메뉴 건너뛰기




Volumn 23, Issue 9, 2012, Pages 435-443

Mitochondrial dysfunction in white adipose tissue

Author keywords

[No Author keywords available]

Indexed keywords

2,4 DINITROPHENOL; 2,4 THIAZOLIDINEDIONE DERIVATIVE; ACETYLCYSTEINE; ADENOSINE TRIPHOSPHATE; ADIPONECTIN; ALPHA TOCOPHEROL; ANTIDIABETIC AGENT; ANTIOXIDANT; ASCORBIC ACID; CARBONYL CYANIDE 4 (TRIFLUOROMETHOXY)PHENYLHYDRAZONE; FATTY ACID; GLUTATHIONE; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA AGONIST; PIOGLITAZONE; ROSIGLITAZONE; THIOCTIC ACID; UBIDECARENONE;

EID: 84865440201     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2012.06.004     Document Type: Article
Times cited : (274)

References (89)
  • 1
    • 0035936764 scopus 로고    scopus 로고
    • Obesity and the regulation of energy balance
    • Spiegelman B.M., Flier J.S. Obesity and the regulation of energy balance. Cell 2001, 104:531-543.
    • (2001) Cell , vol.104 , pp. 531-543
    • Spiegelman, B.M.1    Flier, J.S.2
  • 2
    • 77954859197 scopus 로고    scopus 로고
    • The role of mitochondria in the pathogenesis of type 2 diabetes
    • Patti M.E., Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr. Rev. 2010, 31:364-395.
    • (2010) Endocr. Rev. , vol.31 , pp. 364-395
    • Patti, M.E.1    Corvera, S.2
  • 3
    • 77955594299 scopus 로고    scopus 로고
    • Physiological insights gained from gene expression analysis in obesity and diabetes
    • Keller M.P., Attie A.D. Physiological insights gained from gene expression analysis in obesity and diabetes. Annu. Rev. Nutr. 2010, 30:341-364.
    • (2010) Annu. Rev. Nutr. , vol.30 , pp. 341-364
    • Keller, M.P.1    Attie, A.D.2
  • 4
    • 44449124672 scopus 로고    scopus 로고
    • The secretory function of adipocytes in the physiology of white adipose tissue
    • Wang P., et al. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell Physiol. 2008, 216:3-13.
    • (2008) J. Cell Physiol. , vol.216 , pp. 3-13
    • Wang, P.1
  • 5
    • 79957916782 scopus 로고    scopus 로고
    • Adipose tissue remodeling and obesity
    • Sun K., et al. Adipose tissue remodeling and obesity. J. Clin. Invest. 2011, 121:2094-2101.
    • (2011) J. Clin. Invest. , vol.121 , pp. 2094-2101
    • Sun, K.1
  • 6
    • 70349240364 scopus 로고    scopus 로고
    • Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations
    • De Pauw A., et al. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am. J. Pathol. 2009, 175:927-939.
    • (2009) Am. J. Pathol. , vol.175 , pp. 927-939
    • De Pauw, A.1
  • 7
    • 80053904684 scopus 로고    scopus 로고
    • Mitochondrial complex III ROS regulate adipocyte differentiation
    • Tormos K.V., et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011, 14:537-544.
    • (2011) Cell Metab. , vol.14 , pp. 537-544
    • Tormos, K.V.1
  • 8
    • 70349512259 scopus 로고    scopus 로고
    • Reactive oxygen species enhance insulin sensitivity
    • Loh K., et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009, 10:260-272.
    • (2009) Cell Metab. , vol.10 , pp. 260-272
    • Loh, K.1
  • 9
    • 77955658125 scopus 로고    scopus 로고
    • Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation
    • Lu R.H., et al. Mitochondrial development and the influence of its dysfunction during rat adipocyte differentiation. Mol. Biol. Rep. 2010, 37:2173-2182.
    • (2010) Mol. Biol. Rep. , vol.37 , pp. 2173-2182
    • Lu, R.H.1
  • 10
    • 55649086838 scopus 로고    scopus 로고
    • Reassessing triglyceride synthesis in adipose tissue
    • Nye C., et al. Reassessing triglyceride synthesis in adipose tissue. Trends Endocrinol. Metab. 2008, 19:356-361.
