Chem. 277 (2002) 20974-20978
    • (2002) J. Biol. Chem. , vol.277 , pp. 20974-20978
    • Milutinovic, S.1
  • 132
    • 0037079677 scopus 로고    scopus 로고
    • Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases
    • Vaute O., et al. Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res. 30 (2002) 475-481
    • (2002) Nucleic Acids Res. , vol.30 , pp. 475-481
    • Vaute, O.1
  • 133
    • 0033988813 scopus 로고    scopus 로고
    • DNA methyltransferase Dnmt1 associates with histone deacetylase activity
    • Fuks F., et al. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 24 (2000) 88-91
    • (2000) Nat. Genet. , vol.24 , pp. 88-91
    • Fuks, F.1
  • 134
    • 0033919595 scopus 로고    scopus 로고
    • DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters
    • Robertson K.D., et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25 (2000) 338-342
    • (2000) Nat. Genet. , vol.25 , pp. 338-342
    • Robertson, K.D.1
  • 135
    • 43249102851 scopus 로고    scopus 로고
    • Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease
    • Cloos P.A., et al. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev. 22 (2008) 1115-1140
    • (2008) Genes Dev. , vol.22 , pp. 1115-1140
    • Cloos, P.A.1
  • 136
    • 31944450097 scopus 로고    scopus 로고
    • The structure of nucleosome assembly protein 1
    • Park Y.J., and Luger K. The structure of nucleosome assembly protein 1. Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 1248-1253
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 1248-1253
    • Park, Y.J.1    Luger, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.