-
2
-
-
84891575564
-
-
ed., Wiley, New York
-
Organic Thin Film Transistor Integration: A Hybrid Approach, ed., F. Li, A. Nathan, Y. Wu, and, B. S. Ong, Wiley, New York, 2011
-
(2011)
Organic Thin Film Transistor Integration: A Hybrid Approach
-
-
Li, F.1
Nathan, A.2
Wu, Y.3
Ong, B.S.4
-
25
-
-
34250327848
-
-
A. Salomon T. Boecking O. Seitz T. Markus F. Amy C. Chan W. Zhao D. Cahen A. Kahn Adv. Mater. 2007 19 445 450
-
(2007)
Adv. Mater.
, vol.19
, pp. 445-450
-
-
Salomon, A.1
Boecking, T.2
Seitz, O.3
Markus, T.4
Amy, F.5
Chan, C.6
Zhao, W.7
Cahen, D.8
Kahn, A.9
-
30
-
-
14744269444
-
-
Q. Y. Sun L. de Smet B. van Lagen M. Giesbers P. C. Thune J. van Engelenburg F. A. de Wolf H. Zuilhof E. J. R. Sudholter J. Am. Chem. Soc. 2005 127 2514 2523
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 2514-2523
-
-
Sun, Q.Y.1
De Smet, L.2
Van Lagen, B.3
Giesbers, M.4
Thune, P.C.5
Van Engelenburg, J.6
De Wolf, F.A.7
Zuilhof, H.8
Sudholter, E.J.R.9
-
33
-
-
66749127327
-
-
O. Yaffe L. Scheres S. R. Puniredd N. Stein A. Biller R. H. Lavan H. Shpaisman H. Zuilhof H. Haick D. Cahen A. Vilan Nano Lett. 2009 9 2390
-
(2009)
Nano Lett.
, vol.9
, pp. 2390
-
-
Yaffe, O.1
Scheres, L.2
Puniredd, S.R.3
Stein, N.4
Biller, A.5
Lavan, R.H.6
Shpaisman, H.7
Zuilhof, H.8
Haick, H.9
Cahen, D.10
Vilan, A.11
-
36
-
-
77955411862
-
-
To put things in perspective, the well-known increase in metallic conductivity upon cooling is at most 5-6 fold, and mostly less, over the same temperature range; organic metals can show an up to 15-fold increase over that range; see ref. 38
-
H. Shpaisman R. Har-Lavan N. Stein O. Yaffe R. Korobko O. Seitz A. Vilan D. Cahen Adv. Funct. Mater. 2010 20 2181 8
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 2181-8
-
-
Shpaisman, H.1
Har-Lavan, R.2
Stein, N.3
Yaffe, O.4
Korobko, R.5
Seitz, O.6
Vilan, A.7
Cahen, D.8
-
38
-
-
84857269508
-
-
submitted
-
O. Yaffe Y. Qi L. Segev L. Scheres S. R. Puniredd T. Ely I. Ron H. Haick H. Zuilhof L. Kronik A. Kahn A. Vilan D. Cahen Phys. Rev. B
-
Phys. Rev. B
-
-
Yaffe, O.1
Qi, Y.2
Segev, L.3
Scheres, L.4
Puniredd, S.R.5
Ely, T.6
Ron, I.7
Haick, H.8
Zuilhof, H.9
Kronik, L.10
Kahn, A.11
Vilan, A.12
Cahen, D.13
-
41
-
-
0038163911
-
-
++ samples in terms of density and other structural characteristics; see refs. 39 and 41
-
J. R. Roche M. Ramonda F. Thibaudau P. Dumas P. Mathiez F. Salvan P. Allongue Microsc., Microanal., Microstruct. 1994 5 291 299
-
(1994)
Microsc., Microanal., Microstruct.
, vol.5
, pp. 291-299
-
-
Roche, J.R.1
Ramonda, M.2
Thibaudau, F.3
Dumas, P.4
Mathiez, P.5
Salvan, F.6
Allongue, P.7
-
46
-
-
65649148618
-
-
We refer to conduction or valence bands rather than LUMO or HOMO, to stress that the monolayer levels already have some solid-state character
-
M. Häming J. Ziroff E. Salomon O. Seitz D. Cahen A. Kahn A. Schöll F. Reinert E. Umbach Phys. Rev. B: Condens. Matter Mater. Phys. 2009 79 155418
-
(2009)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.79
, pp. 155418
-
-
Häming, M.1
Ziroff, J.2
Salomon, E.3
Seitz, O.4
Cahen, D.5
Kahn, A.6
Schöll, A.7
Reinert, F.8
Umbach, E.9
-
48
-
-
0000195552
-
-
This difference between the alkyl chain valence band (HOMO, derived) and conduction band (LUMO, derived) is seen clearly in that the valence band structure is roughly maintained in the gas phase, while the conduction band structure disappears completely upon melting
-
N. Ueno K. Sugita Phys. Rev. B: Condens. Matter 1990 42 1659
-
(1990)
Phys. Rev. B: Condens. Matter
, vol.42
, pp. 1659
-
-
Ueno, N.1
Sugita, K.2
-
49
-
-
69549111430
-
-
Extraction of Fermi-level position upon cooling from UPS is complicated by the UV radiation-induced surface photovoltage at lower temperatures (see ref. 55). This process depends on the amount of trapped charges, which explains the insufficient reproducibility of the extent of the WF change upon cooling between different samples
-
T. Frederiksen C. Munuera C. Ocal M. Brandbyge M. Paulsson D. Sanchez-Portal A. Arnau ACS Nano 2009 3 2073
-
(2009)
ACS Nano
, vol.3
, pp. 2073
-
-
Frederiksen, T.1
Munuera, C.2
Ocal, C.3
Brandbyge, M.4
Paulsson, M.5
Sanchez-Portal, D.6
Arnau, A.7
-
54
-
-
67249129820
-
-
The invariance in peak intensity with temperature is in contrast to strong temperature-dependent intensity reported for alkyl thiols (see ref. 57 and 58). This is partially because of the transmission mode used here, in contrast to reflectance for Au. Yet Nuzzo, et al. argued that the intensity change was much larger than what could be ascribed to tilt variation (ref. 57). Variation in the methylene IR relative intensity was also observed in transmission mode, for alkyl thiols on GaAs (ref. 59). We do not observe such order-enhanced IR absorbance in alkyl-Si monolayers
-
G. M. Marshall F. Bensebaa J. J. Dubowski J. Appl. Phys. 2009 105 094310
-
(2009)
J. Appl. Phys.
, vol.105
, pp. 094310
-
-
Marshall, G.M.1
Bensebaa, F.2
Dubowski, J.J.3
-
60
-
-
60849099634
-
-
D. M. Rosu J. C. Jones J. W. P. Hsu K. L. Kavanagh D. Tsankov U. Schade N. Esser K. Hinrichs Langmuir 2009 25 919
-
(2009)
Langmuir
, vol.25
, pp. 919
-
-
Rosu, D.M.1
Jones, J.C.2
Hsu, J.W.P.3
Kavanagh, K.L.4
Tsankov, D.5
Schade, U.6
Esser, N.7
Hinrichs, K.8
-
67
-
-
4644340684
-
-
Sensitivity limits are much less if macroscopic junctions are used as we do. The problem with using macroscopic junctions is that as the junction area increases the demands on the monolayer quality multiply, which explains why that approach is so much more difficult than one where micro- or nano-scopic areas are involved)
-
S. Vemparala B. B. Karki R. K. Kalia A. Nakano P. Vashishta J. Chem. Phys. 2004 121 4323
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 4323
-
-
Vemparala, S.1
Karki, B.B.2
Kalia, R.K.3
Nakano, A.4
Vashishta, P.5
-
76
-
-
77953203556
-
-
O. Yaffe L. Scheres L. Segev A. Biller I. Ron E. Salomon M. Gies-bers A. Kahn L. Kronik H. Zuilhof A. Vilan D. Cahen J. Phys. Chem. C 2010 114 10270
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 10270
-
-
Yaffe, O.1
Scheres, L.2
Segev, L.3
Biller, A.4
Ron, I.5
Salomon, E.6
Gies-Bers, M.7
Kahn, A.8
Kronik, L.9
Zuilhof, H.10
Vilan, A.11
Cahen, D.12
-
91
-
-
0041536605
-
-
N. Camillone Iii C. E. D. Chidsey P. Eisenberger P. Fenter J. Li K. S. Liang G. Y. Liu G. Scoles J. Chem. Phys. 1993 99 744
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 744
-
-
Camillone Iii, N.1
Chidsey, C.E.D.2
Eisenberger, P.3
Fenter, P.4
Li, J.5
Liang, K.S.6
Liu, G.Y.7
Scoles, G.8
-
93
-
-
57449119297
-
-
P. A. Van Hal E. C. P. Smits T. C. T. Geuns H. B. Akkerman B. C. De Brito S. Perissinotto G. Lanzani A. J. Kronemeijer V. Geskin J. Cornil P. W. M. Blom B. De Boer D. M. De Leeuw Nat. Nanotechnol. 2008 3 749
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 749
-
-
Van Hal, P.A.1
Smits, E.C.P.2
Geuns, T.C.T.3
Akkerman, H.B.4
De Brito, B.C.5
Perissinotto, S.6
Lanzani, G.7
Kronemeijer, A.J.8
Geskin, V.9
Cornil, J.10
Blom, P.W.M.11
De Boer, B.12
De Leeuw, D.M.13
|