    • (2008) Trends Endocrinol. Metab. , vol.19 , pp. 356-361
    • Nye, C.1
  • 11
    • 52749093466 scopus 로고    scopus 로고
    • Pyruvate dehydrogenase kinase 4: regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue
    • Cadoudal T., et al. Pyruvate dehydrogenase kinase 4: regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes 2008, 57:2272-2279.
    • (2008) Diabetes , vol.57 , pp. 2272-2279
    • Cadoudal, T.1
  • 12
    • 33746377553 scopus 로고    scopus 로고
    • Obesity-related derangements in metabolic regulation
    • Muoio D.M., Newgard C.B. Obesity-related derangements in metabolic regulation. Annu. Rev. Biochem. 2006, 75:367-401.
    • (2006) Annu. Rev. Biochem. , vol.75 , pp. 367-401
    • Muoio, D.M.1    Newgard, C.B.2
  • 13
    • 67649422709 scopus 로고    scopus 로고
    • As a matter of fat
    • Brookheart R.T., et al. As a matter of fat. Cell Metab. 2009, 10:9-12.
    • (2009) Cell Metab. , vol.10 , pp. 9-12
    • Brookheart, R.T.1
  • 14
    • 77949568291 scopus 로고    scopus 로고
    • Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes
    • Gao C.L., et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol. Cell. Endocrinol. 2010, 320:25-33.
    • (2010) Mol. Cell. Endocrinol. , vol.320 , pp. 25-33
    • Gao, C.L.1
  • 15
    • 85047689659 scopus 로고    scopus 로고
    • Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone
    • Wilson-Fritch L., et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Invest. 2004, 114:1281-1289.
    • (2004) J. Clin. Invest. , vol.114 , pp. 1281-1289
    • Wilson-Fritch, L.1
  • 16
    • 84863416895 scopus 로고    scopus 로고
    • Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1
    • Asterholm I.W., et al. Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab. 2012, 15:171-185.
    • (2012) Cell Metab. , vol.15 , pp. 171-185
    • Asterholm, I.W.1
  • 17
    • 33644821858 scopus 로고    scopus 로고
    • Mitochondria are impaired in the adipocytes of type 2 diabetic mice
    • Choo H.J., et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 2006, 49:784-791.
    • (2006) Diabetologia , vol.49 , pp. 784-791
    • Choo, H.J.1
  • 18
    • 81755187015 scopus 로고    scopus 로고
    • Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC-1alpha/ERRgamma complex
    • Devarakonda S., et al. Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC-1alpha/ERRgamma complex. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:18678-18683.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 18678-18683
    • Devarakonda, S.1
  • 19
  • 20
    • 28744448555 scopus 로고    scopus 로고
    • Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro
    • Bogacka I., et al. Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro. J. Clin. Endocrinol. Metab. 2005, 90:6650-6656.
    • (2005) J. Clin. Endocrinol. Metab. , vol.90 , pp. 6650-6656
    • Bogacka, I.1
  • 21
    • 50349102028 scopus 로고    scopus 로고
    • Acquired obesity and poor physical fitness impair expression of genes of mitochondrial oxidative phosphorylation in monozygotic twins discordant for obesity
    • Mustelin L., et al. Acquired obesity and poor physical fitness impair expression of genes of mitochondrial oxidative phosphorylation in monozygotic twins discordant for obesity. Am. J. Physiol. Endocrinol. Metab. 2008, 295:E148-E154.
    • (2008) Am. J. Physiol. Endocrinol. Metab. , vol.295
    • Mustelin, L.1
  • 22
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • Brand M.D. The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 2010, 45:466-472.
    • (2010) Exp. Gerontol. , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 23
    • 84857687489 scopus 로고    scopus 로고
    • Linking mitochondrial bioenergetics to insulin resistance via redox biology
    • Fisher-Wellman K.H., Neufer P.D. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends Endocrinol. Metab. 2012, 23:142-153.
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 142-153
    • Fisher-Wellman, K.H.1    Neufer, P.D.2
  • 24
    • 33749234188 scopus 로고    scopus 로고
    • 2 in cells and thereby their biological state
    • 2 in cells and thereby their biological state. Free Radic. Biol. Med. 2006, 41:1338-1350.
    • (2006) Free Radic. Biol. Med. , vol.41 , pp. 1338-1350
    • Buettner, G.R.1
  • 25
    • 67650815430 scopus 로고    scopus 로고
    • 2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
    • 2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 2009, 119:573-581.
