메뉴 건너뛰기




Volumn 11, Issue 6, 2012, Pages 420-433

Structural and dynamical analysis of biological networks

Author keywords

Centrality; Flux balance analysis; Mathematical modeling; Networks; Structural analysis

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; DYNAMICS; KINETICS; MATHEMATICAL MODEL; STOICHIOMETRY; STRUCTURAL HOMOLOGY;

EID: 84870352256     PISSN: 20412649     EISSN: 20412657     Source Type: Journal    
DOI: 10.1093/bfgp/els030     Document Type: Article
Times cited : (26)

References (145)
  • 2
    • 77957314667 scopus 로고    scopus 로고
    • Graph methods for the investigation of metabolic networks in parasitology
    • Cottret L, Jourdan F. Graph methods for the investigation of metabolic networks in parasitology. Parasitology 2010;137: 1393-1407.
    • (2010) Parasitology , vol.137 , pp. 1393-1407
    • Cottret, L.1    Jourdan, F.2
  • 4
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 2002;9:67-103.
    • (2002) J Comput Biol , vol.9 , pp. 67-103
    • de Jong, H.1
  • 5
    • 33646337667 scopus 로고    scopus 로고
    • A methodology for the structural and functional analysis of signaling and regulatory networks
    • Klamt S, Saez-Rodriguez J, Lindquist JA, et al. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 2006;7:56.
    • (2006) BMC Bioinformatics , vol.7 , pp. 56
    • Klamt, S.1    Saez-Rodriguez, J.2    Lindquist, J.A.3
  • 6
    • 79953109968 scopus 로고    scopus 로고
    • Elementary signaling modes predict the essentiality of signal transduction network components
    • Wang R, Albert R. Elementary signaling modes predict the essentiality of signal transduction network components. BMC Syst Biol 2011;5:44.
    • (2011) BMC Syst Biol , vol.5 , pp. 44
    • Wang, R.1    Albert, R.2
  • 7
    • 0035125986 scopus 로고    scopus 로고
    • In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data
    • Edwards JS, Ibarra RU, Palsson BØ. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001;19:125-30.
    • (2001) Nat Biotechnol , vol.19 , pp. 125-130
    • Edwards, J.S.1    Ibarra, R.U.2    Palsson, B.O.3
  • 8
    • 33747061013 scopus 로고    scopus 로고
    • Structural kinetic modeling of metabolic networks
    • Steuer R, Gross T, Selbig J, etal. Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci USA 2006;103: 11868-73.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 11868-11873
    • Steuer, R.1    Gross, T.2    Selbig, J.3
  • 9
    • 36248952170 scopus 로고    scopus 로고
    • The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks
    • Grimbs S, Selbig J, Bulik S, etal. The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks. Mol Syst Biol 2007;3:146.
    • (2007) Mol Syst Biol , vol.3 , pp. 146
    • Grimbs, S.1    Selbig, J.2    Bulik, S.3
  • 10
    • 34547684426 scopus 로고    scopus 로고
    • Computational approaches to the topology, stability and dynamics of metabolic networks
    • Steuer R. Computational approaches to the topology, stability and dynamics of metabolic networks. Phytochemistry 2007;68:2139-51.
    • (2007) Phytochemistry , vol.68 , pp. 2139-2151
    • Steuer, R.1
  • 11
    • 77955499190 scopus 로고    scopus 로고
    • The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes
    • Baldazzi V, Ropers D, Markowicz Y, et al. The carbon assimilation network in Escherichia coli is densely connected and largely sign-determined by directions of metabolic fluxes. PLoS Comput Biol 2010;6:e1000812.
    • (2010) PLoS Comput Biol , vol.6
    • Baldazzi, V.1    Ropers, D.2    Markowicz, Y.3
  • 12
    • 82955189261 scopus 로고    scopus 로고
    • Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli
    • Baldazzi V, Ropers D, Geiselmann J, et al. Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli. J Theor Biol 2011;295:100-15.
    • (2011) J Theor Biol , vol.295 , pp. 100-115
    • Baldazzi, V.1    Ropers, D.2    Geiselmann, J.3
  • 13
    • 77949385752 scopus 로고    scopus 로고
    • Bacterial adaptation through distributed sensing of metabolic fluxes
    • Kotte O, Zaugg JB, Heinemann M. Bacterial adaptation through distributed sensing of metabolic fluxes. Mol Syst Biol 2010;6:355.
    • (2010) Mol Syst Biol , vol.6 , pp. 355
    • Kotte, O.1    Zaugg, J.B.2    Heinemann, M.3
  • 14
    • 26244440771 scopus 로고    scopus 로고
    • Gene essentiality and the topology of protein interaction networks
    • Coulomb S, Bauer M, Bernard D, et al. Gene essentiality and the topology of protein interaction networks. Proc Biol Sci Roy Soc 2005;272:1721-5.
    • (2005) Proc Biol Sci Roy Soc , vol.272 , pp. 1721-1725
    • Coulomb, S.1    Bauer, M.2    Bernard, D.3
  • 15
    • 0242551065 scopus 로고    scopus 로고
    • The stability of centrality measures when networks are sampled
    • Costenbader E, Valente TW. The stability of centrality measures when networks are sampled. Soc Network 2003; 25:283-307.
    • (2003) Soc Network , vol.25 , pp. 283-307
    • Costenbader, E.1    Valente, T.W.2
  • 16
    • 33845262280 scopus 로고    scopus 로고
    • The effects of incomplete protein interaction data on structural and evolutionary inferences
    • de Silva E, Thorne T, Ingram P, et al. The effects of incomplete protein interaction data on structural and evolutionary inferences. BMC Biol 2006;4:39.
    • (2006) BMC Biol , vol.4 , pp. 39
    • de Silva, E.1    Thorne, T.2    Ingram, P.3
  • 17
  • 18
    • 77953433317 scopus 로고    scopus 로고
    • Centrality analysis methods for biological networks and their application to gene regulatory networks
    • Koschützki D, Schreiber F. Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regulat Syst Biol 2008;2:193-201.
