메뉴 건너뛰기




Volumn 22, Issue 9, 2012, Pages

All-stencil transistor fabrication on 3D silicon substrates

Author keywords

[No Author keywords available]

Indexed keywords

3-D SUBSTRATE; ELECTRONIC COMPONENT; FLAT SUBSTRATES; PLANAR SUBSTRATE; RADIATION SENSORS; SILICON SUBSTRATES; STANDARD MATERIALS; STENCIL LITHOGRAPHY;

EID: 84866339168     PISSN: 09601317     EISSN: 13616439     Source Type: Journal    
DOI: 10.1088/0960-1317/22/9/095022     Document Type: Article
Times cited : (7)

References (30)
  • 1
    • 36149010714 scopus 로고
    • The transistor, a semi-conductor triode
    • 10.1103/PhysRev.74.230 0031-899X
    • Bardeen J and Brattain W H 1948 The transistor, a semi-conductor triode Phys. Rev. 74 230-1
    • (1948) Phys. Rev. , vol.74 , Issue.2 , pp. 230-231
    • Bardeen, J.1    Brattain, W.H.2
  • 2
    • 84866333971 scopus 로고
    • The electronic theory of the transistor
    • Shockley W, Bardeen J and Brattain W H 1948 The electronic theory of the transistor Science 108 678-9
    • (1948) Science , vol.108 , pp. 678-679
    • Shockley, W.1    Bardeen, J.2    Brattain, W.H.3
  • 3
    • 0001760670 scopus 로고
    • Solid logic technology - Versatile high-performance microelectronics
    • 10.1147/rd.82.0102 0018-8646
    • Davis E M et al 1964 Solid logic technology - versatile high-performance microelectronics IBM J. Res. Dev. 8 102-4
    • (1964) IBM J. Res. Dev. , vol.8 , Issue.2 , pp. 102-104
    • Davis, E.M.1
  • 4
    • 78650843310 scopus 로고    scopus 로고
    • Intel Corporation 2009 Introduction to Intel's 32nm process technology http://www.intel.com/content/www/us/en/performance/performance-intro-to-intels- 32nm-process-technology-paper.html
    • (2009) Introduction to Intel's 32nm Process Technology
  • 7
    • 0034205553 scopus 로고    scopus 로고
    • Resistless patterning of sub-micron structures by evaporation through nanostencils
    • 10.1016/S0167-9317(00)00343-9 0167-9317
    • Brugger J et al 2000 Resistless patterning of sub-micron structures by evaporation through nanostencils Microelectron. Eng. 53 403-5
    • (2000) Microelectron. Eng. , vol.53 , Issue.1-4 , pp. 403-405
    • Brugger, J.1
  • 8
    • 77955331450 scopus 로고    scopus 로고
    • High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy
    • 10.1021/nl101042a 1530-6984
    • Aksu S et al 2010 High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy Nano Lett. 10 2511-8
    • (2010) Nano Lett. , vol.10 , Issue.7 , pp. 2511-2518
    • Aksu, S.1
  • 9
    • 79951929628 scopus 로고    scopus 로고
    • Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications
    • 10.1021/nn1019253 1936-0851
    • Vazquez-Mena O et al 2011 Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications Acs Nano 5 844-53
    • (2011) Acs Nano , vol.5 , Issue.2 , pp. 844-853
    • Vazquez-Mena, O.1
  • 12
    • 77952963759 scopus 로고    scopus 로고
    • Contacting self-ordered molecular wires by nanostencil lithography
    • 10.1116/1.3292601 1071-1023 B
    • Gross L et al 2010 Contacting self-ordered molecular wires by nanostencil lithography J. Vac. Sci. Technol. B 28 C4D34-9
    • (2010) J. Vac. Sci. Technol. , vol.28 , Issue.3
    • Gross, L.1
  • 13
    • 44149126460 scopus 로고    scopus 로고
    • Resistivity measurements of gold wires fabricated by stencil lithography on flexible polymer substrates
    • 10.1016/j.mee.2007.12.069 0167-9317
    • Sidler K et al 2008 Resistivity measurements of gold wires fabricated by stencil lithography on flexible polymer substrates Microelectron. Eng. 85 1108-11
    • (2008) Microelectron. Eng. , vol.85 , Issue.5-6 , pp. 1108-1111
    • Sidler, K.1
  • 14
    • 84862872788 scopus 로고    scopus 로고
    • High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks
    • 10.1021/nn301358n 1936-0851
    • Vazquez-Mena O et al 2012 High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks Acs Nano 6 5474-81
    • (2012) Acs Nano , vol.6 , Issue.6 , pp. 5474-5481
    • Vazquez-Mena, O.1
  • 15
    • 77956446777 scopus 로고    scopus 로고
    • Hysteresis-free operation of suspended carbon nanotube transistors
    • 10.1038/nnano.2010.129 1748-3387
    • Muoth M et al 2010 Hysteresis-free operation of suspended carbon nanotube transistors Nature Nanotechnol. 5 589-92
    • (2010) Nature Nanotechnol. , vol.5 , Issue.8 , pp. 589-592
    • Muoth, M.1
  • 17
    • 44149094935 scopus 로고
    • Pattern transfer by dry etching through stencil masks
    • 10.1116/1.584016 0734-211X B
    • Pang S W et al 1988 Pattern transfer by dry etching through stencil masks J. Vac. Sci.Technol. B 6 249-52
    • (1988) J. Vac. Sci.Technol. , vol.6 , Issue.1 , pp. 249-252
    • Pang, S.W.1
  • 18
    • 44149112584 scopus 로고    scopus 로고
    • Etching of sub-micrometer structures through stencil
    • 10.1016/j.mee.2007.12.068 0167-9317
    • Villanueva G et al 2008 Etching of sub-micrometer structures through stencil Microelectron. Eng. 85 1010-4
    • (2008) Microelectron. Eng. , vol.85 , Issue.5-6 , pp. 1010-1014
    • Villanueva, G.1
  • 19
    • 48949116082 scopus 로고    scopus 로고
    • Stencil-assisted reactive ion etching for micro and nano patterning
    • 10.1016/j.mee.2008.04.027 0167-9317
    • Viallet B et al 2008 Stencil-assisted reactive ion etching for micro and nano patterning Microelectron. Eng. 85 1705-8
    • (2008) Microelectron. Eng. , vol.85 , Issue.8 , pp. 1705-1708
    • Viallet, B.1
  • 20
    • 5344265837 scopus 로고
    • Masked ion beam lithography for submicrometer-gate-length transistors
    • 10.1116/1.583868 0734-211X B
    • Pang S W et al 1987 Masked ion beam lithography for submicrometer-gate- length transistors J. Vac. Sci. Technol. B 5 215-8
    • (1987) J. Vac. Sci. Technol. , vol.5 , Issue.1 , pp. 215-218
    • Pang, S.W.1
  • 21
    • 79951888931 scopus 로고    scopus 로고
    • Localized ion implantation through micro/nanostencil masks
    • 10.1109/TNANO.2010.2090171 1536-125X
    • Villanueva L G et al 2011 Localized ion implantation through micro/nanostencil masks IEEE Trans. Nanotechnol. 10 940-6
    • (2011) IEEE Trans. Nanotechnol. , vol.10 , Issue.5 , pp. 940-946
    • Villanueva, L.G.1
  • 23
    • 79951865198 scopus 로고    scopus 로고
    • Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections
    • 10.1109/TNANO.2010.2042724 1536-125X
    • Vazquez-Mena O et al 2011 Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections IEEE Trans. Nanotechnol. 10 352-7
    • (2011) IEEE Trans. Nanotechnol. , vol.10 , Issue.2 , pp. 352-357
    • Vazquez-Mena, O.1
  • 24
    • 84856762864 scopus 로고    scopus 로고
    • Compliant membranes improve resolution in full-wafer micro/nanostencil lithography
    • 10.1039/c2nr11609j 2040-3364
    • Sidler K et al 2012 Compliant membranes improve resolution in full-wafer micro/nanostencil lithography Nanoscale 4 773-8
    • (2012) Nanoscale , vol.4 , Issue.3 , pp. 773-778
    • Sidler, K.1
  • 25
    • 79960200730 scopus 로고    scopus 로고
    • 100 mm dynamic stencils pattern sub-micrometre structures
    • 10.1039/c1nr10083a 2040-3364
    • Savu V, Xie S Q and Brugger J 2011 100 mm dynamic stencils pattern sub-micrometre structures Nanoscale 3 2739-42
    • (2011) Nanoscale , vol.3 , Issue.7 , pp. 2739-2742
    • Savu, V.1    Xie, S.Q.2    Brugger, J.3
  • 26
    • 45449115919 scopus 로고    scopus 로고
    • First double-sided 3D detectors fabricated at CNM-IMB
    • 10.1016/j.nima.2008.03.119 0168-9002 A
    • Pellegrini G et al 2008 First double-sided 3D detectors fabricated at CNM-IMB Nucl. Instrum. Methods Phys. Res. A 592 38-43
    • (2008) Nucl. Instrum. Methods Phys. Res. , vol.592 , Issue.1-2 , pp. 38-43
    • Pellegrini, G.1
  • 27
    • 84937744575 scopus 로고
    • Modeling and simulation of insulated-gate field-effect transistor switching circuits
    • 10.1109/JSSC.1968.1049902 0018-9200
    • Shichman H and Hodges D A 1968 Modeling and simulation of insulated-gate field-effect transistor switching circuits IEEE J. Solid-State Circuits 3 285
    • (1968) IEEE J. Solid-State Circuits , vol.3 , Issue.3 , pp. 285
    • Shichman, H.1    Hodges, D.A.2
  • 28
    • 49949128094 scopus 로고
    • Theoretical threshold voltages for MOS field effect transistors
    • 10.1016/0038-1101(68)90105-6 0038-1101
    • Richman P 1968 Theoretical threshold voltages for MOS field effect transistors Solid-State Electron. 11 869
    • (1968) Solid-State Electron. , vol.11 , Issue.9 , pp. 869
    • Richman, P.1
  • 29
    • 70349665405 scopus 로고    scopus 로고
    • Analysis of the blurring in stencil lithography
    • 10.1088/0957-4484/20/41/415303 0957-4484 415303
    • Vazquez-Mena O et al 2009 Analysis of the blurring in stencil lithography Nanotechnology 20 415303
    • (2009) Nanotechnology , vol.20 , Issue.41
    • Vazquez-Mena, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.