    • (2009) J. Clin. Invest. , vol.119 , pp. 573-581
    • Anderson, E.J.1
  • 26
    • 78649497300 scopus 로고    scopus 로고
    • Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance
    • Lee H.Y., et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010, 12:668-674.
    • (2010) Cell Metab. , vol.12 , pp. 668-674
    • Lee, H.Y.1
  • 27
    • 77951842594 scopus 로고    scopus 로고
    • Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction
    • Curtis J.M., et al. Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes 2010, 59:1132-1142.
    • (2010) Diabetes , vol.59 , pp. 1132-1142
    • Curtis, J.M.1
  • 28
    • 33645860825 scopus 로고    scopus 로고
    • Reactive oxygen species have a causal role in multiple forms of insulin resistance
    • Houstis N., et al. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440:944-948.
    • (2006) Nature , vol.440 , pp. 944-948
    • Houstis, N.1
  • 29
    • 77955056108 scopus 로고    scopus 로고
    • Respiration in adipocytes is inhibited by reactive oxygen species
    • Wang T., et al. Respiration in adipocytes is inhibited by reactive oxygen species. Obesity (Silver Spring) 2010, 18:1493-1502.
    • (2010) Obesity (Silver Spring) , vol.18 , pp. 1493-1502
    • Wang, T.1
  • 30
    • 20044363264 scopus 로고    scopus 로고
    • The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species
    • Lin Y., et al. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J. Biol. Chem. 2005, 280:4617-4626.
    • (2005) J. Biol. Chem. , vol.280 , pp. 4617-4626
    • Lin, Y.1
  • 31
    • 77956342883 scopus 로고    scopus 로고
    • TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes
    • Chen X.H., et al. TNF-alpha induces mitochondrial dysfunction in 3T3-L1 adipocytes. Mol. Cell. Endocrinol. 2010, 328:63-69.
    • (2010) Mol. Cell. Endocrinol. , vol.328 , pp. 63-69
    • Chen, X.H.1
  • 32
    • 85030434746 scopus 로고    scopus 로고
    • Increased oxidative stress in obesity and its impact on metabolic syndrome
    • Furukawa S., et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2004, 114:1752-1761.
    • (2004) J. Clin. Invest. , vol.114 , pp. 1752-1761
    • Furukawa, S.1
  • 33
    • 84860536507 scopus 로고    scopus 로고
    • Mild mitochondrial uncoupling does not affect mitochondrial biogenesis but downregulates pyruvate carboxylase in adipocytes: role for triglyceride content reduction
    • De Pauw A., et al. Mild mitochondrial uncoupling does not affect mitochondrial biogenesis but downregulates pyruvate carboxylase in adipocytes: role for triglyceride content reduction. Am. J. Physiol. Endocrinol. Metab. 2012, 302:E1123-E1141.
    • (2012) Am. J. Physiol. Endocrinol. Metab. , vol.302
    • De Pauw, A.1
  • 34
    • 48449104184 scopus 로고    scopus 로고
    • FALDH reverses the deleterious action of oxidative stress induced by lipid peroxidation product 4-hydroxynonenal on insulin signaling in 3T3-L1 adipocytes
    • Demozay D., et al. FALDH reverses the deleterious action of oxidative stress induced by lipid peroxidation product 4-hydroxynonenal on insulin signaling in 3T3-L1 adipocytes. Diabetes 2008, 57:1216-1226.
    • (2008) Diabetes , vol.57 , pp. 1216-1226
    • Demozay, D.1
  • 35
    • 17644399404 scopus 로고    scopus 로고
    • Role of insulin-induced reactive oxygen species in the insulin signaling pathway
    • Goldstein B.J., et al. Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid. Redox Signal. 2005, 7:1021-1031.
    • (2005) Antioxid. Redox Signal. , vol.7 , pp. 1021-1031
    • Goldstein, B.J.1
  • 36
    • 0142038998 scopus 로고    scopus 로고
    • Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species
    • Carriere A., et al. Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett. 2003, 550:163-167.
    • (2003) FEBS Lett. , vol.550 , pp. 163-167
    • Carriere, A.1
  • 37
    • 38949140543 scopus 로고    scopus 로고
    • Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissue
    • MacLaren R., et al. Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissue. J. Lipid Res. 2008, 49:308-323.
    • (2008) J. Lipid Res. , vol.49 , pp. 308-323
    • MacLaren, R.1
  • 38
    • 0037304599 scopus 로고    scopus 로고
    • Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone
    • Wilson-Fritch L., et al. Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol. Cell. Biol. 2003, 23:1085-1094.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 1085-1094
    • Wilson-Fritch, L.1
  • 40
    • 40549105064 scopus 로고    scopus 로고
    • Genetic variations at the CCAAT/enhancer-binding protein delta are associated with metabolic phenotypes in the Japanese population
    • Kaji H., et al. Genetic variations at the CCAAT/enhancer-binding protein delta are associated with metabolic phenotypes in the Japanese population. Metab. Syndr. Relat. Disord. 2008, 6:24-31.
    • (2008) Metab. Syndr. Relat. Disord. , vol.6 , pp. 24-31
    • Kaji, H.1
  • 41
    • 35848966984 scopus 로고    scopus 로고
    • Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue
    • Kaaman M., et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 2007, 50:2526-2533.
    • (2007) Diabetologia , vol.50 , pp. 2526-2533
    • Kaaman, M.1
  • 42
    • 57649155209 scopus 로고    scopus 로고
    • Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells
    • Shi X., et al. Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J. Biol. Chem. 2008, 283:30658-30667.
    • (2008) J. Biol. Chem. , vol.283 , pp. 30658-30667
    • Shi, X.1
  • 43
    • 14644392828 scopus 로고    scopus 로고
    • Activity profiles of deoxynucleoside kinases and 5'-nucleotidases in cultured adipocytes and myoblastic cells: insights into mitochondrial toxicity of nucleoside analogs
    • Rylova S.N., et al. Activity profiles of deoxynucleoside kinases and 5'-nucleotidases in cultured adipocytes and myoblastic cells: insights into mitochondrial toxicity of nucleoside analogs. Biochem. Pharmacol. 2005, 69:951-960.
    • (2005) Biochem. Pharmacol. , vol.69 , pp. 951-960
    • Rylova, S.N.1
  • 44
    • 77955293072 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes
    • Wang C.H., et al. Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Ann. N. Y. Acad. Sci. 2010, 1201:157-165.
    • (2010) Ann. N. Y. Acad. Sci. , vol.1201 , pp. 157-165
    • Wang, C.H.1
  • 45
    • 33646819645 scopus 로고    scopus 로고
    • CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes
    • Vankoningsloo S., et al. CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes. J. Cell Sci. 2006, 119:1266-1282.
    • (2006) J. Cell Sci. , vol.119 , pp. 1266-1282
    • Vankoningsloo, S.1
  • 46
    • 0037163021 scopus 로고    scopus 로고
    • The key role of anaplerosis and cataplerosis for citric acid cycle function
    • Owen O.E., et al. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 2002, 277:30409-30412.
    • (2002) J. Biol. Chem. , vol.277 , pp. 30409-30412
    • Owen, O.E.1
  • 47
    • 0037154217 scopus 로고    scopus 로고
    • A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice
    • Olswang Y., et al. A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:625-630.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 625-630
    • Olswang, Y.1
  • 48
    • 80054773472 scopus 로고    scopus 로고
    • IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes
    • Ji C., et al. IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes. J. Bioenerg. Biomembr. 2011, 43:367-375.
    • (2011) J. Bioenerg. Biomembr. , vol.43 , pp. 367-375
    • Ji, C.1
  • 49
    • 61449199440 scopus 로고    scopus 로고
    • Proteomic analysis of mitochondrial proteins of basal and lipolytically (isoproterenol and TNF-alpha)-stimulated adipocytes
    • Cho S.Y., et al. Proteomic analysis of mitochondrial proteins of basal and lipolytically (isoproterenol and TNF-alpha)-stimulated adipocytes. J. Cell Biochem. 2009, 106:257-266.
    • (2009) J. Cell Biochem. , vol.106 , pp. 257-266
    • Cho, S.Y.1
  • 50
    • 33646346627 scopus 로고    scopus 로고
    • Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists
    • Nawrocki A.R., et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J. Biol. Chem. 2006, 281:2654-2660.
    • (2006) J. Biol. Chem. , vol.281 , pp. 2654-2660
    • Nawrocki, A.R.1
  • 51
    • 33746126131 scopus 로고    scopus 로고
    • Reactive species, cellular repair and risk factors in the onset of type 2 diabetes mellitus: review and hypothesis
    • Fridlyand L.E., Philipson L.H. Reactive species, cellular repair and risk factors in the onset of type 2 diabetes mellitus: review and hypothesis. Curr. Diabetes Rev. 2006, 2:241-259.
    • (2006) Curr. Diabetes Rev. , vol.2 , pp. 241-259
    • Fridlyand, L.E.1    Philipson, L.H.2
  • 52
    • 33644698801 scopus 로고    scopus 로고
    • (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage
    • Voloboueva L.A., et al. (R)-alpha-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest. Ophthalmol. Vis. Sci. 2005, 46:4302-4310.
    • (2005) Invest. Ophthalmol. Vis. Sci. , vol.46 , pp. 4302-4310
    • Voloboueva, L.A.1
  • 53
    • 36649024590 scopus 로고    scopus 로고
    • R-alpha-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes
    • Shen W., et al. R-alpha-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia 2008, 51:165-174.
    • (2008) Diabetologia , vol.51 , pp. 165-174
    • Shen, W.1
  • 54
    • 79960130715 scopus 로고    scopus 로고
    • Targeting thermogenesis and related pathways in anti-obesity drug discovery
    • Clapham J.C., Arch J.R. Targeting thermogenesis and related pathways in anti-obesity drug discovery. Pharmacol. Ther. 2011, 131:295-308.
    • (2011) Pharmacol. Ther. , vol.131 , pp. 295-308
    • Clapham, J.C.1    Arch, J.R.2
  • 55
    • 0035502402 scopus 로고    scopus 로고
    • Mitochondrial uncoupling as a target for drug development for the treatment of obesity
    • Harper J.A., et al. Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes. Rev. 2001, 2:255-265.
    • (2001) Obes. Rev. , vol.2 , pp. 255-265
    • Harper, J.A.1
  • 56
    • 23044509078 scopus 로고    scopus 로고
    • Pediatric fatality following ingestion of dinitrophenol: postmortem identification of a 'dietary supplement'
    • Hsiao A.L., et al. Pediatric fatality following ingestion of dinitrophenol: postmortem identification of a 'dietary supplement'. Clin. Toxicol. (Phila.) 2005, 43:281-285.
    • (2005) Clin. Toxicol. (Phila.) , vol.43 , pp. 281-285
    • Hsiao, A.L.1
  • 57
    • 62149139816 scopus 로고    scopus 로고
    • Mild mitochondrial uncoupling induces 3T3-L1 adipocyte de-differentiation by a PPARgamma-independent mechanism, whereas TNFalpha-induced de-differentiation is PPARgamma dependent
    • Tejerina S., et al. Mild mitochondrial uncoupling induces 3T3-L1 adipocyte de-differentiation by a PPARgamma-independent mechanism, whereas TNFalpha-induced de-differentiation is PPARgamma dependent. J. Cell Sci. 2009, 122:145-155.
    • (2009) J. Cell Sci. , vol.122 , pp. 145-155
    • Tejerina, S.1
  • 58
    • 34547596186 scopus 로고    scopus 로고
    • Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes
    • Toledo F.G., et al. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 2007, 56:2142-2147.
    • (2007) Diabetes , vol.56 , pp. 2142-2147
    • Toledo, F.G.1
  • 59
    • 84862776702 scopus 로고    scopus 로고
    • A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis
    • Bostrom P., et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481:463-468.
    • (2012) Nature , vol.481 , pp. 463-468
    • Bostrom, P.1
  • 60
    • 39749140405 scopus 로고    scopus 로고
    • HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha
    • Arany Z., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 2008, 451:1008-1012.
    • (2008) Nature , vol.451 , pp. 1008-1012
    • Arany, Z.1
  • 61
    • 84859615812 scopus 로고    scopus 로고
    • Dichotomous effects of VEGF-A on adipose tissue dysfunction
    • Sun K., et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:5874-5879.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 5874-5879
    • Sun, K.1
  • 62
    • 79953180902 scopus 로고    scopus 로고
    • Assessing mitochondrial dysfunction in cells
    • Brand M.D., Nicholls D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435:297-312.
    • (2011) Biochem. J. , vol.435 , pp. 297-312
    • Brand, M.D.1    Nicholls, D.G.2
  • 63
    • 79960898591 scopus 로고    scopus 로고
    • Mitochondria and endoplasmic reticulum: mitochondria-endoplasmic reticulum interplay in type 2 diabetes pathophysiology
    • Rieusset J. Mitochondria and endoplasmic reticulum: mitochondria-endoplasmic reticulum interplay in type 2 diabetes pathophysiology. Int. J. Biochem. Cell Biol. 2011, 43:1257-1262.
    • (2011) Int. J. Biochem. Cell Biol. , vol.43 , pp. 1257-1262
    • Rieusset, J.1
  • 64
    • 56949089426 scopus 로고    scopus 로고
    • Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance
    • Lim J.H., et al. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell. Signal. 2009, 21:169-177.
    • (2009) Cell. Signal. , vol.21 , pp. 169-177
    • Lim, J.H.1
  • 65
    • 42449152466 scopus 로고    scopus 로고
    • Lipid-induced metabolic dysfunction in skeletal muscle
    • Muoio D.M., Koves T.R. Lipid-induced metabolic dysfunction in skeletal muscle. Novartis Found. Symp. 2007, 286:24-38.
    • (2007) Novartis Found. Symp. , vol.286 , pp. 24-38
    • Muoio, D.M.1    Koves, T.R.2
  • 66
    • 37449020075 scopus 로고    scopus 로고
    • Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance
    • Koves T.R., et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008, 7:45-56.
    • (2008) Cell Metab. , vol.7 , pp. 45-56
    • Koves, T.R.1
  • 67
    • 78651260799 scopus 로고    scopus 로고
    • Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin
    • Holland W.L., et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011, 17:55-63.
    • (2011) Nat. Med. , vol.17 , pp. 55-63
    • Holland, W.L.1
  • 68
    • 80555124939 scopus 로고    scopus 로고
    • Ceramides as modulators of cellular and whole-body metabolism
    • Bikman B.T., Summers S.A. Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Invest. 2011, 121:4222-4230.
    • (2011) J. Clin. Invest. , vol.121 , pp. 4222-4230
    • Bikman, B.T.1    Summers, S.A.2
  • 69
    • 79952259618 scopus 로고    scopus 로고
    • Adipokines as novel biomarkers and regulators of the metabolic syndrome
    • Deng Y., Scherer P.E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 2010, 1212:E1-E19.
    • (2010) Ann. N. Y. Acad. Sci. , vol.1212
    • Deng, Y.1    Scherer, P.E.2
  • 70
    • 0028787490 scopus 로고
    • A novel serum protein similar to C1q, produced exclusively in adipocytes
    • Scherer P.E., et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 1995, 270:26746-26749.
    • (1995) J. Biol. Chem. , vol.270 , pp. 26746-26749
    • Scherer, P.E.1
  • 71
    • 77749242629 scopus 로고    scopus 로고
    • Enhanced metabolic flexibility associated with elevated adiponectin levels
    • Asterholm I.W., Scherer P.E. Enhanced metabolic flexibility associated with elevated adiponectin levels. Am. J. Pathol. 2010, 176:1364-1376.
    • (2010) Am. J. Pathol. , vol.176 , pp. 1364-1376
    • Asterholm, I.W.1    Scherer, P.E.2
  • 72
    • 70450134177 scopus 로고    scopus 로고
    • The road from discovery to clinic: adiponectin as a biomarker of metabolic status
    • Kusminski C.M., Scherer P.E. The road from discovery to clinic: adiponectin as a biomarker of metabolic status. Clin. Pharmacol. Ther. 2009, 86:592-595.
    • (2009) Clin. Pharmacol. Ther. , vol.86 , pp. 592-595
    • Kusminski, C.M.1    Scherer, P.E.2
  • 73
    • 70349088653 scopus 로고    scopus 로고
    • Systemic fate of the adipocyte-derived factor adiponectin
    • Halberg N., et al. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes 2009, 58:1961-1970.
    • (2009) Diabetes , vol.58 , pp. 1961-1970
    • Halberg, N.1
  • 74
    • 34248197560 scopus 로고    scopus 로고
    • Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention
    • Wang Z.V., et al. Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention. Mol. Cell. Biol. 2007, 27:3716-3731.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3716-3731
    • Wang, Z.V.1
  • 75
    • 36849085935 scopus 로고    scopus 로고
    • Essential role of mitochondrial function in adiponectin synthesis in adipocytes
    • Koh E.H., et al. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes 2007, 56:2973-2981.
    • (2007) Diabetes , vol.56 , pp. 2973-2981
    • Koh, E.H.1
  • 76
    • 77949828624 scopus 로고    scopus 로고
    • ENOS plays a major role in adiponectin synthesis in adipocytes
    • Koh E.H., et al. eNOS plays a major role in adiponectin synthesis in adipocytes. Am. J. Physiol. Endocrinol. Metab. 2010, 298:E846-E853.
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.298
    • Koh, E.H.1
  • 77
    • 34848872799 scopus 로고    scopus 로고
    • Obesity-associated improvements in metabolic profile through expansion of adipose tissue
    • Kim J.Y., et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 2007, 117:2621-2637.
    • (2007) J. Clin. Invest. , vol.117 , pp. 2621-2637
    • Kim, J.Y.1
  • 78
    • 34047175336 scopus 로고    scopus 로고
    • Uncoupling protein-2 controls adiponectin gene expression in adipose tissue through the modulation of reactive oxygen species production
    • Chevillotte E., et al. Uncoupling protein-2 controls adiponectin gene expression in adipose tissue through the modulation of reactive oxygen species production. Diabetes 2007, 56:1042-1050.
    • (2007) Diabetes , vol.56 , pp. 1042-1050
    • Chevillotte, E.1
  • 79
    • 77951872309 scopus 로고    scopus 로고
    • 2+ and AMPK/SIRT1
    • 2+ and AMPK/SIRT1. Nature 2010, 464:1313-1319.
    • (2010) Nature , vol.464 , pp. 1313-1319
    • Iwabu, M.1
  • 80
    • 54449085766 scopus 로고    scopus 로고
    • Mitochondrial dysfunction contributes to the increased vulnerabilities of adiponectin knockout mice to liver injury
    • Zhou M., et al. Mitochondrial dysfunction contributes to the increased vulnerabilities of adiponectin knockout mice to liver injury. Hepatology 2008, 48:1087-1096.
    • (2008) Hepatology , vol.48 , pp. 1087-1096
    • Zhou, M.1
  • 81
    • 58749091645 scopus 로고    scopus 로고
    • UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality
    • Feldmann H.M., et al. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009, 9:203-209.
    • (2009) Cell Metab. , vol.9 , pp. 203-209
    • Feldmann, H.M.1
  • 82
    • 64349105205 scopus 로고    scopus 로고
    • Identification and importance of brown adipose tissue in adult humans
    • Cypess A.M., et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009, 360:1509-1517.
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1509-1517
    • Cypess, A.M.1
  • 83
    • 67849089176 scopus 로고    scopus 로고
    • BAT: a new target for human obesity?
    • Fruhbeck G., et al. BAT: a new target for human obesity?. Trends Pharmacol. Sci. 2009, 30:387-396.
    • (2009) Trends Pharmacol. Sci. , vol.30 , pp. 387-396
    • Fruhbeck, G.1
  • 84
    • 64349095231 scopus 로고    scopus 로고
    • Cold-activated brown adipose tissue in healthy men
    • van Marken Lichtenbelt W.D., et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009, 360:1500-1508.
    • (2009) N. Engl. J. Med. , vol.360 , pp. 1500-1508
    • van Marken Lichtenbelt, W.D.1
  • 85
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
    • Jager S., et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12017-12022.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 12017-12022
    • Jager, S.1
  • 86
    • 33847110733 scopus 로고    scopus 로고
    • Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway
    • Duncan J.G., et al. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation 2007, 115:909-917.
    • (2007) Circulation , vol.115 , pp. 909-917
    • Duncan, J.G.1
  • 87
    • 34347326271 scopus 로고    scopus 로고
    • Transcriptional control of brown fat determination by PRDM16
    • Seale P., et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007, 6:38-54.
    • (2007) Cell Metab. , vol.6 , pp. 38-54
    • Seale, P.1
  • 88
    • 44149113548 scopus 로고    scopus 로고
    • Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex
    • Kajimura S., et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 2008, 22:1397-1409.
    • (2008) Genes Dev. , vol.22 , pp. 1397-1409
    • Kajimura, S.1
  • 89
    • 84858039282 scopus 로고    scopus 로고
    • PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
    • Ohno H., et al. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012, 15:395-404.
    • (2012) Cell Metab. , vol.15 , pp. 395-404
    • Ohno, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.