    • (2008) Gene Regulat Syst Biol , vol.2 , pp. 193-201
    • Koschützki, D.1    Schreiber, F.2
  • 20
    • 33947619951 scopus 로고    scopus 로고
    • Graph theory and networks in Biology
    • Mason O, Verwoerd M. Graph theory and networks in Biology. IET Syst Biol 2007;1:89.
    • (2007) IET Syst Biol , vol.1 , pp. 89
    • Mason, O.1    Verwoerd, M.2
  • 22
    • 67849122322 scopus 로고    scopus 로고
    • VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology
    • Hu Z, Hung J-H, Wang Y, et al. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucl Acids Res 2009;37:W115-21.
    • (2009) Nucl Acids Res , vol.37
    • Hu, Z.1    Hung, J.-H.2    Wang, Y.3
  • 24
    • 84859760346 scopus 로고    scopus 로고
    • CentiLib: comprehensive analysis and exploration of network centralities
    • Grassler J, Koschutzki D, Schreiber F. CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 2012;28:1178-9.
    • (2012) Bioinformatics , vol.28 , pp. 1178-1179
    • Grassler, J.1    Koschutzki, D.2    Schreiber, F.3
  • 25
    • 0035799707 scopus 로고    scopus 로고
    • Lethality and centrality in protein networks
    • Jeong H, Mason SP, Barabási A-L, et al. Lethality and centrality in protein networks. Nature 2001;411:41-2.
    • (2001) Nature , vol.411 , pp. 41-42
    • Jeong, H.1    Mason, S.P.2    Barabási, A.-L.3
  • 26
    • 33745712594 scopus 로고    scopus 로고
    • Why do hubs tend to be essential in protein networks?
    • He X, Zhang J. Why do hubs tend to be essential in protein networks? PLoS Genet 2006;2:e88.
    • (2006) PLoS Genet , vol.2
    • He, X.1    Zhang, J.2
  • 27
    • 0034721164 scopus 로고    scopus 로고
    • Error and attack tolerance of complex networks
    • Albert R, Jeong H, Barabasi A. Error and attack tolerance of complex networks. Nature 2000;406:378-82.
    • (2000) Nature , vol.406 , pp. 378-382
    • Albert, R.1    Jeong, H.2    Barabasi, A.3
  • 28
    • 3042848952 scopus 로고    scopus 로고
    • Evidence for dynamically organized modularity in the yeast protein-protein interaction network
    • Han JDJ, Bertin N, Hao T, et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004;430:88-93.
    • (2004) Nature , vol.430 , pp. 88-93
    • Han, J.D.J.1    Bertin, N.2    Hao, T.3
  • 29
    • 13844310836 scopus 로고    scopus 로고
    • Peeling the yeast protein network
    • Wuchty S, Almaas E. Peeling the yeast protein network. Proteomics 2005;5:444-9.
    • (2005) Proteomics , vol.5 , pp. 444-449
    • Wuchty, S.1    Almaas, E.2
  • 30
    • 0036916852 scopus 로고    scopus 로고
    • Interaction and domain networks of yeast
    • Wuchty S. Interaction and domain networks of yeast. Proteomics 2002;2:1715-23.
    • (2002) Proteomics , vol.2 , pp. 1715-1723
    • Wuchty, S.1
  • 31
    • 50949092459 scopus 로고    scopus 로고
    • Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality
    • Zotenko E, Mestre J, O'Leary DP, et al. Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 2008;4: e1000140.
    • (2008) PLoS Comput Biol , vol.4
    • Zotenko, E.1    Mestre, J.2    O'Leary, D.P.3
  • 32
    • 33750238153 scopus 로고    scopus 로고
    • Stratus not altocumulus: a new view of the yeast protein interaction network
    • Batada NN, Reguly T, Breitkreutz A, et al. Stratus not altocumulus: a new view of the yeast protein interaction network. PLoS Biol 2006;4:e317.
    • (2006) PLoS Biol , vol.4
    • Batada, N.N.1    Reguly, T.2    Breitkreutz, A.3
  • 33
    • 33847064282 scopus 로고    scopus 로고
    • Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae
    • Reguly T, Breitkreutz A, Boucher L, et al. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J Biol 2006;5.
    • (2006) J Biol , pp. 5
    • Reguly, T.1    Breitkreutz, A.2    Boucher, L.3
  • 34
    • 33745686603 scopus 로고    scopus 로고
    • What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae?
    • Ekman D, Light S, Björklund AK, et al. What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol 2006;7:R45.
    • (2006) Genome Biol , vol.7
    • Ekman, D.1    Light, S.2    Björklund, A.K.3
  • 35
    • 34848901090 scopus 로고    scopus 로고
    • Characterization of protein hubs by inferring interacting motifs from protein interactions
    • Aragues R, Sali A, Bonet J, et al. Characterization of protein hubs by inferring interacting motifs from protein interactions. PLoS Comput Biol 2007;3:1761-71.
    • (2007) PLoS Comput Biol , vol.3 , pp. 1761-1771
    • Aragues, R.1    Sali, A.2    Bonet, J.3
  • 37
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabási A-lászló, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004;5:101-13.
    • (2004) Nat Rev Genet , vol.5 , pp. 101-113
    • Barabási A-lászló1    Oltvai, Z.N.2
  • 38
    • 72949090589 scopus 로고    scopus 로고
    • The powerful law of the power law and other myths in network biology
    • Lima-Mendez G, van Helden J. The powerful law of the power law and other myths in network biology. Mol BioSys 2009;5:1482-93.
    • (2009) Mol BioSys , vol.5 , pp. 1482-1493
    • Lima-Mendez, G.1    van Helden, J.2
  • 39
    • 24944442468 scopus 로고    scopus 로고
    • Effect of sampling on topology predictions of protein-protein interaction networks
    • Han J-DJ, Dupuy D, Bertin N, et al. Effect of sampling on topology predictions of protein-protein interaction networks. Nat Biotechnol 2005;23:839-44.
