메뉴 건너뛰기




Volumn 17, Issue 35, 2011, Pages 3888-3897

mTOR signaling and metabolic regulation of T cells: New potential therapeutic targets in autoimmune diseases

Author keywords

Autoimmune diseases; Autophagy; Metabolism; mTOR; mTOR inhibitors; Rapamycin; T lymphocytes; Vitamin D

Indexed keywords

AMINO ACID; MAMMALIAN TARGET OF RAPAMYCIN; MESSENGER RNA; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHATIDYLINOSITOL 3,4,5 TRISPHOSPHATE 3 PHOSPHATASE; PROTEIN KINASE B; RAPAMYCIN; RHEB PROTEIN; TUBERIN; VITAMIN D;

EID: 83455238260     PISSN: 13816128     EISSN: 18734286     Source Type: Journal    
DOI: 10.2174/138161211798357809     Document Type: Review
Times cited : (24)

References (137)
  • 1
    • 77957054466 scopus 로고    scopus 로고
    • The mammalian target of rapamycin: Linking T cell differentiation, function, and metabolism
    • Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010; 33: 301-311.
    • (2010) Immunity , vol.33 , pp. 301-311
    • Powell, J.D.1    Delgoffe, G.M.2
  • 2
    • 61449212998 scopus 로고    scopus 로고
    • T cell dependence on mTOR signaling
    • Mills RE, Jameson JM. T cell dependence on mTOR signaling. Cell Cycle 2009; 8: 545-548.
    • (2009) Cell Cycle , vol.8 , pp. 545-548
    • Mills, R.E.1    Jameson, J.M.2
  • 3
    • 65449135649 scopus 로고    scopus 로고
    • The multiple facets of mTOR in immunity
    • Weichhart T, Saemann MD. The multiple facets of mTOR in immunity. Trends Immunol 2009; 30: 218-226.
    • (2009) Trends Immunol , vol.30 , pp. 218-226
    • Weichhart, T.1    Saemann, M.D.2
  • 4
    • 0028360374 scopus 로고
    • A mammalian protein targeted by G1-arresting rapamycin-receptor complex
    • Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994; 369: 756-758.
    • (1994) Nature , vol.369 , pp. 756-758
    • Brown, E.J.1    Albers, M.W.2    Shin, T.B.3
  • 5
    • 0029881595 scopus 로고    scopus 로고
    • Assignment of the human FKBP12-rapamycin-associated protein (FRAP) gene to chromosome 1p36 by fluorescence in situ hybridization
    • Moore PA, Rosen CA, Carter KC. Assignment of the human FKBP12-rapamycin-associated protein (FRAP) gene to chromosome 1p36 by fluorescence in situ hybridization. Genomics 1996; 33: 331-332.
    • (1996) Genomics , vol.33 , pp. 331-332
    • Moore, P.A.1    Rosen, C.A.2    Carter, K.C.3
  • 6
    • 4043171462 scopus 로고    scopus 로고
    • Upstream and downstream of mTOR
    • Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004; 18: 1926-1945.
    • (2004) Genes Dev , vol.18 , pp. 1926-1945
    • Hay, N.1    Sonenberg, N.2
  • 7
    • 33745918631 scopus 로고    scopus 로고
    • Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells
    • Beevers CS, Li F, Liu L, Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 2006; 119: 757-764.
    • (2006) Int J Cancer , vol.119 , pp. 757-764
    • Beevers, C.S.1    Li, F.2    Liu, L.3    Huang, S.4
  • 8
    • 34347220473 scopus 로고    scopus 로고
    • Defining the role of mTOR in cancer
    • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9-22.
    • (2007) Cancer Cell , vol.12 , pp. 9-22
    • Guertin, D.A.1    Sabatini, D.M.2
  • 9
    • 33749406921 scopus 로고    scopus 로고
    • Nutrient- dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region
    • Takahara T, Hara K, Yonezawa K, Sorimachi H, Maeda T. Nutrient- dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J Biol Chem 2006; 281: 28605-28614.
    • (2006) J Biol Chem , vol.281 , pp. 28605-28614
    • Takahara, T.1    Hara, K.2    Yonezawa, K.3    Sorimachi, H.4    Maeda, T.5
  • 10
    • 33646391271 scopus 로고    scopus 로고
    • A role for the mTOR pathway in surface expression of AMPA receptors
    • Wang Y, Barbaro MF, Baraban SC. A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci Lett 2006; 401: 35-39.
    • (2006) Neurosci Lett , vol.401 , pp. 35-39
    • Wang, Y.1    Barbaro, M.F.2    Baraban, S.C.3
  • 11
    • 33644781670 scopus 로고    scopus 로고
    • Drosophila target of rapamycin kinase functions as a multimer
    • Zhang Y, Billington CJ, Jr., Pan D, Neufeld TP. Drosophila target of rapamycin kinase functions as a multimer. Genetics 2006; 172: 355-362.
    • (2006) Genetics , vol.172 , pp. 355-362
    • Zhang, Y.1    Billington Jr., C.J.2    Pan, D.3    Neufeld, T.P.4
  • 12
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, Sarbassov DD, Ali SM, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163-175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1    Sarbassov, D.D.2    Ali, S.M.3
  • 13
    • 0035976615 scopus 로고    scopus 로고
    • Phosphatidic acid-mediated mitogenic activation of mTOR signaling
    • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001; 294: 1942-1945.
    • (2001) Science , vol.294 , pp. 1942-1945
    • Fang, Y.1    Vilella-Bach, M.2    Bachmann, R.3    Flanigan, A.4    Chen, J.5
  • 14
    • 33748471980 scopus 로고    scopus 로고
    • mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
    • Frias MA, Thoreen CC, Jaffe JD, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 2006; 16: 1865-1870.
    • (2006) Curr Biol , vol.16 , pp. 1865-1870
    • Frias, M.A.1    Thoreen, C.C.2    Jaffe, J.D.3
  • 15
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton
    • Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296-1302.
    • (2004) Curr Biol , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1    Ali, S.M.2    Kim, D.H.3
  • 16
    • 47949125486 scopus 로고    scopus 로고
    • The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
    • Facchinetti V, Ouyang W, Wei H, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008; 27: 1932-1943.
    • (2008) EMBO J , vol.27 , pp. 1932-1943
    • Facchinetti, V.1    Ouyang, W.2    Wei, H.3
  • 17
    • 53149129841 scopus 로고    scopus 로고
    • Maternal protein restriction during early lactation induces GLUT4 translocation and mTOR/Akt activation in adipocytes of adult rats
    • Garcia-Souza EP, da Silva SV, Felix GB, et al. Maternal protein restriction during early lactation induces GLUT4 translocation and mTOR/Akt activation in adipocytes of adult rats. Am J Physiol Endocrinol Metab 2008; 295: E626-E636.
    • (2008) Am J Physiol Endocrinol Metab , vol.295
    • Garcia-Souza, E.P.1    da Silva, S.V.2    Felix, G.B.3
  • 18
    • 47949104258 scopus 로고    scopus 로고
    • Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
    • Ikenoue T, Inoki K, Yang Q, Zhou X, Guan KL. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008; 27: 1919-1931.
    • (2008) EMBO J , vol.27 , pp. 1919-1931
    • Ikenoue, T.1    Inoki, K.2    Yang, Q.3    Zhou, X.4    Guan, K.L.5
  • 19
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098-1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 20
    • 78650510609 scopus 로고    scopus 로고
    • mTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21-35.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 21
    • 0034687688 scopus 로고    scopus 로고
    • Cytoplasmic-nuclear shuttling of FKBP12- rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation
    • Kim JE, Chen J. Cytoplasmic-nuclear shuttling of FKBP12- rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci U S A 2000; 97: 14340-14345.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 14340-14345
    • Kim, J.E.1    Chen, J.2
  • 22
    • 0038433304 scopus 로고    scopus 로고
    • Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
    • Garami A, Zwartkruis FJ, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11: 1457-1466.
    • (2003) Mol Cell , vol.11 , pp. 1457-1466
    • Garami, A.1    Zwartkruis, F.J.2    Nobukuni, T.3
  • 23
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829-1834.
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 24
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1    Peterson, T.R.2    Shaul, Y.D.3
  • 25
    • 36049043184 scopus 로고    scopus 로고
    • Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38
    • Bai X, Ma D, Liu A, et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007; 318: 977-80.
    • (2007) Science , vol.318 , pp. 977-980
    • Bai, X.1    Ma, D.2    Liu, A.3
  • 26
    • 33745307617 scopus 로고    scopus 로고
    • Ras, PI(3)K and mTOR signalling controls tumour cell growth
    • Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006; 441: 424-430.
    • (2006) Nature , vol.441 , pp. 424-430
    • Shaw, R.J.1    Cantley, L.C.2
  • 27
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124: 471-484.
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 28
    • 34547907805 scopus 로고    scopus 로고
    • Expanding mTOR signaling
    • Yang Q, Guan KL. Expanding mTOR signaling. Cell Res 2007; 17: 666-681.
    • (2007) Cell Res , vol.17 , pp. 666-681
    • Yang, Q.1    Guan, K.L.2
  • 29
    • 0036712905 scopus 로고    scopus 로고
    • Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling
    • Gao X, Zhang Y, Arrazola P, et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 2002; 4: 699-704.
    • (2002) Nat Cell Biol , vol.4 , pp. 699-704
    • Gao, X.1    Zhang, Y.2    Arrazola, P.3
  • 30
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4: 648-657.
    • (2002) Nat Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 31
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13: 1259-1268.
    • (2003) Curr Biol , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 32
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-226.
    • (2008) Mol Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1    Shackelford, D.B.2    Egan, D.F.3
  • 33
    • 3042818799 scopus 로고    scopus 로고
    • Regulation of the TSC pathway by LKB1: Evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome
    • Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 2004; 18: 1533-1538.
    • (2004) Genes Dev , vol.18 , pp. 1533-1538
    • Corradetti, M.N.1    Inoki, K.2    Bardeesy, N.3    Depinho, R.A.4    Guan, K.L.5
  • 34
    • 10044276783 scopus 로고    scopus 로고
    • Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
    • Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004; 18: 2893-2904.
    • (2004) Genes Dev , vol.18 , pp. 2893-2904
    • Brugarolas, J.1    Lei, K.2    Hurley, R.L.3
  • 35
    • 21744459535 scopus 로고    scopus 로고
    • Regulation of mTOR and cell growth in response to energy stress by REDD1
    • Sofer A, Lei K, Johannessen CM, Ellisen LW. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 2005; 25: 5834-5845.
    • (2005) Mol Cell Biol , vol.25 , pp. 5834-5845
    • Sofer, A.1    Lei, K.2    Johannessen, C.M.3    Ellisen, L.W.4
  • 36
    • 0032587982 scopus 로고    scopus 로고
    • Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange
    • Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 1999; 3: 159-167.
    • (1999) Mol Cell , vol.3 , pp. 159-167
    • Vander Heiden, M.G.1    Chandel, N.S.2    Schumacker, P.T.3    Thompson, C.B.4
  • 37
    • 0030066934 scopus 로고    scopus 로고
    • Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits capdependent initiation of translation
    • Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits capdependent initiation of translation. EMBO J 1996; 15: 658-664.
    • (1996) EMBO J , vol.15 , pp. 658-664
    • Beretta, L.1    Gingras, A.C.2    Svitkin, Y.V.3    Hall, M.N.4    Sonenberg, N.5
  • 38
    • 0030716488 scopus 로고    scopus 로고
    • Regulation of eIF-4E BP1 phosphorylation by mTOR
    • Hara K, Yonezawa K, Kozlowski MT, et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 1997; 272: 26457-26463.
    • (1997) J Biol Chem , vol.272 , pp. 26457-26463
    • Hara, K.1    Yonezawa, K.2    Kozlowski, M.T.3
  • 39
    • 0032520009 scopus 로고    scopus 로고
    • 4EBP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway
    • Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N. 4EBP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998; 12: 502-513.
    • (1998) Genes Dev , vol.12 , pp. 502-513
    • Gingras, A.C.1    Kennedy, S.G.2    O'Leary, M.A.3    Sonenberg, N.4    Hay, N.5
  • 40
    • 27744569843 scopus 로고    scopus 로고
    • mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
    • Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 2005; 123: 569-580.
    • (2005) Cell , vol.123 , pp. 569-580
    • Holz, M.K.1    Ballif, B.A.2    Gygi, S.P.3    Blenis, J.4
  • 41
    • 0028802451 scopus 로고
    • The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain
    • Pearson RB, Dennis PB, Han JW, et al. The principal target of rapamycin-induced p70s6k inactivation is a novel phosphorylation site within a conserved hydrophobic domain. EMBO J 1995; 14: 5279-5287.
    • (1995) EMBO J , vol.14 , pp. 5279-5287
    • Pearson, R.B.1    Dennis, P.B.2    Han, J.W.3
  • 43
    • 0035881470 scopus 로고    scopus 로고
    • Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase
    • Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001; 20: 4370-4379.
    • (2001) EMBO J , vol.20 , pp. 4370-4379
    • Wang, X.1    Li, W.2    Williams, M.3    Terada, N.4    Alessi, D.R.5    Proud, C.G.6
  • 44
    • 15044350668 scopus 로고    scopus 로고
    • The expanding TOR signaling network
    • Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol 2005; 17: 158-166.
    • (2005) Curr Opin Cell Biol , vol.17 , pp. 158-166
    • Martin, D.E.1    Hall, M.N.2
  • 45
    • 1542343973 scopus 로고    scopus 로고
    • mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability
    • Mayer C, Zhao J, Yuan X, Grummt I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 2004; 18: 423-434.
    • (2004) Genes Dev , vol.18 , pp. 423-434
    • Mayer, C.1    Zhao, J.2    Yuan, X.3    Grummt, I.4
  • 46
    • 0032956850 scopus 로고    scopus 로고
    • p70(S6K) controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis
    • Schwab MS, Kim SH, Terada N, et al. p70(S6K) controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis. Mol Cell Biol 1999; 19: 2485-2494.
    • (1999) Mol Cell Biol , vol.19 , pp. 2485-2494
    • Schwab, M.S.1    Kim, S.H.2    Terada, N.3
  • 47
    • 0347624594 scopus 로고    scopus 로고
    • Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast
    • Schmelzle T, Beck T, Martin DE, Hall MN. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 2004; 24: 338-351.
    • (2004) Mol Cell Biol , vol.24 , pp. 338-351
    • Schmelzle, T.1    Beck, T.2    Martin, D.E.3    Hall, M.N.4
  • 48
    • 0036320205 scopus 로고    scopus 로고
    • Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake
    • Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002; 13: 2276-2288.
    • (2002) Mol Biol Cell , vol.13 , pp. 2276-2288
    • Edinger, A.L.1    Thompson, C.B.2
  • 49
    • 1842583789 scopus 로고    scopus 로고
    • Development by self-digestion: Molecular mechanisms and biological functions of autophagy
    • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463-477.
    • (2004) Dev Cell , vol.6 , pp. 463-477
    • Levine, B.1    Klionsky, D.J.2
  • 50
    • 12944308330 scopus 로고    scopus 로고
    • Eating oneself and uninvited guests: Autophagy-related pathways in cellular defense
    • Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005; 120: 159-162.
    • (2005) Cell , vol.120 , pp. 159-162
    • Levine, B.1
  • 51
    • 35448981935 scopus 로고    scopus 로고
    • Autophagy: From phenomenology to molecular understanding in less than a decade
    • Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8: 931-937.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 931-937
    • Klionsky, D.J.1
  • 52
    • 34250864795 scopus 로고    scopus 로고
    • Protein turnover via autophagy: Implications for metabolism
    • Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 2007; 27: 19-40.
    • (2007) Annu Rev Nutr , vol.27 , pp. 19-40
    • Mizushima, N.1    Klionsky, D.J.2
  • 53
    • 26844531363 scopus 로고    scopus 로고
    • Maturation of autophagic vacuoles in Mammalian cells
    • Eskelinen EL. Maturation of autophagic vacuoles in Mammalian cells. Autophagy 2005; 1: 1-10.
    • (2005) Autophagy , vol.1 , pp. 1-10
    • Eskelinen, E.L.1
  • 54
    • 10744225487 scopus 로고    scopus 로고
    • A unified nomenclature for yeast autophagy-related genes
    • Klionsky DJ, Cregg JM, Dunn WA Jr, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003; 5: 539-545.
    • (2003) Dev Cell , vol.5 , pp. 539-545
    • Klionsky, D.J.1    Cregg, J.M.2    Dunn Jr., W.A.3
  • 55
    • 27644466759 scopus 로고    scopus 로고
    • Autophagy and signaling: Their role in cell survival and cell death
    • Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 2005; 12: 1509-1518.
    • (2005) Cell Death Differ , vol.12 , pp. 1509-1518
    • Codogno, P.1    Meijer, A.J.2
  • 56
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132: 27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 58
    • 70349739560 scopus 로고    scopus 로고
    • Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae
    • Kabeya Y, Noda NN, Fujioka Y, Suzuki K, Inagaki F, Ohsumi Y. Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2009; 389: 612-615.
    • (2009) Biochem Biophys Res Commun , vol.389 , pp. 612-615
    • Kabeya, Y.1    Noda, N.N.2    Fujioka, Y.3    Suzuki, K.4    Inagaki, F.5    Ohsumi, Y.6
  • 60
    • 43149090064 scopus 로고    scopus 로고
    • FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
    • Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008; 181: 497-510.
    • (2008) J Cell Biol , vol.181 , pp. 497-510
    • Hara, T.1    Takamura, A.2    Kishi, C.3
  • 62
    • 1542283812 scopus 로고    scopus 로고
    • In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
    • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15: 1101-1111.
    • (2004) Mol Biol Cell , vol.15 , pp. 1101-1111
    • Mizushima, N.1    Yamamoto, A.2    Matsui, M.3    Yoshimori, T.4    Ohsumi, Y.5
  • 64
    • 52149099867 scopus 로고    scopus 로고
    • Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
    • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 2008; 455: 396-400.
    • (2008) Nature , vol.455 , pp. 396-400
    • Nedjic, J.1    Aichinger, M.2    Emmerich, J.3    Mizushima, N.4    Klein, L.5
  • 65
    • 73349138896 scopus 로고    scopus 로고
    • Autophagic compartments gain access to the MHC class II compartments in thymic epithelium
    • Kasai M, Tanida I, Ueno T, et al. Autophagic compartments gain access to the MHC class II compartments in thymic epithelium. J Immunol 2009; 183: 7278-7285.
    • (2009) J Immunol , vol.183 , pp. 7278-7285
    • Kasai, M.1    Tanida, I.2    Ueno, T.3
  • 66
    • 33847404337 scopus 로고    scopus 로고
    • Autophagy gene-dependent clearance of apoptotic cells during embryonic development
    • Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007; 128: 931-946.
    • (2007) Cell , vol.128 , pp. 931-946
    • Qu, X.1    Zou, Z.2    Sun, Q.3
  • 67
    • 77951902758 scopus 로고    scopus 로고
    • PI3K/Akt signaling in peripheral T lymphocytes from systemic lupus erythematosus patients
    • Besliu AN, Pistol G, Marica CM, et al. PI3K/Akt signaling in peripheral T lymphocytes from systemic lupus erythematosus patients. Roum Arch Microbiol Immunol 2009; 68: 69-79.
    • (2009) Roum Arch Microbiol Immunol , vol.68 , pp. 69-79
    • Besliu, A.N.1    Pistol, G.2    Marica, C.M.3
  • 69
    • 58749104550 scopus 로고    scopus 로고
    • Metabolic control of T cell activation and death in SLE
    • Fernandez D, Perl A. Metabolic control of T cell activation and death in SLE. Autoimmun Rev 2009; 8: 184-19.
    • (2009) Autoimmun Rev , vol.8 , pp. 184-189
    • Fernandez, D.1    Perl, A.2
  • 70
    • 77953720799 scopus 로고    scopus 로고
    • mTOR signaling: A central pathway to pathogenesis in systemic lupus erythematosus?
    • Fernandez D, Perl A. mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus? Discov Med 2010; 9: 173-178.
    • (2010) Discov Med , vol.9 , pp. 173-178
    • Fernandez, D.1    Perl, A.2
  • 71
    • 79251500661 scopus 로고    scopus 로고
    • Phenotypical and functional specialization of FOXP3+ regulatory T cells
    • Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 2011; 11: 119-1930.
    • (2011) Nat Rev Immunol , vol.11 , pp. 119-1930
    • Campbell, D.J.1    Koch, M.A.2
  • 72
    • 29144516273 scopus 로고    scopus 로고
    • Global natural regulatory T cell depletion in active systemic lupus erythematosus
    • Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 2005; 175: 8392-8400.
    • (2005) J Immunol , vol.175 , pp. 8392-8400
    • Miyara, M.1    Amoura, Z.2    Parizot, C.3
  • 73
    • 33846900430 scopus 로고    scopus 로고
    • Deficient CD4+CD25 high T regulatory cell function in patients with active systemic lupus erythematosus
    • Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25 high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 2007; 178: 2579-2588.
    • (2007) J Immunol , vol.178 , pp. 2579-2588
    • Valencia, X.1    Yarboro, C.2    Illei, G.3    Lipsky, P.E.4
  • 74
    • 79151486083 scopus 로고    scopus 로고
    • Metabolism, migration and memory in cytotoxic T cells
    • Finlay D, Cantrell DA. Metabolism, migration and memory in cytotoxic T cells. Nat Rev Immunol 2011; 11: 109-117.
    • (2011) Nat Rev Immunol , vol.11 , pp. 109-117
    • Finlay, D.1    Cantrell, D.A.2
  • 75
    • 27744519400 scopus 로고    scopus 로고
    • Fuel feeds function: Energy metabolism and the T-cell response
    • Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005; 5: 844-852.
    • (2005) Nat Rev Immunol , vol.5 , pp. 844-852
    • Fox, C.J.1    Hammerman, P.S.2    Thompson, C.B.3
  • 76
    • 34548014737 scopus 로고    scopus 로고
    • Revving the engine: Signal transduction fuels T cell activation
    • Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity 2007; 27: 173-178.
    • (2007) Immunity , vol.27 , pp. 173-178
    • Jones, R.G.1    Thompson, C.B.2
  • 77
    • 77949837209 scopus 로고    scopus 로고
    • An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence
    • Berger M, Krebs P, Crozat K, et al. An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence. Nat Immunol 2010; 11: 335-343.
    • (2010) Nat Immunol , vol.11 , pp. 335-343
    • Berger, M.1    Krebs, P.2    Crozat, K.3
  • 78
    • 0034884577 scopus 로고    scopus 로고
    • Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc--dependent pathway
    • Buckley AF, Kuo CT, Leiden JM. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc--dependent pathway. Nat Immunol 2001; 2: 698-704.
    • (2001) Nat Immunol , vol.2 , pp. 698-704
    • Buckley, A.F.1    Kuo, C.T.2    Leiden, J.M.3
  • 79
    • 53749107973 scopus 로고    scopus 로고
    • Negative regulators in homeostasis of naive peripheral T cells
    • Modiano JF, Johnson LD, Bellgrau D. Negative regulators in homeostasis of naive peripheral T cells. Immunol Res 2008; 41: 137-153.
    • (2008) Immunol Res , vol.41 , pp. 137-153
    • Modiano, J.F.1    Johnson, L.D.2    Bellgrau, D.3
  • 80
    • 0027087331 scopus 로고
    • Costimulation of T lymphocytes: The role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy
    • Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 1992; 71: 1065-1068.
    • (1992) Cell , vol.71 , pp. 1065-1068
    • Schwartz, R.H.1
  • 82
    • 1842581892 scopus 로고    scopus 로고
    • Regulation of T lymphocyte metabolism
    • Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol 2004; 172: 4661-4665.
    • (2004) J Immunol , vol.172 , pp. 4661-4665
    • Frauwirth, K.A.1    Thompson, C.B.2
  • 83
    • 0036069699 scopus 로고    scopus 로고
    • The CD28 signaling pathway regulates glucose metabolism
    • Frauwirth KA, Riley JL, Harris MH, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002; 16: 769-777.
    • (2002) Immunity , vol.16 , pp. 769-777
    • Frauwirth, K.A.1    Riley, J.L.2    Harris, M.H.3
  • 84
    • 44449165597 scopus 로고    scopus 로고
    • Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
    • Jacobs SR, Herman CE, Maciver NJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 2008; 180: 4476-486.
    • (2008) J Immunol , vol.180 , pp. 4476-4486
    • Jacobs, S.R.1    Herman, C.E.2    Maciver, N.J.3
  • 85
    • 33846909503 scopus 로고    scopus 로고
    • A role for mammalian target of rapamycin in regulating T cell activation versus anergy
    • Zheng Y, Collins SL, Lutz MA, et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol 2007; 178: 2163-2170.
    • (2007) J Immunol , vol.178 , pp. 2163-2170
    • Zheng, Y.1    Collins, S.L.2    Lutz, M.A.3
  • 87
    • 77951678634 scopus 로고    scopus 로고
    • The role of mTOR in memory CD8 T-cell differentiation
    • Araki K, Youngblood B, Ahmed R. The role of mTOR in memory CD8 T-cell differentiation. Immunol Rev 2010; 235: 234-243.
    • (2010) Immunol Rev , vol.235 , pp. 234-243
    • Araki, K.1    Youngblood, B.2    Ahmed, R.3
  • 88
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T-cell memory by modulating fatty acid metabolism
    • Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009; 460: 103-107.
    • (2009) Nature , vol.460 , pp. 103-107
    • Pearce, E.L.1    Walsh, M.C.2    Cejas, P.J.3
  • 89
    • 74649085700 scopus 로고    scopus 로고
    • The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
    • Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 2010; 32: 67-78.
    • (2010) Immunity , vol.32 , pp. 67-78
    • Rao, R.R.1    Li, Q.2    Odunsi, K.3    Shrikant, P.A.4
  • 90
    • 33751584436 scopus 로고    scopus 로고
    • Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation
    • Takemoto N, Intlekofer AM, Northrup JT, Wherry EJ, Reiner SL. