메뉴 건너뛰기




Volumn 32, Issue 3, 2012, Pages 659-683

Recognition of damaged DNA: Structure and dynamic markers

Author keywords

Base excision; DNA damage; Dynamics; Mismatch; Nuclear magnetic resonance

Indexed keywords

8 HYDROXYGUANINE; DEOXYURIDINE; ENDONUCLEASE; PROTEIN MSH2; PROTEIN MSH6; REACTIVE OXYGEN METABOLITE;

EID: 84860323581     PISSN: 01986325     EISSN: 10981128     Source Type: Journal    
DOI: 10.1002/med.20226     Document Type: Article
Times cited : (29)

References (165)
  • 1
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993;362:709-715.
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 2
    • 0031149139 scopus 로고    scopus 로고
    • How do DNA repair proteins locate damaged bases in the genome
    • Verdine GL, Bruner SD. How do DNA repair proteins locate damaged bases in the genome. Chem Biol 1997;4:329-334.
    • (1997) Chem Biol , vol.4 , pp. 329-334
    • Verdine, G.L.1    Bruner, S.D.2
  • 3
    • 0029806936 scopus 로고    scopus 로고
    • Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53
    • Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 1996;274:430-432.
    • (1996) Science , vol.274 , pp. 430-432
    • Denissenko, M.F.1    Pao, A.2    Tang, M.3    Pfeifer, G.P.4
  • 5
    • 26944448202 scopus 로고    scopus 로고
    • Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: Insights for transcription-coupled repair and Cockayne Syndrome
    • Sarker AH, Tsutakawa SE, Kostek S, Ng C, Shin DS, Peris M, Campeau E, Tainer JA, Nogales E, Cooper PK. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: Insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell 2005;20:187-198.
    • (2005) Mol Cell , vol.20 , pp. 187-198
    • Sarker, A.H.1    Tsutakawa, S.E.2    Kostek, S.3    Ng, C.4    Shin, D.S.5    Peris, M.6    Campeau, E.7    Tainer, J.A.8    Nogales, E.9    Cooper, P.K.10
  • 7
    • 33750453046 scopus 로고    scopus 로고
    • Smoking and lung cancer-a new role for an old toxicant?
    • Hecht SS. Smoking and lung cancer-a new role for an old toxicant? Proc Natl Acad Sci USA 2006;103:15725-15726.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 15725-15726
    • Hecht, S.S.1
  • 8
    • 33644626078 scopus 로고    scopus 로고
    • NMR Structures of damaged DNA
    • Lukin M, de Los Santos C. NMR Structures of damaged DNA. Chem Rev 2006;106:607-686.
    • (2006) Chem Rev , vol.106 , pp. 607-686
    • Lukin, M.1    de Los Santos, C.2
  • 9
    • 67649933847 scopus 로고    scopus 로고
    • Chemistry and biology of DNA containing 1,N2-deoxyguanosine adducts of the a,b-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal
    • Minko IG, Kozekov ID, Harris TM, Rizzo CJ, Lloyd RS, Stone MP. Chemistry and biology of DNA containing 1, N2-deoxyguanosine adducts of the a, b-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal. Chem Res Toxicol 2006;22:759-778.
    • (2006) Chem Res Toxicol , vol.22 , pp. 759-778
    • Minko, I.G.1    Kozekov, I.D.2    Harris, T.M.3    Rizzo, C.J.4    Lloyd, R.S.5    Stone, M.P.6
  • 10
    • 0030979263 scopus 로고    scopus 로고
    • DNA glycosylases
    • Cunningham RP. DNA glycosylases. DNA Repair 1997;383:189-196.
    • (1997) DNA Repair , vol.383 , pp. 189-196
    • Cunningham, R.P.1
  • 11
    • 33750083332 scopus 로고    scopus 로고
    • Mechanisms in eukaryotic mismatch repair
    • Modrich P. Mechanisms in eukaryotic mismatch repair. J Biol Chem 2006;281:30305-30309.
    • (2006) J Biol Chem , vol.281 , pp. 30305-30309
    • Modrich, P.1
  • 13
    • 0034734377 scopus 로고    scopus 로고
    • Abasic site recognition by two apurinic/apyrimdinic endonuclease famiies in DNA base excision repair: The 3' ends justify the means
    • Mol CD, Hosfield DJ, Tainer JA. Abasic site recognition by two apurinic/apyrimdinic endonuclease famiies in DNA base excision repair: The 3' ends justify the means. Mutat Res 2000;460:211-229.
    • (2000) Mutat Res , vol.460 , pp. 211-229
    • Mol, C.D.1    Hosfield, D.J.2    Tainer, J.A.3
  • 14
    • 0033529716 scopus 로고    scopus 로고
    • Structure of the DNA repair enzyme endonuclease IV and its DNA complex double-nucleotide flipping at abasic sites and three-metal-ion catal
    • Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA. Structure of the DNA repair enzyme endonuclease IV and its DNA complex double-nucleotide flipping at abasic sites and three-metal-ion catal. Cell 1999;98:397-408.
    • (1999) Cell , vol.98 , pp. 397-408
    • Hosfield, D.J.1    Guan, Y.2    Haas, B.J.3    Cunningham, R.P.4    Tainer, J.A.5
  • 15
    • 0034641947 scopus 로고    scopus 로고
    • The crystal structure of DNA mismatch repair protein MutS binding to a G center dot T mismatch
    • Lamers MH, Perrakis A, Enzlin JH, Winterwerp HHK, De Wind N, Sixma TK. The crystal structure of DNA mismatch repair protein MutS binding to a G center dot T mismatch. Nature 2000;407;711-717.
    • (2000) Nature , vol.407 , pp. 711-717
    • Lamers, M.H.1    Perrakis, A.2    Enzlin, J.H.3    Winterwerp, H.H.K.4    De Wind, N.5    Sixma, T.K.6
  • 16
    • 0345138990 scopus 로고    scopus 로고
    • Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: A common recognition mode for diverse substrates
    • Natrajan G, Lamers MH, Enzlin JH, Winterwerp HHK, Perrakis A, Sixma TK. Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: A common recognition mode for diverse substrates. Nucleic Acids Res 2003;31:4814-4821.
    • (2003) Nucleic Acids Res , vol.31 , pp. 4814-4821
    • Natrajan, G.1    Lamers, M.H.2    Enzlin, J.H.3    Winterwerp, H.H.K.4    Perrakis, A.5    Sixma, T.K.6
  • 18
    • 11144357255 scopus 로고    scopus 로고
    • Cellular machineries for chromosomal DNA repair
    • Peterson CL, Côté JC. Cellular machineries for chromosomal DNA repair. Genes Dev 2004;18:602-616
    • (2004) Genes Dev , vol.18 , pp. 602-616
    • Peterson, C.L.1    Côté, J.C.2
  • 19
    • 30344471856 scopus 로고    scopus 로고
    • Chromatin and DNA repair: The benefits of relaxation
    • Downey D, Durocher D. Chromatin and DNA repair: The benefits of relaxation. Nat Cell Biol 2006;8:9-11.
    • (2006) Nat Cell Biol , vol.8 , pp. 9-11
    • Downey, D.1    Durocher, D.2
  • 20
    • 33847076248 scopus 로고    scopus 로고
    • Chromatin challenges during DNA replication and repair
    • Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007;128:721-733.
    • (2007) Cell , vol.128 , pp. 721-733
    • Groth, A.1    Rocha, W.2    Verreault, A.3    Almouzni, G.4
  • 21
    • 0034707047 scopus 로고    scopus 로고
    • The DNA damage response: Putting checkpoints in perspective
    • Zhou BB, Elledge SJ. The DNA damage response: Putting checkpoints in perspective. Nature 2000;408:433-439.
    • (2000) Nature , vol.408 , pp. 433-439
    • Zhou, B.B.1    Elledge, S.J.2
  • 22
    • 67349209966 scopus 로고    scopus 로고
    • DNA damage response: Change of guard at the check point
    • Cesari F. DNA damage response: Change of guard at the check point. Nat Rev Mol Cell Biol 2009;10;305.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 305
    • Cesari, F.1
  • 23
    • 34247599335 scopus 로고    scopus 로고
    • A unified view of base excision repair: Lesion-dependent protein complexes regulated by post-translational modification
    • Almeida KH, Sobol RW. A unified view of base excision repair: Lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 2007;6:695-711.
    • (2007) DNA Repair , vol.6 , pp. 695-711
    • Almeida, K.H.1    Sobol, R.W.2
  • 24
    • 38049112778 scopus 로고    scopus 로고
    • Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells
    • Hedge ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 2008;18:27-47.
    • (2008) Cell Res , vol.18 , pp. 27-47
    • Hedge, M.L.1    Hazra, T.K.2    Mitra, S.3
  • 25
    • 85015066476 scopus 로고    scopus 로고
    • DNA damage and repair
    • Friedberg EC. DNA damage and repair. Nature 2003;421:436-440.
    • (2003) Nature , vol.421 , pp. 436-440
    • Friedberg, E.C.1
  • 27
    • 33644619706 scopus 로고    scopus 로고
    • Prokaryotic nucleotide excision repair: The UvrABC system
    • Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: The UvrABC system. Chem Rev 2006;106:233-252.
    • (2006) Chem Rev , vol.106 , pp. 233-252
    • Truglio, J.J.1    Croteau, D.L.2    Van Houten, B.3    Kisker, C.4
  • 28
    • 0029784320 scopus 로고    scopus 로고
    • Biochemistry and genetics of eukaryotic mismatch repair
    • Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 1996;10:1433-1442.
    • (1996) Genes Dev , vol.10 , pp. 1433-1442
    • Kolodner, R.1
  • 29
    • 0035289717 scopus 로고    scopus 로고
    • Chromosomal instability and the DNA double stranded break connection
    • Van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal instability and the DNA double stranded break connection. Nat Rev Genet 2001;2:196-206.
    • (2001) Nat Rev Genet , vol.2 , pp. 196-206
    • Van Gent, D.C.1    Hoeijmakers, J.H.2    Kanaar, R.3
  • 30
    • 0031426032 scopus 로고    scopus 로고
    • Nitrosated peptides and polyamines as endogenous mutagens in O6-alkylguanine-DNA alkyltransferase deficient cells
    • Sedgwick B. Nitrosated peptides and polyamines as endogenous mutagens in O6-alkylguanine-DNA alkyltransferase deficient cells. Carcinogenesis 1997;18:1561-1567.
    • (1997) Carcinogenesis , vol.18 , pp. 1561-1567
    • Sedgwick, B.1
  • 32
    • 0025033354 scopus 로고
    • Structure and function of the (A)BC excinuclease of Escherichia coli
    • Selby CP, Sancar A. Structure and function of the (A)BC excinuclease of Escherichia coli., Mutat Res 1990;236:203-211.
    • (1990) Mutat Res , vol.236 , pp. 203-211
    • Selby, C.P.1    Sancar, A.2
  • 34
    • 0344586043 scopus 로고    scopus 로고
    • Mutagenicity, toxicity and repair of DNA base damage induced by oxidation
    • Bjelland S, Seeberg E. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res 2003;531:37-80.
    • (2003) Mutat Res , vol.531 , pp. 37-80
    • Bjelland, S.1    Seeberg, E.2
  • 35
    • 0029886786 scopus 로고    scopus 로고
    • Cancer risk and oxidative DNA damage in man
    • Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med 1996:74:297-312.
    • (1996) J Mol Med , vol.74 , pp. 297-312
    • Loft, S.1    Poulsen, H.E.2
  • 36
    • 0030839865 scopus 로고    scopus 로고
    • Oxidative decay of DNA
    • Beckman KB, Ames BN. Oxidative decay of DNA. J Biol Chem 1997;272:19633-19636.
    • (1997) J Biol Chem , vol.272 , pp. 19633-19636
    • Beckman, K.B.1    Ames, B.N.2
  • 37
    • 0036935437 scopus 로고    scopus 로고
    • Maintenance of mitochondrial DNA integrity: Repair and degradation
    • Kang D, Hamasaki N. Maintenance of mitochondrial DNA integrity: Repair and degradation. Curr Genet 2002;41:311-322.
    • (2002) Curr Genet , vol.41 , pp. 311-322
    • Kang, D.1    Hamasaki, N.2
  • 39
    • 0036570012 scopus 로고    scopus 로고
    • Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells
    • Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 2002;32:804-812.
    • (2002) Free Radic Biol Med , vol.32 , pp. 804-812
    • Bohr, V.A.1
  • 40
    • 0037154982 scopus 로고    scopus 로고
    • A unified theory of gene expression
    • Orphanides G, Reinberg D. A unified theory of gene expression. Cell 2002;108:439-443
    • (2002) Cell , vol.108 , pp. 439-443
    • Orphanides, G.1    Reinberg, D.2
  • 42
    • 0035542974 scopus 로고    scopus 로고
    • Methyl CpG-binding proteins and transcriptional repression
    • Wade PA. Methyl CpG-binding proteins and transcriptional repression. Bioessays 2001;23:1131-1137.
    • (2001) Bioessays , vol.23 , pp. 1131-1137
    • Wade, P.A.1
  • 43
    • 0029992687 scopus 로고    scopus 로고
    • Preferential targeting of oxidative base damage to internucleosomal DNA
    • Enright H, Miller WJ, Hays R, Floyd RA, Hebbel RP. Preferential targeting of oxidative base damage to internucleosomal DNA. Carcinogenesis 1996;17:1175-1177.
    • (1996) Carcinogenesis , vol.17 , pp. 1175-1177
    • Enright, H.1    Miller, W.J.2    Hays, R.3    Floyd, R.A.4    Hebbel, R.P.5
  • 44
    • 0036847501 scopus 로고    scopus 로고
    • DNA base excision repair of uracil residues in reconstituted nucleosome core particles
    • Nilsen H, Lindahl T, Verreault A. DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J 2002;12:5943-5952.
    • (2002) EMBO J , vol.12 , pp. 5943-5952
    • Nilsen, H.1    Lindahl, T.2    Verreault, A.3
  • 46
    • 0242300612 scopus 로고    scopus 로고
    • Sun YE DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation
    • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G. Sun YE DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003;302:890-893.
    • (2003) Science , vol.302 , pp. 890-893
    • Martinowich, K.1    Hattori, D.2    Wu, H.3    Fouse, S.4    He, F.5    Hu, Y.6    Fan, G.7
  • 47
    • 0027383758 scopus 로고
    • The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells
    • Neddermann P, Jiricny J. The purification of a mismatch-specific thymine-DNA glycosylase from HeLa cells. J Biol Chem 1993;268:21218-21224.
    • (1993) J Biol Chem , vol.268 , pp. 21218-21224
    • Neddermann, P.1    Jiricny, J.2
  • 48
    • 0037424520 scopus 로고    scopus 로고
    • The main role of human thymine-DNA glycosylase is removal of thymine produced by deamination of 5-methylcytosine and not removal of ethenocytosine
    • Abu M, Waters TR. The main role of human thymine-DNA glycosylase is removal of thymine produced by deamination of 5-methylcytosine and not removal of ethenocytosine. J Biol Chem 2008;278:8739-8744.
    • (2008) J Biol Chem , vol.278 , pp. 8739-8744
    • Abu, M.1    Waters, T.R.2
  • 49
    • 0037160120 scopus 로고    scopus 로고
    • Nucleosome Structure and repair of N-Methylpurines in the GAL1-10 genes of Saccaromyces cerevisia
    • Li S, Smerdon MJ. Nucleosome Structure and repair of N-Methylpurines in the GAL1-10 genes of Saccaromyces cerevisia. J Biol Chem 2002;277:44651-44659.
    • (2002) J Biol Chem , vol.277 , pp. 44651-44659
    • Li, S.1    Smerdon, M.J.2
  • 50
    • 77952564842 scopus 로고    scopus 로고
    • Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions
    • Amouroux R, Campalans A, Epe B, Radicella JP. Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions. Nucleic Acids Res 2010;38:2878-2890.
    • (2010) Nucleic Acids Res , vol.38 , pp. 2878-2890
    • Amouroux, R.1    Campalans, A.2    Epe, B.3    Radicella, J.P.4
  • 51
    • 77949528928 scopus 로고    scopus 로고
    • Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme
    • Hinz JM, Rodriguez Y, Smerdon MJ. Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Proc Natl Acad Sci USA 2010;107:4646-4651.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 4646-4651
    • Hinz, J.M.1    Rodriguez, Y.2    Smerdon, M.J.3
  • 52
    • 0025340988 scopus 로고
    • DNA repair within nucleosome cores of UV-irradiated human cells
    • Jensen KA, Smerdon MJ. DNA repair within nucleosome cores of UV-irradiated human cells. Biochemistry 1990;29:4773-4782.
    • (1990) Biochemistry , vol.29 , pp. 4773-4782
    • Jensen, K.A.1    Smerdon, M.J.2
  • 53
    • 0030798002 scopus 로고    scopus 로고
    • Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene
    • Wellinger RE, Fritz Thoma F. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene. EMBO J 1997;16:5046-5056.
    • (1997) EMBO J , vol.16 , pp. 5046-5056
    • Wellinger, R.E.1    Fritz Thoma, F.2
  • 54
    • 65649099528 scopus 로고    scopus 로고
    • Lux ex tenebris: Nucleotide resolution DNA repair and nucleosome mapping
    • Teng Y, Yu S, Reed SH, Waters R. Lux ex tenebris: Nucleotide resolution DNA repair and nucleosome mapping. Methods 2009;48:23-34.
    • (2009) Methods , vol.48 , pp. 23-34
    • Teng, Y.1    Yu, S.2    Reed, S.H.3    Waters, R.4
  • 55
    • 0036094122 scopus 로고    scopus 로고
    • Nucleotide excision repair and chromatin remodeling
    • Ura K, Hayes JJ. Nucleotide excision repair and chromatin remodeling. Eur J Biochem 2006;269:2288-2293.
    • (2006) Eur J Biochem , vol.269 , pp. 2288-2293
    • Ura, K.1    Hayes, J.J.2
  • 56
    • 33749520485 scopus 로고    scopus 로고
    • Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair
    • Gong F, Fahy D, Smerdon MJ. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat Struct Mol Biol 2006;13:902-907.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 902-907
    • Gong, F.1    Fahy, D.2    Smerdon, M.J.3
  • 58
    • 1842689672 scopus 로고    scopus 로고
    • Dissecting transcription coupled and global genomic repair in the chromatin of yeast GAL1-10 genes
    • Li S, Smerdon MJ. Dissecting transcription coupled and global genomic repair in the chromatin of yeast GAL1-10 genes. J Biol Chem 2004;279:14418-14426.
    • (2004) J Biol Chem , vol.279 , pp. 14418-14426
    • Li, S.1    Smerdon, M.J.2
  • 59
    • 38049125557 scopus 로고    scopus 로고
    • Mechanisms and functions of DNA mismatch repair
    • Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res 2008;18:85-98.
    • (2008) Cell Res , vol.18 , pp. 85-98
    • Li, G.M.1
  • 60
    • 0031456973 scopus 로고    scopus 로고
    • The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch
    • Gradia S, Acharia S Fishel R. The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell 1997:91;995-1005.
    • (1997) Cell , vol.91 , pp. 995-1005
    • Gradia, S.1    Acharia S Fishel, R.2
  • 61
    • 34547882768 scopus 로고    scopus 로고
    • Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair
    • Pluciennik A, Modrich P. Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. Proc Nat Acad Sci USA 2007;104:12709-12713.
    • (2007) Proc Nat Acad Sci USA , vol.104 , pp. 12709-12713
    • Pluciennik, A.1    Modrich, P.2
  • 62
    • 70450237030 scopus 로고    scopus 로고
    • Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells
    • Li F, Tian L, Gu L, Li GM. Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 2009;284:33056-33061.
    • (2009) J Biol Chem , vol.284 , pp. 33056-33061
    • Li, F.1    Tian, L.2    Gu, L.3    Li, G.M.4
  • 63
    • 7444266619 scopus 로고    scopus 로고
    • Human DNA glycosylases involved in the repair of oxidatively damaged DNA
    • Ide H, Kotera M. Human DNA glycosylases involved in the repair of oxidatively damaged DNA. Biol Pharm Bull 2004;27:480-485.
    • (2004) Biol Pharm Bull , vol.27 , pp. 480-485
    • Ide, H.1    Kotera, M.2
  • 64
    • 0028857681 scopus 로고
    • The base excision repair pathway
    • Seeburg E, Eide L, Bjørås M. The base excision repair pathway. TIBS 1995;20:391-397.
    • (1995) TIBS , vol.20 , pp. 391-397
    • Seeburg, E.1    Eide, L.2    Bjørås, M.3
  • 67
    • 33847613569 scopus 로고    scopus 로고
    • Oxidative DNA damage repair in mammalian cells: A new perspective
    • Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R. Oxidative DNA damage repair in mammalian cells: A new perspective. DNA Repair 2007;6:470-480.
    • (2007) DNA Repair , vol.6 , pp. 470-480
    • Hazra, T.K.1    Das, A.2    Das, S.3    Choudhury, S.4    Kow, Y.W.5    Roy, R.6
  • 68
    • 34948854919 scopus 로고    scopus 로고
    • Excision of 5-halogenated uracils by human thymine DNA glycosylase
    • Morgan MT, Bennett MT, Drohat AC. Excision of 5-halogenated uracils by human thymine DNA glycosylase. J Biol Chem 2007;282:27578-27586.
    • (2007) J Biol Chem , vol.282 , pp. 27578-27586
    • Morgan, M.T.1    Bennett, M.T.2    Drohat, A.C.3
  • 69
    • 59449097875 scopus 로고    scopus 로고
    • Pharmacophore guided discovery of small-molecule human apurinic/apyrimidinic endonuclease 1 inhibitors
    • Zawahir Z, Dayam R, Deng J, Pereira C, Neamati N. Pharmacophore guided discovery of small-molecule human apurinic/apyrimidinic endonuclease 1 inhibitors. J Med Chem 2009;52:20-32.
    • (2009) J Med Chem , vol.52 , pp. 20-32
    • Zawahir, Z.1    Dayam, R.2    Deng, J.3    Pereira, C.4    Neamati, N.5
  • 70
    • 11844253296 scopus 로고    scopus 로고
    • Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures
    • Wilson DM. Ape1 abasic endonuclease activity is regulated by magnesium and potassium concentrations and is robust on alternative DNA structures. J Mol Biol 2005;345:1003-1014.
    • (2005) J Mol Biol , vol.345 , pp. 1003-1014
    • Wilson, D.M.1
  • 71
    • 73549091674 scopus 로고    scopus 로고
    • Intrusion of a DNA repair protein in the RNome world: Is this the beginning of a new era?
    • Tell G, Willson DM, Lee CH. Intrusion of a DNA repair protein in the RNome world: Is this the beginning of a new era? Mol Cell Biol 2010;30:366-371.
    • (2010) Mol Cell Biol , vol.30 , pp. 366-371
    • Tell, G.1    Willson, D.M.2    Lee, C.H.3
  • 72
    • 73549114235 scopus 로고    scopus 로고
    • Endoribonuclease activity of human apurinic/apyrimidinic endonuclease 1 revealed by a real-time fluoreometric assay
    • Kim-Eun S, Gorrell A, Rader SD, Lee CH. Endoribonuclease activity of human apurinic/apyrimidinic endonuclease 1 revealed by a real-time fluoreometric assay. Anal Biochem 2010;398:69-75.
    • (2010) Anal Biochem , vol.398 , pp. 69-75
    • Kim-Eun, S.1    Gorrell, A.2    Rader, S.D.3    Lee, C.H.4
  • 73
    • 67651149733 scopus 로고    scopus 로고
    • Identification of apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA
    • Barnes T, Kim WC, Mantha AK, Kim SE, Izumi T, Mitra S, Lee CH. Identification of apurinic/apyrimidinic endonuclease 1 (APE1) as the endoribonuclease that cleaves c-myc mRNA. Nucleic Acids Res 2009;37:3946-3958.
    • (2009) Nucleic Acids Res , vol.37 , pp. 3946-3958
    • Barnes, T.1    Kim, W.C.2    Mantha, A.K.3    Kim, S.E.4    Izumi, T.5    Mitra, S.6    Lee, C.H.7
  • 74
    • 0348140585 scopus 로고    scopus 로고
    • Abasic sites in DNA: Repair and biological consequences in Saccharomyces cervisiae
    • Boiteux S, Guillet M. Abasic sites in DNA: Repair and biological consequences in Saccharomyces cervisiae. DNA Repair 2004;3:1-12.
    • (2004) DNA Repair , vol.3 , pp. 1-12
    • Boiteux, S.1    Guillet, M.2
  • 76
    • 34548276529 scopus 로고    scopus 로고
    • The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target
    • Fishel ML, Kelley MR. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med 2007;28:375-395.
    • (2007) Mol Aspects Med , vol.28 , pp. 375-395
    • Fishel, M.L.1    Kelley, M.R.2
  • 77
    • 0028181135 scopus 로고
    • Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV
    • Ide H, Tedzuka K, Shimizu H, Kimura Y, Purmal AA, Wallace SS, Kow Alpha-deoxyadenosine, a major anoxic radiolysis product of adenine in DNA, is a substrate for Escherichia coli endonuclease IV. Biochemistry 1994;33:7842-7847.
    • (1994) Biochemistry , vol.33 , pp. 7842-7847
    • Ide, H.1    Tedzuka, K.2    Shimizu, H.3    Kimura, Y.4    Purmal, A.A.5    Wallace, S.S.6    Kow7
  • 78
    • 0037049975 scopus 로고    scopus 로고
    • Alternative nucleotide incision repair pathway for oxidative DNA damage
    • Ischenko AA, Saparbaev MK. Alternative nucleotide incision repair pathway for oxidative DNA damage. Nature 2002;415:183-187.
    • (2002) Nature , vol.415 , pp. 183-187
    • Ischenko, A.A.1    Saparbaev, M.K.2
  • 79
    • 33644546374 scopus 로고    scopus 로고
    • Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles
    • Ishchenko A, Deprez E, Maksimenko A, Brochon JC, Tauc P, Saparbaev M. Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles. Proc Natl Acad Sci USA 2006;103:2564-2569.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 2564-2569
    • Ishchenko, A.1    Deprez, E.2    Maksimenko, A.3    Brochon, J.C.4    Tauc, P.5    Saparbaev, M.6
  • 80
    • 0034708226 scopus 로고    scopus 로고
    • Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA
    • Bruner SD, Norman DPG, Verdine GL. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000;403:859-866.
    • (2000) Nature , vol.403 , pp. 859-866
    • Bruner, S.D.1    Norman, D.P.G.2    Verdine, G.L.3
  • 81
    • 0036290411 scopus 로고    scopus 로고
    • Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase
    • Bjørås M, Seeberg E, Luna L, Pearl LH, Barrett TE. Reciprocal "flipping" underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase. J Mol Biol 2002;317:171-177.
    • (2002) J Mol Biol , vol.317 , pp. 171-177
    • Bjørås, M.1    Seeberg, E.2    Luna, L.3    Pearl, L.H.4    Barrett, T.E.5
  • 82
    • 33845407758 scopus 로고    scopus 로고
    • Different DNA repair strategies to combat the threat from 8-oxoguanine
    • Russo MT, De Luca G, Degan P, Bignami M. Different DNA repair strategies to combat the threat from 8-oxoguanine. Mutat Res 2007;614:69-76.
    • (2007) Mutat Res , vol.614 , pp. 69-76
    • Russo, M.T.1    De Luca, G.2    Degan, P.3    Bignami, M.4
  • 83
    • 1342304229 scopus 로고    scopus 로고
    • Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase
    • Fromme JC, Banerjee SJ, Huang SJ, Verdine GL. Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature 2004;427:652-656.
    • (2004) Nature , vol.427 , pp. 652-656
    • Fromme, J.C.1    Banerjee, S.J.2    Huang, S.J.3    Verdine, G.L.4
  • 84
    • 77249173864 scopus 로고    scopus 로고
    • The C-terminal lysine of Ogg2 DNA glycosylases is a major molecular determinant for guanine/8-oxoguanine distinction
    • Faucher F, Wallace SS, Doublié S. The C-terminal lysine of Ogg2 DNA glycosylases is a major molecular determinant for guanine/8-oxoguanine distinction. J Mol Biol 2010;397:46-56.
    • (2010) J Mol Biol , vol.397 , pp. 46-56
    • Faucher, F.1    Wallace, S.S.2    Doublié, S.3
  • 85
    • 0037040962 scopus 로고    scopus 로고
    • Activation of human MutS homologs by 8-oxo-guanine DNA damage
    • Mazurek A, Berardini M, Fishel R. Activation of human MutS homologs by 8-oxo-guanine DNA damage. J Biol Chem 2002;277:8260-8266.
    • (2002) J Biol Chem , vol.277 , pp. 8260-8266
    • Mazurek, A.1    Berardini, M.2    Fishel, R.3
  • 86
    • 47649118611 scopus 로고    scopus 로고
    • Clostridium acetobutylicum 8-oxoguanine DNA glycosylase (Ogg) differs from eukaryotic Oggs with respect to oppsite base discrimination
    • Robey-Bond SM, Barrantes-Reynolds R, Bond JP, Wallace SS, Bandaru V. Clostridium acetobutylicum 8-oxoguanine DNA glycosylase (Ogg) differs from eukaryotic Oggs with respect to oppsite base discrimination. Biochemistry 2008;47:7626-7636.
    • (2008) Biochemistry , vol.47 , pp. 7626-7636
    • Robey-Bond, S.M.1    Barrantes-Reynolds, R.2    Bond, J.P.3    Wallace, S.S.4    Bandaru, V.5
  • 87
    • 70349847564 scopus 로고    scopus 로고
    • Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase
    • Faucher F, Wallace SS, Doublié S. Structural basis for the lack of opposite base specificity of Clostridium acetobutylicum 8-oxoguanine DNA glycosylase. DNA Repair 2009;8:1283-1289.
    • (2009) DNA Repair , vol.8 , pp. 1283-1289
    • Faucher, F.1    Wallace, S.S.2    Doublié, S.3
  • 88
    • 0025891866 scopus 로고
    • NMR structural studies of ionizing radiation adduct 7-hyrdo-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG(syn)•dA(anti) alignment at lesion site
    • Kouchakdjian M, Bodepudi V, Shibutani S, Eisenberg M, Johnson F, Grollman AP, Patel DJ. NMR structural studies of ionizing radiation adduct 7-hyrdo-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG(syn)•dA(anti) alignment at lesion site. Biochemistry 1991;30:1403-1412.
    • (1991) Biochemistry , vol.30 , pp. 1403-1412
    • Kouchakdjian, M.1    Bodepudi, V.2    Shibutani, S.3    Eisenberg, M.4    Johnson, F.5    Grollman, A.P.6    Patel, D.J.7
  • 89
    • 0036009327 scopus 로고    scopus 로고
    • Direct visualization of a DNA glycosylase searching for damage
    • Chen L, Haushalter KA, Lieber CM, Verdine GL. Direct visualization of a DNA glycosylase searching for damage. Chem Biol 2002;9:345-350.
    • (2002) Chem Biol , vol.9 , pp. 345-350
    • Chen, L.1    Haushalter, K.A.2    Lieber, C.M.3    Verdine, G.L.4
  • 90
    • 67349123407 scopus 로고    scopus 로고
    • Electrostatic potential maps of damaged DNA studied by image analysis tools. 8-Oxoguanine and abasic site lesions
    • Bachorz RA, Lupica G, Gutowski M, Haranczyk M. Electrostatic potential maps of damaged DNA studied by image analysis tools. 8-Oxoguanine and abasic site lesions. J Mol Model 2009;15:817-827.
    • (2009) J Mol Model , vol.15 , pp. 817-827
    • Bachorz, R.A.1    Lupica, G.2    Gutowski, M.3    Haranczyk, M.4
  • 91
    • 15844379169 scopus 로고    scopus 로고
    • Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA
    • Banerjee A, Yang W, Karplus M, Verdine GL. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 2005;434:612-618.
    • (2005) Nature , vol.434 , pp. 612-618
    • Banerjee, A.1    Yang, W.2    Karplus, M.3    Verdine, G.L.4
  • 93
    • 74049108184 scopus 로고    scopus 로고
    • Entrapment and structure of an extrahelical guanine attempting to enter the active site of bacterial DNA glycosylase, MutM
    • Qi Y, Spong MC, Nam K, Karplus M, Verdine GL. Entrapment and structure of an extrahelical guanine attempting to enter the active site of bacterial DNA glycosylase, MutM. J Biol Chem 2010;285:1468-1478.
    • (2010) J Biol Chem , vol.285 , pp. 1468-1478
    • Qi, Y.1    Spong, M.C.2    Nam, K.3    Karplus, M.4    Verdine, G.L.5
  • 95
    • 67649832360 scopus 로고    scopus 로고
    • Non-target DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage
    • Friedman JI, Majumdar A, Stivers JT. Non-target DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage. Nucleic Acids Res 2009;37:3493-3500.
    • (2009) Nucleic Acids Res , vol.37 , pp. 3493-3500
    • Friedman, J.I.1    Majumdar, A.2    Stivers, J.T.3
  • 96
    • 0034734380 scopus 로고    scopus 로고
    • Lessons learned from structural results on uracil-DNA glycosylase
    • Parikh SS, Putnam CD, Tainer JA. Lessons learned from structural results on uracil-DNA glycosylase. Mutat Res 2000;460:183-199.
    • (2000) Mutat Res , vol.460 , pp. 183-199
    • Parikh, S.S.1    Putnam, C.D.2    Tainer, J.A.3
  • 97
    • 34547645005 scopus 로고    scopus 로고
    • Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms
    • Pettersen HS, Sundheim O, Gilljam KM, Slupphaug G, Krokan HE, Kavli B. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Nucleic Acids Res 2007;35:3879-3892.
    • (2007) Nucleic Acids Res , vol.35 , pp. 3879-3892
    • Pettersen, H.S.1    Sundheim, O.2    Gilljam, K.M.3    Slupphaug, G.4    Krokan, H.E.5    Kavli, B.6
  • 98
    • 0037115911 scopus 로고    scopus 로고
    • Uracil in DNA-occurrence, consequences and repair
    • Krokan HE, Drabløs F, Slupphaug G. Uracil in DNA-occurrence, consequences and repair. Oncogene 2002;21:8935-8948.
    • (2002) Oncogene , vol.21 , pp. 8935-8948
    • Krokan, H.E.1    Drabløs, F.2    Slupphaug, G.3
  • 100
    • 0036431531 scopus 로고    scopus 로고
    • Role of base flipping in specific recognition of damaged DNA by repair enzymes
    • Fuxreiter M, Luo N, Jedlovszky P, Simon I, Osman R. Role of base flipping in specific recognition of damaged DNA by repair enzymes. J Mol Biol 2002;323:823-834.
    • (2002) J Mol Biol , vol.323 , pp. 823-834
    • Fuxreiter, M.1    Luo, N.2    Jedlovszky, P.3    Simon, I.4    Osman, R.5
  • 101
    • 1842479316 scopus 로고    scopus 로고
    • Linear free energy correlations for enzymatic base flipping: How do damaged base pairs facilitate specific recognition?
    • Krosky DJ, Schwarz FP, Stivers JT. Linear free energy correlations for enzymatic base flipping: How do damaged base pairs facilitate specific recognition? Biochemistry 2004;43:4188-4195.
    • (2004) Biochemistry , vol.43 , pp. 4188-4195
    • Krosky, D.J.1    Schwarz, F.P.2    Stivers, J.T.3
  • 102
    • 16544386633 scopus 로고    scopus 로고
    • Dynamic opening of DNA during the enzymatic search for a damaged base
    • Cao C, Jiang YL, Stivers JT, Song F. Dynamic opening of DNA during the enzymatic search for a damaged base. Nat Struct Mol Biol 2004;11:1230-1236.
    • (2004) Nat Struct Mol Biol , vol.11 , pp. 1230-1236
    • Cao, C.1    Jiang, Y.L.2    Stivers, J.T.3    Song, F.4
  • 103
    • 0032546928 scopus 로고    scopus 로고
    • Structures of apurinic and apyrimidinic sites in duplex DNA's
    • Beger RD, Bolton PH. Structures of apurinic and apyrimidinic sites in duplex DNA's. J Biol Chem 1998;273:15565-15573.
    • (1998) J Biol Chem , vol.273 , pp. 15565-15573
    • Beger, R.D.1    Bolton, P.H.2
  • 104
    • 0002125735 scopus 로고    scopus 로고
    • Abasic DNA structure, reactivity, and recognition
    • Lhomme J, Constant JF, Demeunynck M. Abasic DNA structure, reactivity, and recognition. Biopolymers 1999;52:65-83.
    • (1999) Biopolymers , vol.52 , pp. 65-83
    • Lhomme, J.1    Constant, J.F.2    Demeunynck, M.3
  • 105
    • 10644247699 scopus 로고    scopus 로고
    • Impact of the C1' configuration of abasic sites on DNA duplex structure
    • de Los Santos C, El-Khateeb M, Rege P, Tian K, Johnson F. Impact of the C1' configuration of abasic sites on DNA duplex structure. Biochemistry 2004;43:15349-15357.
    • (2004) Biochemistry , vol.43 , pp. 15349-15357
    • de Los Santos, C.1    El-Khateeb, M.2    Rege, P.3    Tian, K.4    Johnson, F.5
  • 106
    • 0030964066 scopus 로고    scopus 로고
    • Solution conformation of an abasic DNA undecamer duples d(CGCACXCACGC), d(GCGTGTGTGCG): The unpaired thymine stacks inside the helix
    • Coppel Y, Berthet N, Coulombeau C, Coulombeau C, Garcia J, Lhomme J. Solution conformation of an abasic DNA undecamer duples d(CGCACXCACGC), d(GCGTGTGTGCG): The unpaired thymine stacks inside the helix. Biochemistry 1997;36:4817-4830.
    • (1997) Biochemistry , vol.36 , pp. 4817-4830
    • Coppel, Y.1    Berthet, N.2    Coulombeau, C.3    Coulombeau, C.4    Garcia, J.5    Lhomme, J.6
  • 107
    • 33947369957 scopus 로고    scopus 로고
    • Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4'-oxidized abasic sites
    • Chen J, Dupradeau FY, Case DA, Turner CJ, Stubbe J. Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4'-oxidized abasic sites. Biochemistry 2007;46:3096-3107.
    • (2007) Biochemistry , vol.46 , pp. 3096-3107
    • Chen, J.1    Dupradeau, F.Y.2    Case, D.A.3    Turner, C.J.4    Stubbe, J.5
  • 108
    • 0029147479 scopus 로고
    • Refined solution structure of a DNA heteroduplex containing an aldehydic basic site
    • Goljer I, Kumar S, Bolton PH. Refined solution structure of a DNA heteroduplex containing an aldehydic basic site. J Biol Chem 1995;270:22980-22987.
    • (1995) J Biol Chem , vol.270 , pp. 22980-22987
    • Goljer, I.1    Kumar, S.2    Bolton, P.H.3
  • 109
    • 0035881038 scopus 로고    scopus 로고
    • Solution structure of an oligonucleotide containing an abasic site: Evidence for an unusual deoxyribose conformation
    • Hoehn ST, Turner CJ, Stubbe J. Solution structure of an oligonucleotide containing an abasic site: Evidence for an unusual deoxyribose conformation. Nucleic Acids Res 2001;29:3413-3423.
    • (2001) Nucleic Acids Res , vol.29 , pp. 3413-3423
    • Hoehn, S.T.1    Turner, C.J.2    Stubbe, J.3
  • 110
    • 38349188454 scopus 로고    scopus 로고
    • DNA oligonucleotides with A, T, G, or C opposite an abasic site: Structure and dynamics
    • Chen J, Dupradeau FY, Case DA, Turner CJ, Stubbe J. DNA oligonucleotides with A, T, G, or C opposite an abasic site: Structure and dynamics. Nucleic Acids Res 2008;36:253-262.
    • (2008) Nucleic Acids Res , vol.36 , pp. 253-262
    • Chen, J.1    Dupradeau, F.Y.2    Case, D.A.3    Turner, C.J.4    Stubbe, J.5
  • 111
    • 0034234593 scopus 로고    scopus 로고
    • New insights into the structure of abasic DNA from molecular dynamics simulations
    • Barsky D, Foloppe N, Ahmadia S, Wilson DM, III, MacKerell AD, Jr. New insights into the structure of abasic DNA from molecular dynamics simulations. Nucleic Acids Res 2000;28:2613-2626.
    • (2000) Nucleic Acids Res , vol.28 , pp. 2613-2626
    • Barsky, D.1    Foloppe, N.2    Ahmadia, S.3    Wilson, D.I.4    MacKerell, A.J.5
  • 113
    • 0024669785 scopus 로고
    • Influence of abasic and anucleosidic sites on stability, conformation, and melting behavior of a DNA duplex: Correlations of thermodynamic and structural data
    • Vesnaver G, Chang CN, Eisenberg M, Grollman AP, Breslauer KJ. Influence of abasic and anucleosidic sites on stability, conformation, and melting behavior of a DNA duplex: Correlations of thermodynamic and structural data. Proc Natl Acad Sci USA 1989;86:3614-3618.
    • (1989) Proc Natl Acad Sci USA , vol.86 , pp. 3614-3618
    • Vesnaver, G.1    Chang, C.N.2    Eisenberg, M.3    Grollman, A.P.4    Breslauer, K.J.5
  • 114
    • 0032546530 scopus 로고    scopus 로고
    • Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequence
    • Gelfand CA, Plum GE, Grollman AP, Johnson F, Breslauer KJ. Thermodynamic consequences of an abasic lesion in duplex DNA are strongly dependent on base sequence. Biochemistry 1998;37:7321-7327.
    • (1998) Biochemistry , vol.37 , pp. 7321-7327
    • Gelfand, C.A.1    Plum, G.E.2    Grollman, A.P.3    Johnson, F.4    Breslauer, K.J.5
  • 115
    • 0034719372 scopus 로고    scopus 로고
    • DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination
    • Mol CD, Izumi T, Mitra S, Tainer JA. DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 2000;403:451-456.
    • (2000) Nature , vol.403 , pp. 451-456
    • Mol, C.D.1    Izumi, T.2    Mitra, S.3    Tainer, J.A.4
  • 116
    • 0030802872 scopus 로고    scopus 로고
    • Replication bypass and mutagenic effect of alpha-deoxyadenosine site-specifically incorporated into single-stranded vectors
    • Shimizu H, Yagi R, Kimura Y, Makino K, Terato H, Ohyama Y, Ide H. Replication bypass and mutagenic effect of alpha-deoxyadenosine site-specifically incorporated into single-stranded vectors. Nucleic Acids Res 1997;25:597-603.
    • (1997) Nucleic Acids Res , vol.25 , pp. 597-603
    • Shimizu, H.1    Yagi, R.2    Kimura, Y.3    Makino, K.4    Terato, H.5    Ohyama, Y.6    Ide, H.7
  • 117
    • 0013579817 scopus 로고    scopus 로고
    • Structure and stability of DNA containing inverted anomeric centers and polarity reversals
    • Aramini JM, van de Sande JH, Germann MW. Structure and stability of DNA containing inverted anomeric centers and polarity reversals. ACS Symp Ser 1998;682:92-105.
    • (1998) ACS Symp Ser , vol.682 , pp. 92-105
    • Aramini, J.M.1    van de Sande, J.H.2    Germann, M.W.3
  • 118
    • 1842526440 scopus 로고    scopus 로고
    • Solution structure of a DNA duplex containing an alpha-anomeric adenosine: Insights into substrate recognition by endonuclease IV
    • Aramini J, Cleaver JS, Pon R, Cunningham R, Germann MW. Solution structure of a DNA duplex containing an alpha-anomeric adenosine: Insights into substrate recognition by endonuclease IV. J Mol Biol 2004;338:77-91.
    • (2004) J Mol Biol , vol.338 , pp. 77-91
    • Aramini, J.1    Cleaver, J.S.2    Pon, R.3    Cunningham, R.4    Germann, M.W.5
  • 120
    • 48249129739 scopus 로고    scopus 로고
    • The first functional study of MLH3 mutations found in cancer patients genes chromosomes
    • Korhonen MK, Vuorenmaa E, Nystrom M. The first functional study of MLH3 mutations found in cancer patients genes chromosomes. Cancer 2008;47:803-809.
    • (2008) Cancer , vol.47 , pp. 803-809
    • Korhonen, M.K.1    Vuorenmaa, E.2    Nystrom, M.3
  • 121
    • 45449103427 scopus 로고    scopus 로고
    • DNA mismatch repair: Molecular mechanism, cancer and ageing
    • Hsieh P, Yamane K. DNA mismatch repair: Molecular mechanism, cancer and ageing. Mech Age Dev 2008;129:39-407.
    • (2008) Mech Age Dev , vol.129 , pp. 39-407
    • Hsieh, P.1    Yamane, K.2
  • 123
    • 72749098156 scopus 로고    scopus 로고
    • Unusual DNA structures and DNA damage recognition: Structure and dynamic markers
    • Germann MW, Johnson CN, Spring AM. Unusual DNA structures and DNA damage recognition: Structure and dynamic markers. Chimia 2009;63:731-736.
    • (2009) Chimia , vol.63 , pp. 731-736
    • Germann, M.W.1    Johnson, C.N.2    Spring, A.M.3
  • 124
    • 65549090160 scopus 로고    scopus 로고
    • Deciphering the mismatch recognition cycle in MutS and MSH2-MSH6 using normal mode analysis
    • Mukherjee S, Law SM, Feig M. Deciphering the mismatch recognition cycle in MutS and MSH2-MSH6 using normal mode analysis. Biophys J 2009;96:1707-1720.
    • (2009) Biophys J , vol.96 , pp. 1707-1720
    • Mukherjee, S.1    Law, S.M.2    Feig, M.3
  • 125
    • 45549093251 scopus 로고    scopus 로고
    • Bound nucleotide controls the endonuclease activity of mismatch repair enzyme MutL
    • Fukui K, Nishida M, Nakagawa N, Masui R, Kuramitsu S. Bound nucleotide controls the endonuclease activity of mismatch repair enzyme MutL. J Biol Chem 2008;283:12136-12145.
    • (2008) J Biol Chem , vol.283 , pp. 12136-12145
    • Fukui, K.1    Nishida, M.2    Nakagawa, N.3    Masui, R.4    Kuramitsu, S.5
  • 126
    • 68949145083 scopus 로고    scopus 로고
    • Conformational change in MSH2-MSH6 upon binding DNA coupled to ATPase activity
    • Mukherjee S, Fieg M. Conformational change in MSH2-MSH6 upon binding DNA coupled to ATPase activity. Biophys J 2009:96:L63-L65.
    • (2009) Biophys J , vol.96
    • Mukherjee, S.1    Fieg, M.2
  • 127
    • 0034635517 scopus 로고    scopus 로고
    • The role of mismatched nucleotides in activating the hMSH2-hMSH6 molecular switch
    • Gradia S, Acharya S, Fishel R. The role of mismatched nucleotides in activating the hMSH2-hMSH6 molecular switch. J Biol Chem 2000;275:3922-3930.
    • (2000) J Biol Chem , vol.275 , pp. 3922-3930
    • Gradia, S.1    Acharya, S.2    Fishel, R.3
  • 129
    • 0034641938 scopus 로고    scopus 로고
    • Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA
    • Obmolova G, Ban C, Hsieh P, Yang W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 2000;407:703-710.
    • (2000) Nature , vol.407 , pp. 703-710
    • Obmolova, G.1    Ban, C.2    Hsieh, P.3    Yang, W.4
  • 130
    • 0035252682 scopus 로고    scopus 로고
    • DNA mismatch repair: MutS structures bound to mismatches
    • Sixma TK. DNA mismatch repair: MutS structures bound to mismatches. Curr Opin Struct Biol 2001;11:47-52.
    • (2001) Curr Opin Struct Biol , vol.11 , pp. 47-52
    • Sixma, T.K.1
  • 132
    • 0033523013 scopus 로고    scopus 로고
    • A mutation in the MSH6 subunit of the saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition
    • Bowers J, Sokolsky T, Quach T, Alani E. A mutation in the MSH6 subunit of the saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition. J Biol Chem 1999;274:16115-16125.
    • (1999) J Biol Chem , vol.274 , pp. 16115-16125
    • Bowers, J.1    Sokolsky, T.2    Quach, T.3    Alani, E.4
  • 133
    • 76249089573 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae MSH2-MSH6 binding kinetics reveal a mechanism of targeting sites for DNA mismatch repair
    • Zhai J, Hingorani MM. Saccharomyces cerevisiae MSH2-MSH6 binding kinetics reveal a mechanism of targeting sites for DNA mismatch repair. Proc Natl Sci USA 2010;107:680-685.
    • (2010) Proc Natl Sci USA , vol.107 , pp. 680-685
    • Zhai, J.1    Hingorani, M.M.2
  • 134
    • 0033953141 scopus 로고    scopus 로고
    • DNA repair: Models for damage an mismatch recognition
    • Rajski SR, Jackson BA, Barton JK. DNA repair: Models for damage an mismatch recognition. Mutat Res 2000;447:49-72.
    • (2000) Mutat Res , vol.447 , pp. 49-72
    • Rajski, S.R.1    Jackson, B.A.2    Barton, J.K.3
  • 135
    • 0030875847 scopus 로고    scopus 로고
    • Thermodynamics and NMR of internal GT mismatches in DNA
    • Allawi HT, SantaLucia JJ. Thermodynamics and NMR of internal GT mismatches in DNA. Biochemistry 1997;36:10581-10594.
    • (1997) Biochemistry , vol.36 , pp. 10581-10594
    • Allawi, H.T.1    SantaLucia, J.J.2
  • 138
    • 0028864424 scopus 로고
    • Studies of base pair kinetics by NMR measurement of proton exchange
    • Geuron M, Leroy JL. Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol 1995;261:383-413.
    • (1995) Methods Enzymol , vol.261 , pp. 383-413
    • Geuron, M.1    Leroy, J.L.2
  • 139
    • 0027934143 scopus 로고
    • Sequence dependence of base-pair opening in a DNA dodecamer containing the CACA/GTGT sequence motif
    • Folta-Stogniew E, Russu I. Sequence dependence of base-pair opening in a DNA dodecamer containing the CACA/GTGT sequence motif. Biochemistry 1994;33:11016-11024.
    • (1994) Biochemistry , vol.33 , pp. 11016-11024
    • Folta-Stogniew, E.1    Russu, I.2
  • 140
    • 84860348857 scopus 로고    scopus 로고
    • Applying computational methods in the study of biomolecular systems: The recognition mechanism of DNA repair enzyme Fpg. Dissertation, Stony Brooke University, Stony Brooke, NY
    • Song K. Applying computational methods in the study of biomolecular systems: The recognition mechanism of DNA repair enzyme Fpg. Dissertation, Stony Brooke University, Stony Brooke, NY, 2007.
    • (2007)
    • Song, K.1
  • 141
  • 143
    • 77950578784 scopus 로고    scopus 로고
    • Interaction between the MSH2 and MSH6 nucleotide binding sites in the S. cerevisiae MSH2-MSH6 complex
    • Hargreaves VV, Shell SS, Mazur DJ, Hess MT, Kolodner RD. Interaction between the MSH2 and MSH6 nucleotide binding sites in the S. cerevisiae MSH2-MSH6 complex. J Biol Chem 2010;285:9301-9310.
    • (2010) J Biol Chem , vol.285 , pp. 9301-9310
    • Hargreaves, V.V.1    Shell, S.S.2    Mazur, D.J.3    Hess, M.T.4    Kolodner, R.D.5
  • 144
    • 77955095659 scopus 로고    scopus 로고
    • Human AP endonuclease 1 (APE1): From mechanistic insights to druggable target in cancer
    • press. DOI: 10.1016.
    • Abbotts R, Madusudan S. Human AP endonuclease 1 (APE1): From mechanistic insights to druggable target in cancer. Cancer Treat Rev 2010; in press. DOI: 10.1016.
    • (2010) Cancer Treat Rev
    • Abbotts, R.1    Madusudan, S.2
  • 145
    • 34247127167 scopus 로고    scopus 로고
    • Mitochondrial DNA repair: A critical player in the response of cells of the CNS to genotoxic insults
    • LeDoux SP, Druzhyna NM, Hollensworth SB, Harrison JF, Wilson GL. Mitochondrial DNA repair: A critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 2007;145:1249-1259.
    • (2007) Neuroscience , vol.145 , pp. 1249-1259
    • LeDoux, S.P.1    Druzhyna, N.M.2    Hollensworth, S.B.3    Harrison, J.F.4    Wilson, G.L.5
  • 146
    • 33847618832 scopus 로고    scopus 로고
    • Mitochondrial drug delivery and mitochondrial disease therapy-An approach to liposome-based delivery targeted to mitochondria
    • Yamada Y, Akita H, Kogure K, Kamiya H, Harashima H. Mitochondrial drug delivery and mitochondrial disease therapy-An approach to liposome-based delivery targeted to mitochondria. Mitochondrion 2007;7:63-71.
    • (2007) Mitochondrion , vol.7 , pp. 63-71
    • Yamada, Y.1    Akita, H.2    Kogure, K.3    Kamiya, H.4    Harashima, H.5
  • 147
    • 33746189409 scopus 로고    scopus 로고
    • Endonucleolytic function of MutLα in human mismatch repair
    • Kadyrov FA, Dzantiev L, Constantin N, Modrich P. Endonucleolytic function of MutLα in human mismatch repair. Cell 2006;126:297-308.
    • (2006) Cell , vol.126 , pp. 297-308
    • Kadyrov, F.A.1    Dzantiev, L.2    Constantin, N.3    Modrich, P.4
  • 148
    • 0034461931 scopus 로고    scopus 로고
    • DNA damage in the nucleosome core is refractory to repair by human excision nuclease
    • Hara R, MO J, Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol Cell Biol 2000;20:91730-99181.
    • (2000) Mol Cell Biol , vol.20 , pp. 91730-99181
    • Hara, R.1    Mo, J.2    Sancar, A.3
  • 149
    • 0036785614 scopus 로고    scopus 로고
    • The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle
    • Hara R, Sancar A. The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. Mol Cell Biol 2002;22:6779-6787.
    • (2002) Mol Cell Biol , vol.22 , pp. 6779-6787
    • Hara, R.1    Sancar, A.2
  • 150
    • 57749097697 scopus 로고    scopus 로고
    • Coordinating the initial steps of base excision repair: Apurinic/apyrimidinic endonuclese 1 actively stimulates thymine DNA glycosylase by disrupting the product complex
    • Fitgerald ME, Drohat AC. Coordinating the initial steps of base excision repair: Apurinic/apyrimidinic endonuclese 1 actively stimulates thymine DNA glycosylase by disrupting the product complex. J Biol Chem 2008;283:32680-32690.
    • (2008) J Biol Chem , vol.283 , pp. 32680-32690
    • Fitgerald, M.E.1    Drohat, A.C.2
  • 151
    • 1242275388 scopus 로고    scopus 로고
    • Enhanced mutagenic potential of 8-oxo-7,8-dihydroguaninne when present within a clustered DNA damage site
    • Pearson CG, Shikazono N, Thacker J, O'Neill PO. Enhanced mutagenic potential of 8-oxo-7, 8-dihydroguaninne when present within a clustered DNA damage site. Nucleic Acids Res 2004;32:263-270.
    • (2004) Nucleic Acids Res , vol.32 , pp. 263-270
    • Pearson, C.G.1    Shikazono, N.2    Thacker, J.3    O'Neill, P.O.4
  • 152
    • 0035283041 scopus 로고    scopus 로고
    • Excision of 8-oxoguanine within clustered clustered damage by the yeast OGG1 protein
    • David-Cordonnier HM, Boiteux S, O'Neill P. Excision of 8-oxoguanine within clustered clustered damage by the yeast OGG1 protein. Nucleic Acids Res 2001;29:1107-1113.
    • (2001) Nucleic Acids Res , vol.29 , pp. 1107-1113
    • David-Cordonnier, H.M.1    Boiteux, S.2    O'Neill, P.3
  • 153
    • 38949209141 scopus 로고    scopus 로고
    • The chemical toxicology of 2-deoxyribose oxidation in DNA
    • Dedon PC. The chemical toxicology of 2-deoxyribose oxidation in DNA. Chem Res Toxicol 2008;21:206-219.
    • (2008) Chem Res Toxicol , vol.21 , pp. 206-219
    • Dedon, P.C.1
  • 154
    • 10044225990 scopus 로고    scopus 로고
    • α-anomeric dexoynucleotides, anoxic products of ionizing radiation, are substrates for the endonucease IV type AP endonucleases
    • Ischchenko AA, Ide H, Ramotar D, Nevinsky G, Saparbaev M. α-anomeric dexoynucleotides, anoxic products of ionizing radiation, are substrates for the endonucease IV type AP endonucleases. Biochemistry 2004;43:15210-15216.
    • (2004) Biochemistry , vol.43 , pp. 15210-15216
    • Ischchenko, A.A.1    Ide, H.2    Ramotar, D.3    Nevinsky, G.4    Saparbaev, M.5
  • 155
    • 0035225455 scopus 로고    scopus 로고
    • Keynote: Past, present, and future aspects of base excision repair
    • Lindahl T. Keynote: Past, present, and future aspects of base excision repair. Prog Nucleic Acid Res Mol Biol 2001;68:xvii-xxx.
    • (2001) Prog Nucleic Acid Res Mol Biol , vol.68
    • Lindahl, T.1
  • 156
    • 3343022751 scopus 로고    scopus 로고
    • An evolutionary analysis of the helix-harpin-helix superfamily of DNA repair glycosylases
    • Denver DR, Swenson SL, Lynch M. An evolutionary analysis of the helix-harpin-helix superfamily of DNA repair glycosylases. Mol Biol Evol 2003;20:1603-1611.
    • (2003) Mol Biol Evol , vol.20 , pp. 1603-1611
    • Denver, D.R.1    Swenson, S.L.2    Lynch, M.3
  • 157
    • 0037112668 scopus 로고    scopus 로고
    • Human DNA glycosylases of the bacterial Fpg/MutM superfamily: An alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA
    • Morland I, Rolseth V, Luna L, Rognes T, Bjørås M, Seeberg E. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: An alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res 2002;20:4926-4936.
    • (2002) Nucleic Acids Res , vol.20 , pp. 4926-4936
    • Morland, I.1    Rolseth, V.2    Luna, L.3    Rognes, T.4    Bjørås, M.5    Seeberg, E.6
  • 158
    • 0037310197 scopus 로고    scopus 로고
    • Disparity between DNA base excision repair in yeast and mammals
    • Kelly MR, Kow YW, Wilson DM, III. Disparity between DNA base excision repair in yeast and mammals. Perspect Cancer Research 2003;63:549-554.
    • (2003) Perspect Cancer Research , vol.63 , pp. 549-554
    • Kelly, M.R.1    Kow, Y.W.2    Wilson, D.I.3
  • 159
    • 0032960862 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast
    • Alseth I, Eide L, Pirovano M, Rognes T, Seeberg E, Bjørås M. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol Cell Biol 1999;19:3779-3787.
    • (1999) Mol Cell Biol , vol.19 , pp. 3779-3787
    • Alseth, I.1    Eide, L.2    Pirovano, M.3    Rognes, T.4    Seeberg, E.5    Bjørås, M.6
  • 160
    • 0142187125 scopus 로고    scopus 로고
    • Structural characterization of the Fpg family of DNA glycosylases
    • Zharkov DO, Shoham G, Grollman AP. Structural characterization of the Fpg family of DNA glycosylases. DNA Repair 2003;2:839-862.
    • (2003) DNA Repair , vol.2 , pp. 839-862
    • Zharkov, D.O.1    Shoham, G.2    Grollman, A.P.3
  • 161
    • 0034734383 scopus 로고    scopus 로고
    • Structure and function in the uracil-DNA glycosylase superfamily
    • Pearl LH. Structure and function in the uracil-DNA glycosylase superfamily. DNA repair 2000;460:165-181.
    • (2000) DNA repair , vol.460 , pp. 165-181
    • Pearl, L.H.1
  • 163
    • 0141790433 scopus 로고    scopus 로고
    • Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2
    • Leipold MD, Workman H, Muller JG, Burrows CJ, David SS. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2. Biochemistry 2003;42:11373-11381.
    • (2003) Biochemistry , vol.42 , pp. 11373-11381
    • Leipold, M.D.1    Workman, H.2    Muller, J.G.3    Burrows, C.J.4    David, S.S.5
  • 164
    • 34948854919 scopus 로고    scopus 로고
    • Excision of 5-halogenated uracils by human thymine DNA glycosylase: Robust activity for DNA contexts other than CpG
    • Morgan MT, Bennett MT, Drohat AC. Excision of 5-halogenated uracils by human thymine DNA glycosylase: Robust activity for DNA contexts other than CpG. J Biol Chem 2007;282:27578-27586.
    • (2007) J Biol Chem , vol.282 , pp. 27578-27586
    • Morgan, M.T.1    Bennett, M.T.2    Drohat, A.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.