    • (2005) Nat Biotechnol , vol.23 , pp. 839-844
    • Han, J.-D.J.1    Dupuy, D.2    Bertin, N.3
  • 40
    • 18744389789 scopus 로고    scopus 로고
    • Assortative mixing in networks
    • Newman MJ. Assortative mixing in networks. PhysRev Lett 2002;89:1-4.
    • (2002) PhysRev Lett , vol.89 , pp. 1-4
    • Newman, M.J.1
  • 41
    • 0037012880 scopus 로고    scopus 로고
    • Specificity and stability in topology of protein networks
    • Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science 2002;296:910-3.
    • (2002) Science , vol.296 , pp. 910-913
    • Maslov, S.1    Sneppen, K.2
  • 43
    • 46749138206 scopus 로고    scopus 로고
    • Modularity in the genetic disease-phenotype network
    • Jiang X, Liu B, Jiang J, et al. Modularity in the genetic disease-phenotype network. FEBS Lett 2008;582: 2549-54.
    • (2008) FEBS Lett , vol.582 , pp. 2549-2554
    • Jiang, X.1    Liu, B.2    Jiang, J.3
  • 44
    • 84870330968 scopus 로고    scopus 로고
    • On the relation between structure and biological function in transcriptional networks and ncRNA-mediated interactions
    • Nacher J, Araki N. On the relation between structure and biological function in transcriptional networks and ncRNA-mediated interactions. Intl Conf Biosci Biochem Bioinform 2011;5:348-352.
    • (2011) Intl Conf Biosci Biochem Bioinform , vol.5 , pp. 348-352
    • Nacher, J.1    Araki, N.2
  • 45
    • 34547354976 scopus 로고    scopus 로고
    • A measure of centrality based on network efficiency
    • Latora V, Marchiori M. A measure of centrality based on network efficiency. New J Phys 2007;9:188.
    • (2007) New J Phys , vol.9 , pp. 188
    • Latora, V.1    Marchiori, M.2
  • 46
    • 84865730611 scopus 로고
    • A set of measures of centrality based on betweenness
    • Freeman L. A set of measures of centrality based on betweenness. Sociometry 1977;40:35-40.
    • (1977) Sociometry , vol.40 , pp. 35-40
    • Freeman, L.1
  • 47
    • 84901559005 scopus 로고    scopus 로고
    • Biological data mining in protein interaction networks
    • Li X-li, Ng S-K. Biological data mining in protein interaction networks. Hershey: IGI Global, 2009.
    • (2009) Hershey: IGI Global
    • Li X-li1    Ng, S.-K.2
  • 48
    • 84862249788 scopus 로고    scopus 로고
    • Prioritizing disease candidate genes by a gene interconnectedness-based approach
    • Hsu C-L, Huang Y-H, Hsu C-T, et al. Prioritizing disease candidate genes by a gene interconnectedness-based approach. BMC Genomics 2011;12(Suppl. 3):S25.
    • (2011) BMC Genomics , vol.12 , Issue.SUPPL. 3
    • Hsu, C.-L.1    Huang, Y.-H.2    Hsu, C.-T.3
  • 49
    • 34247622363 scopus 로고    scopus 로고
    • The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics
    • Yu H, Kim PM, Sprecher E, etal. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 2007;3:e59.
    • (2007) PLoS Comput Biol , vol.3
    • Yu, H.1    Kim, P.M.2    Sprecher, E.3
  • 50
    • 59649108558 scopus 로고    scopus 로고
    • Bottlenecks and hubs in inferred networks are important for virulence in Salmonella typhimurium
    • McDermott JE, Taylor RC, Yoon H, et al. Bottlenecks and hubs in inferred networks are important for virulence in Salmonella typhimurium. JComput Biol 2009;16:169-80.
    • (2009) J Comput Biol , vol.16 , pp. 169-180
    • McDermott, J.E.1    Taylor, R.C.2    Yoon, H.3
  • 51
    • 34347386721 scopus 로고    scopus 로고
    • Bottleneck genes and community structure in the cell cycle network of S. pombe
    • Caretta-Cartozo C, De Los Rios P, Piazza F, et al. Bottleneck genes and community structure in the cell cycle network of S. pombe. PLoS Comput Biol 2007;3:e103.
    • (2007) PLoS Comput Biol , vol.3
    • Caretta-Cartozo, C.1    De Los Rios, P.2    Piazza, F.3
  • 53
    • 84860222515 scopus 로고    scopus 로고
    • Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease
    • Chavali AK, Blazier AS, Tlaxca JL, et al. Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease. BMC Syst Biol 2012;6:27.
    • (2012) BMC Syst Biol , vol.6 , pp. 27
    • Chavali, A.K.1    Blazier, A.S.2    Tlaxca, J.L.3
  • 54
    • 84862798394 scopus 로고    scopus 로고
    • Identifying co-targets to fight drug resistance based on a random walk model
    • Chen L-C, Yeh H-Y, Yeh C-Y, et al. Identifying co-targets to fight drug resistance based on a random walk model. BMC Syst Biol 2012;6:5.
    • (2012) BMC Syst Biol , vol.6 , pp. 5
    • Chen, L.-C.1    Yeh, H.-Y.2    Yeh, C.-Y.3
  • 55
    • 33747890136 scopus 로고    scopus 로고
    • Observing local and global properties of metabolic pathways: "load points"and "choke points"in the metabolic networks
    • Rahman SA, Schomburg D. Observing local and global properties of metabolic pathways: "load points"and "choke points"in the metabolic networks. Bioinformatics 2006;22:1767-74.
    • (2006) Bioinformatics , vol.22 , pp. 1767-1774
    • Rahman, S.A.1    Schomburg, D.2
  • 56
    • 60549113332 scopus 로고    scopus 로고
    • Deciphering bacterial flagellar gene regulatory networks in the genomic era
    • Smith TG, Hoover TR. Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol 2009;67:257-95.
    • (2009) Adv Appl Microbiol , vol.67 , pp. 257-295
    • Smith, T.G.1    Hoover, T.R.2
  • 57
    • 13944252976 scopus 로고    scopus 로고
    • A measure of betweenness centrality based on random walks
    • Newman MJ. A measure of betweenness centrality based on random walks. Soc Network 2005;27:39-54.
    • (2005) Soc Network , vol.27 , pp. 39-54
    • Newman, M.J.1
  • 58
    • 35148833196 scopus 로고    scopus 로고
    • Some unique properties of eigenvector centrality
    • Bonacich P. Some unique properties of eigenvector centrality. Soc Net 2007;29:555-64.
    • (2007) Soc Net , vol.29 , pp. 555-564
    • Bonacich, P.1
  • 59
    • 51849131477 scopus 로고    scopus 로고
    • Spectral centrality measures in complex networks
    • Perra N, Fortunato S. Spectral centrality measures in complex networks. Phys Rev E 2008;78:1-10.
    • (2008) Phys Rev E , vol.78 , pp. 1-10
    • Perra, N.1    Fortunato, S.2
  • 61
    • 31344478575 scopus 로고    scopus 로고
    • Virtual identification of essential proteins within the protein interaction network of yeast
    • Estrada E. Virtual identification of essential proteins within the protein interaction network of yeast. Proteomics 2006;6: 35-40.
    • (2006) Proteomics , vol.6 , pp. 35-40
    • Estrada, E.1
  • 62
    • 26944450851 scopus 로고    scopus 로고
    • Subgraph centrality in complex networks
    • Estrada E, Rodri{dotless}́guez-Velázquez JA. Subgraph centrality in complex networks. Phys Rev E 2005;71:056103.
    • (2005) Phys Rev E , vol.71 , pp. 056103
    • Estrada, E.1    Rodríguez-Velázquez, J.A.2
  • 63
    • 66449122553 scopus 로고    scopus 로고
    • A big world inside small-world networks
    • Zhang Z, Zhang J. A big world inside small-world networks. PloS One 2009;4:e5686.
    • (2009) PloS One , vol.4
    • Zhang, Z.1    Zhang, J.2
  • 64
    • 25444448797 scopus 로고    scopus 로고
    • Spontaneous evolution of modularity and network motifs
    • Kashtan N, Alon U. Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci USA 2005;102: 13773-8.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 13773-13778
    • Kashtan, N.1    Alon, U.2
  • 65
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of "smallworld"networks
    • Watts DJ, Strogatz SH. Collective dynamics of "smallworld"networks. Nature 1998;393:440-2.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 66
    • 0034609791 scopus 로고    scopus 로고
    • The large-scale organization of metabolic networks
    • Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature 2000;407:651-4.
    • (2000) Nature , vol.407 , pp. 651-654
    • Jeong, H.1    Tombor, B.2    Albert, R.3
  • 67
    • 0033764169 scopus 로고    scopus 로고
    • The small world of metabolism
    • Fell DA, Wagner A. The small world of metabolism. Nat Biotechnol 2000;18:1121-2.
    • (2000) Nat Biotechnol , vol.18 , pp. 1121-1122
    • Fell, D.A.1    Wagner, A.2
  • 68
    • 0035823264 scopus 로고    scopus 로고
    • The small world inside large metabolic networks
    • Wagner A, Fell DA. The small world inside large metabolic networks. Proc Biol Sci Roy Soc 2001;268:1803-10.
    • (2001) Proc Biol Sci Roy Soc , vol.268 , pp. 1803-1810
    • Wagner, A.1    Fell, D.A.2
  • 69
    • 0037199968 scopus 로고    scopus 로고
    • Hierarchical organization of modularity in metabolic networks
    • Ravasz E, Somera AL, Mongru DA, et al. Hierarchical organization of modularity in metabolic networks. Science 2002;297:1551-5.
    • (2002) Science , vol.297 , pp. 1551-1555
    • Ravasz, E.1    Somera, A.L.2    Mongru, D.A.3
  • 70
    • 0037316239 scopus 로고    scopus 로고
    • Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms
    • Ma H, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 2003;19:270.
    • (2003) Bioinformatics , vol.19 , pp. 270
    • Ma, H.1    Zeng, A.P.2
  • 71
    • 1842580761 scopus 로고    scopus 로고
    • Functional and topological characterization of protein interaction networks
    • Yook S-H, Oltvai ZN, Barabási A-L. Functional and topological characterization of protein interaction networks. Proteomics 2004;4:928-42.
    • (2004) Proteomics , vol.4 , pp. 928-942
    • Yook, S.-H.1    Oltvai, Z.N.2    Barabási, A.-L.3
  • 72
    • 1242319556 scopus 로고    scopus 로고
    • The metabolic world of Escherichia coli is not small
    • Arita M. The metabolic world of Escherichia coli is not small. ProcNatl Acad SciUSA 2004;101:1543-7.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 1543-1547
    • Arita, M.1
  • 74
    • 0037385718 scopus 로고    scopus 로고
    • Genome-scale microbial in silico models: the constraints-based approach
    • Price N. Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 2003;21: 162-9.
    • (2003) Trends Biotechnol , vol.21 , pp. 162-169
    • Price, N.1
  • 75
    • 0028108519 scopus 로고
    • Metabolic flux balancing: basic concepts, scientific and practical use
    • Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 1994;12: 994-8.
    • (1994) Nat Biotechnol , vol.12 , pp. 994-998
    • Varma, A.1    Palsson, B.O.2
  • 77
    • 0033080396 scopus 로고    scopus 로고
    • Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering
    • Schuster S, Dandekar T, Fell DA. Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 1999;17:53-60.
    • (1999) Trends Biotechnol , vol.17 , pp. 53-60
    • Schuster, S.1    Dandekar, T.2    Fell, D.A.3
  • 78
    • 0034064689 scopus 로고    scopus 로고
    • A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks
    • Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 2000;18:326-32.
    • (2000) Nat Biotechnol , vol.18 , pp. 326-332
    • Schuster, S.1    Fell, D.A.2    Dandekar, T.3
  • 79
    • 0037079050 scopus 로고    scopus 로고
    • Metabolic network structure determines key aspects of functionality and regulation
    • Stelling J, Klamt S, Bettenbrock K, et al. Metabolic network structure determines key aspects of functionality and regulation. Nature 2002;420:190-3.
    • (2002) Nature , vol.420 , pp. 190-193
    • Stelling, J.1    Klamt, S.2    Bettenbrock, K.3
  • 81
    • 78650072675 scopus 로고    scopus 로고
    • Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network
    • Perumal D, Samal A, Sakharkar KR, et al. Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network. J Drug Target 2011;19:1-13.
    • (2011) J Drug Target , vol.19 , pp. 1-13
    • Perumal, D.1    Samal, A.2    Sakharkar, K.R.3
  • 82
    • 58849135386 scopus 로고    scopus 로고
    • Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii
    • Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 2009;3:4.
    • (2009) BMC Syst Biol , vol.3 , pp. 4
    • Boyle, N.R.1    Morgan, J.A.2
  • 83
    • 55449096123 scopus 로고    scopus 로고
    • Genomescale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology
    • Puchalka J, Oberhardt MA, Godinho M, et al. Genomescale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 2008;4:e1000210.
    • (2008) PLoS Comput Biol , vol.4
    • Puchalka, J.1    Oberhardt, M.A.2    Godinho, M.3
  • 84
    • 35748961978 scopus 로고    scopus 로고
    • Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli
    • Resendis-Antonio O, Reed JL, Encarnación S, et al. Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Comput Biol 2007;3:1887-95.
    • (2007) PLoS Comput Biol , vol.3 , pp. 1887-1895
    • Resendis-Antonio, O.1    Reed, J.L.2    Encarnación, S.3
  • 85
    • 79953219710 scopus 로고    scopus 로고
    • Phenotypic characterization of Corynebacterium glutamicum using elementary modes towards synthesis of amino acids
    • Radhakrishnan D, Rajvanshi M, Venkatesh KV. Phenotypic characterization of Corynebacterium glutamicum using elementary modes towards synthesis of amino acids. Syst Synth Biol 2010;4:281-91.
    • (2010) Syst Synth Biol , vol.4 , pp. 281-291
    • Radhakrishnan, D.1    Rajvanshi, M.2    Venkatesh, K.V.3
  • 86
    • 35348934254 scopus 로고    scopus 로고
    • Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data
    • Oh Y-K, Palsson BØ, Park SM, et al. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data. J Biol Chem 2007;282:28791-9.
    • (2007) J Biol Chem , vol.282 , pp. 28791-28799
    • Oh, Y.-K.1    Palsson, B.O.2    Park, S.M.3
  • 87
    • 78650298909 scopus 로고    scopus 로고
    • In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling
    • Mahadevan R, Palsson BØ, Lovley DR. In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nat Rev Microbiol 2010;9.
    • (2010) Nat Rev Microbiol , pp. 9
    • Mahadevan, R.1    Palsson, B.O.2    Lovley, D.R.3
  • 88
    • 0034811345 scopus 로고    scopus 로고
    • Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry
    • Wittmann C, Heinzle E. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. Metabolic Eng 2001; 3:173-91.
    • (2001) Metabolic Eng , vol.3 , pp. 173-191
    • Wittmann, C.1    Heinzle, E.2
  • 89
    • 10644275010 scopus 로고    scopus 로고
    • A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus
    • Poolman MG, Venkatesh KV, Pidcock MK, et al. A method for the determination of flux in elementary modes, and its application to Lactobacillus rhamnosus. Biotechnol Bioeng 2004;88:601-12.
    • (2004) Biotechnol Bioeng , vol.88 , pp. 601-612
    • Poolman, M.G.1    Venkatesh, K.V.2    Pidcock, M.K.3
  • 90
    • 70350460030 scopus 로고    scopus 로고
    • Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens
    • Risso C, Sun J, Zhuang K, et al. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens. BMC Genomics 2009;10:447.
    • (2009) BMC Genomics , vol.10 , pp. 447
    • Risso, C.1    Sun, J.2    Zhuang, K.3
  • 91
    • 60849099919 scopus 로고    scopus 로고
    • Genome-scale constraintbased modeling of Geobacter metallireducens
    • Sun J, Sayyar B, Butler JE, et al. Genome-scale constraintbased modeling of Geobacter metallireducens. BMC Syst Biol 2009;3:15.
    • (2009) BMC Syst Biol , vol.3 , pp. 15
    • Sun, J.1    Sayyar, B.2    Butler, J.E.3
  • 92
    • 69249102097 scopus 로고    scopus 로고
    • Genome-scale gene/reaction essentiality and synthetic lethality analysis
    • Suthers PF, Zomorrodi A, Maranas CD. Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 2009;5:301.
    • (2009) Mol Syst Biol , vol.5 , pp. 301
    • Suthers, P.F.1    Zomorrodi, A.2    Maranas, C.D.3
  • 93
    • 84870335175 scopus 로고    scopus 로고
    • Using topology of the metabolic network to predict viability of mutant strains
    • P15
    • Wunderlich Z, Mirny L. Using topology of the metabolic network to predict viability of mutant strains. Genome Biol 2005;6:P15.
    • (2005) Genome Biol , vol.6
    • Wunderlich, Z.1    Mirny, L.2
  • 94
    • 8744224466 scopus 로고    scopus 로고
    • OptStrain: a computational framework for redesign of microbial production systems
    • Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of microbial production systems. Genome Res 2004;14:2367-76.
    • (2004) Genome Res , vol.14 , pp. 2367-2376
    • Pharkya, P.1    Burgard, A.P.2    Maranas, C.D.3
  • 95
    • 0347762731 scopus 로고    scopus 로고
    • Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock
    • Pharkya P, Burgard AP, Maranas CD. Exploring the overproduction of amino acids using the bilevel optimization framework OptKnock. Biotechnol Bioeng 2003;84:887-99.
    • (2003) Biotechnol Bioeng , vol.84 , pp. 887-899
    • Pharkya, P.1    Burgard, A.P.2    Maranas, C.D.3
  • 96
    • 45749137679 scopus 로고    scopus 로고
    • Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
    • Trinh CT, Unrean P, Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl EnvMicrobiol 2008;74:3634-43.
    • (2008) Appl Env Microbiol , vol.74 , pp. 3634-3643
    • Trinh, C.T.1    Unrean, P.2    Srienc, F.3
  • 97
    • 25144505718 scopus 로고    scopus 로고
    • In silico design and adaptive evolution of Escherichia coli for production of lactic acid
    • Fong SS, Burgard AP, Herring CD, et al. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 2005;91:643-8.
    • (2005) Biotechnol Bioeng , vol.91 , pp. 643-648
    • Fong, S.S.1    Burgard, A.P.2    Herring, C.D.3
  • 98
    • 67449096729 scopus 로고    scopus 로고
    • Flux balance analysis of biological systems: applications and challenges
    • Raman K, Chandra N. Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 2009;10: 435-49.
    • (2009) Brief Bioinform , vol.10 , pp. 435-449
    • Raman, K.1    Chandra, N.2
  • 99
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe NM, Babu MM, Yu H, et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004;431:308-12.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3
  • 100
    • 52249117613 scopus 로고    scopus 로고
    • Single and multiple input modules in regulatory networks
    • Konagurthu AS, Lesk AM. Single and multiple input modules in regulatory networks. Proteins 2008;73:320-4.
    • (2008) Proteins , vol.73 , pp. 320-324
    • Konagurthu, A.S.1    Lesk, A.M.2
  • 101
    • 60649110658 scopus 로고    scopus 로고
    • Dynamic network topology changes in functional modules predict responses to oxidative stress in yeast
    • Gopalacharyulu PV, Velagapudi V, Lindfors E. Dynamic network topology changes in functional modules predict responses to oxidative stress in yeast. Mol Bio Syst 2009.
    • (2009) Mol Bio Syst
    • Gopalacharyulu, P.V.1    Velagapudi, V.2    Lindfors, E.3
  • 102
    • 84856094560 scopus 로고    scopus 로고
    • Differential network biology
    • Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol 2012;8:1-9.
    • (2012) Mol Syst Biol , vol.8 , pp. 1-9
    • Ideker, T.1    Krogan, N.J.2
  • 103
    • 15444372528 scopus 로고    scopus 로고
    • Subnets of scale-free networks are not scale-free: sampling properties of networks
    • Stumpf MPH, Wiuf C, May RM. Subnets of scale-free networks are not scale-free: sampling properties of networks. Proc Natl Acad Sci USA 2005;102:4221-4.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 4221-4224
    • Stumpf, M.P.H.1    Wiuf, C.2    May, R.M.3
  • 104
    • 84862787765 scopus 로고    scopus 로고
    • A new essential protein discovery method based on the integration of proteinprotein interaction and gene expression data
    • Li M, Zhang H, Wang J, et al. A new essential protein discovery method based on the integration of proteinprotein interaction and gene expression data. BMC Syst Biol 2012;6:15.
    • (2012) BMC Syst Biol , vol.6 , pp. 15
    • Li, M.1    Zhang, H.2    Wang, J.3
  • 105
    • 84871614075 scopus 로고    scopus 로고
    • Identification of essential proteins based on edge clustering coefficient
    • Wang J, Li M, Wang H, et al. Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transact Comput Biol Bioinform 2011;6.
    • (2011) IEEE/ACM Transact Comput Biol Bioinform , pp. 6
    • Wang, J.1    Li, M.2    Wang, H.3
  • 106
    • 77953508699 scopus 로고    scopus 로고
    • Mathematical modeling: bridging the gap between concept and realization in synthetic biology
    • Zheng Y, Sriram G. Mathematical modeling: bridging the gap between concept and realization in synthetic biology. J Biomed Biotechnol 2010;2010:541609.
    • (2010) J Biomed Biotechnol , vol.2010 , pp. 541609
    • Zheng, Y.1    Sriram, G.2
  • 109
    • 1942487792 scopus 로고    scopus 로고
    • A nonlinear discrete dynamical model for transcriptional regulation: construction and properties
    • Goutsias J, Kim S. A nonlinear discrete dynamical model for transcriptional regulation: construction and properties. Biophys J 2004;86:1922-45.
    • (2004) Biophys J , vol.86 , pp. 1922-1945
    • Goutsias, J.1    Kim, S.2
  • 110
    • 84862868724 scopus 로고    scopus 로고
    • BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes
    • Gao J, Li L, Wu X, et al. BioNetSim: a Petri net-based modeling tool for simulations of biochemical processes. Protein Cell 2012;3:225-9.
    • (2012) Protein Cell , vol.3 , pp. 225-229
    • Gao, J.1    Li, L.2    Wu, X.3
  • 111
    • 80052023331 scopus 로고    scopus 로고
    • Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models
    • Pozo C, Marin-Sanguino A, Alves R, et al. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models. BMCSyst Biol 2011;5:137.
    • (2011) BMC Syst Biol , vol.5 , pp. 137
    • Pozo, C.1    Marin-Sanguino, A.2    Alves, R.3
  • 112
    • 80054062207 scopus 로고    scopus 로고
    • Rule-based multi-level modeling of cell biological systems
    • Maus C, Rybacki S, Uhrmacher AM. Rule-based multi-level modeling of cell biological systems. BMC Syst Biol 2011;5:166.
    • (2011) BMC Syst Biol , vol.5 , pp. 166
    • Maus, C.1    Rybacki, S.2    Uhrmacher, A.M.3
  • 113
    • 6044260198 scopus 로고    scopus 로고
    • Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics
    • Visser D, Schmid JW, Mauch K, et al. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metabolic Eng 2004;6:378-90.
    • (2004) Metabolic Eng , vol.6 , pp. 378-390
    • Visser, D.1    Schmid, J.W.2    Mauch, K.3
  • 114
    • 38149030146 scopus 로고    scopus 로고
    • In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae
    • Alves R, Sorribas A. In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae. BMCSyst Biol 2007;1:10.
    • (2007) BMC Syst Biol , vol.1 , pp. 10
    • Alves, R.1    Sorribas, A.2
  • 115
    • 77954196484 scopus 로고    scopus 로고
    • Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation
    • Liebermeister W, Uhlendorf J, Klipp E. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bio informatics 2010;26:1528-34.
    • (2010) Bio informatics , vol.26 , pp. 1528-1534
    • Liebermeister, W.1    Uhlendorf, J.2    Klipp, E.3
  • 116
    • 79952983516 scopus 로고    scopus 로고
    • Mathematical modeling of gene expression: a guide for the perplexed biologist
    • Ay A, Arnosti DN. Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit Rev Biochem Mol Biol 2011;46:137-51.
    • (2011) Crit Rev Biochem Mol Biol , vol.46 , pp. 137-151
    • Ay, A.1    Arnosti, D.N.2
  • 117
    • 0014733809 scopus 로고
    • Biochemical systems analysis 3. Dynamic solutions using a power-law approximation
    • Savageau M. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J Theor Biol 1970;26:215-26.
    • (1970) J Theor Biol , vol.26 , pp. 215-226
    • Savageau, M.1
  • 118
    • 0014649230 scopus 로고
    • Biochemical systems analysis
    • Savageau M. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 1969;25:365-9.
    • (1969) J Theor Biol , vol.25 , pp. 365-369
    • Savageau, M.1
  • 119
    • 0014658880 scopus 로고
    • Biochemical systems analysis II. The steadystate solutions for an n-pool system using a power-law approximation
    • Savageau M. Biochemical systems analysis. II. The steadystate solutions for an n-pool system using a power-law approximation. J Theor Biol 1969;25:370-9.
    • (1969) J Theor Biol , vol.25 , pp. 370-379
    • Savageau, M.1
  • 120
    • 0014974440 scopus 로고
    • On the relation between effector concentration and the rate of induced enzyme synthesis
    • Yagil G, Yagil E. On the relation between effector concentration and the rate of induced enzyme synthesis. BiophysJ 1971;11:11-27.
    • (1971) Biophys J , vol.11 , pp. 11-27
    • Yagil, G.1    Yagil, E.2
  • 121
    • 0016419101 scopus 로고
    • Quantitative aspects of protein induction
    • Yagil G. Quantitative aspects of protein induction. Curr Topic Cell Reg 1975;9:183-236.
    • (1975) Curr Topic Cell Reg , vol.9 , pp. 183-236
    • Yagil, G.1
  • 122
    • 0033857139 scopus 로고    scopus 로고
    • Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry
    • Teusink B, Passarge J, Reijenga CA, et al. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem/ FEBS 2000;267:5313-29.
    • (2000) Eur J Biochem/ FEBS , vol.267 , pp. 5313-5329
    • Teusink, B.1    Passarge, J.2    Reijenga, C.A.3
  • 123
    • 0019751251 scopus 로고
    • Kinetic models of metabolism in intact cells, tissues, and organisms
    • Wright B, Kelly P. Kinetic models of metabolism in intact cells, tissues, and organisms. Curr Topic Cell Reg 1981;19: 103-58.
    • (1981) Curr Topic Cell Reg , vol.19 , pp. 103-158
    • Wright, B.1    Kelly, P.2
  • 124
    • 0343907200 scopus 로고    scopus 로고
    • In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model
    • Rizzi M, Baltes M, Theobald U, et al. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol Bioeng 1997;55:592-608.
    • (1997) Biotechnol Bioeng , vol.55 , pp. 592-608
    • Rizzi, M.1    Baltes, M.2    Theobald, U.3
  • 125
    • 84871620196 scopus 로고    scopus 로고
    • In vivo dynamics of the pentose phosphate pathway
    • Vaseghi S, Baumeister A, Rizzi M, et al. In vivo dynamics of the pentose phosphate pathway. Metabol Eng 1999;140.
    • (1999) Metabol Eng , pp. 140
    • Vaseghi, S.1    Baumeister, A.2    Rizzi, M.3
  • 126
    • 0141684666 scopus 로고    scopus 로고
    • Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics
    • Visser D, Heijnen JJ. Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metabol Eng 2003;5:164-76.
    • (2003) Metabol Eng , vol.5 , pp. 164-176
    • Visser, D.1    Heijnen, J.J.2
  • 127
    • 83055184862 scopus 로고    scopus 로고
    • Mathematical modeling of fission yeast Schizosaccharomyces pombe cell cycle: exploring the role of multiple phosphatases
    • Anbumathi P, Bhartiya S, Venkatesh KV. Mathematical modeling of fission yeast Schizosaccharomyces pombe cell cycle: exploring the role of multiple phosphatases. Syst Synth Biol 2011;5:115-29.
    • (2011) Syst Synth Biol , vol.5 , pp. 115-129
    • Anbumathi, P.1    Bhartiya, S.2    Venkatesh, K.V.3
  • 128
    • 44449126770 scopus 로고    scopus 로고
    • Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling
    • Caldara M, Dupont G, Leroy F, et al. Arginine biosynthesis in Escherichia coli: experimental perturbation and mathematical modeling. J Biol Chem 2008;283:6347-58.
    • (2008) J Biol Chem , vol.283 , pp. 6347-6358
    • Caldara, M.1    Dupont, G.2    Leroy, F.3
  • 129
    • 33646537773 scopus 로고    scopus 로고
    • Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp
    • Rabouille S, Staal M, Stal LJ, et al. Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp. Appl Environ Microbiol 2006;72: 3217-27.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 3217-3227
    • Rabouille, S.1    Staal, M.2    Stal, L.J.3
  • 130
    • 63649141014 scopus 로고    scopus 로고
    • Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies
    • Dräger A, Kronfeld M, Ziller MJ, et al. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies. BMC Syst Biol 2009;3:5.
    • (2009) BMC Syst Biol , vol.3 , pp. 5
    • Dräger, A.1    Kronfeld, M.2    Ziller, M.J.3
  • 131
    • 33748605597 scopus 로고    scopus 로고
    • Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets
    • Singh VK, Ghosh I. Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets. Theor Biol Med Model 2006;3:27.
    • (2006) Theor Biol Med Model , vol.3 , pp. 27
    • Singh, V.K.1    Ghosh, I.2
  • 132
    • 77049084742 scopus 로고    scopus 로고
    • Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models
    • Jamshidi N, Palsson BØ. Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys J 2010;98:175-85.
    • (2010) Biophys J , vol.98 , pp. 175-185
    • Jamshidi, N.1    Palsson, B.O.2
  • 133
    • 77649176477 scopus 로고    scopus 로고
    • Towards a genome-scale kinetic model of cellular metabolism
    • Smallbone K, Simeonidis E, Swainston N, et al. Towards a genome-scale kinetic model of cellular metabolism. Syst Biol 2010;4.
    • (2010) Syst Biol , pp. 4
    • Smallbone, K.1    Simeonidis, E.2    Swainston, N.3
  • 134
    • 77955155869 scopus 로고    scopus 로고
    • Base pairing small RNAs and their roles in global regulatory networks
    • Beisel CL, Storz G. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 2010;34:866-82.
    • (2010) FEMS Microbiol Rev , vol.34 , pp. 866-882
    • Beisel, C.L.1    Storz, G.2
  • 135
    • 77955077136 scopus 로고    scopus 로고
    • Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis
    • DiChiara JM, Contreras-Martinez LM, Livny J, et al. Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Res 2010;38: 4067-78.
    • (2010) Nucleic Acids Res , vol.38 , pp. 4067-4078
    • DiChiara, J.M.1    Contreras-Martinez, L.M.2    Livny, J.3
  • 136
    • 78349267981 scopus 로고    scopus 로고
    • Comparative genome-wide analysis of small RNAs of major Grampositive pathogens: from identification to application
    • Mraheil MA, Billion A, Kuenne C, et al. Comparative genome-wide analysis of small RNAs of major Grampositive pathogens: from identification to application. Microbial Biotechnol 2010;3:658-76.
    • (2010) Microbial Biotechnol , vol.3 , pp. 658-676
    • Mraheil, M.A.1    Billion, A.2    Kuenne, C.3
  • 137
    • 80053019485 scopus 로고    scopus 로고
    • Regulation by small RNAs in bacteria: expanding frontiers
    • Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011;43: 880-91.
    • (2011) Mol Cell , vol.43 , pp. 880-891
    • Storz, G.1    Vogel, J.2    Wassarman, K.M.3
  • 138
    • 79960967875 scopus 로고    scopus 로고
    • A genome-wide approach to discovery of small RNAs involved in regulation of virulence in Vibrio cholerae
    • Bradley ES, Bodi K, Ismail AM, et al. A genome-wide approach to discovery of small RNAs involved in regulation of virulence in Vibrio cholerae. PLoS Pathogen 2011;7: e1002126.
    • (2011) PLoS Pathogen , vol.7
    • Bradley, E.S.1    Bodi, K.2    Ismail, A.M.3
  • 139
    • 0037008673 scopus 로고    scopus 로고
    • Transcriptional regulation in constraints-based metabolic models of Escherichia coli
    • Covert MW, Palsson BØ. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J BiolChem 2002;277:28058-64.
    • (2002) J BiolChem , vol.277 , pp. 28058-28064
    • Covert, M.W.1    Palsson, B.O.2
  • 140
    • 34247183123 scopus 로고    scopus 로고
    • A genome-scale computational study of the interplay between transcriptional regulation and metabolism
    • Shlomi T, Eisenberg Y, Sharan R, et al. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 2007;3:101.
    • (2007) Mol Syst Biol , vol.3 , pp. 101
    • Shlomi, T.1    Eisenberg, Y.2    Sharan, R.3
  • 141
    • 51749113592 scopus 로고    scopus 로고
    • Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli
    • Covert MW, Xiao N, Chen TJ, et al. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 2008;24:2044-50.
    • (2008) Bioinformatics , vol.24 , pp. 2044-2050
    • Covert, M.W.1    Xiao, N.2    Chen, T.J.3
  • 142
    • 79751525708 scopus 로고    scopus 로고
    • A computational tool for the simulation and optimization of microbial strains accounting integrated metabolic/regulatory information
    • Vilaça P, Rocha I, Rocha M. A computational tool for the simulation and optimization of microbial strains accounting integrated metabolic/regulatory information. Bio Syst 2011; 103:435-41.
    • (2011) Bio Syst , vol.103 , pp. 435-441
    • Vilaça, P.1    Rocha, I.2    Rocha, M.3
  • 143
    • 56249109734 scopus 로고    scopus 로고
    • A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables
    • Kim J, Varner J, Ramkrishna D. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Biotechnol Prog 2008;24: 993-1006.
    • (2008) Biotechnol Prog , vol.24 , pp. 993-1006
    • Kim, J.1    Varner, J.2    Ramkrishna, D.3
  • 144
    • 79957637424 scopus 로고    scopus 로고
    • A survey on methods for modeling and analyzing integrated biological networks
    • Tenazinha N, Vinga S. A survey on methods for modeling and analyzing integrated biological networks. IEEE/ACM Transact Comput Biol Bioinform 2011;8:943-58.
    • (2011) IEEE/ACM Transact Comput Biol Bioinform , vol.8 , pp. 943-958
    • Tenazinha, N.1    Vinga, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.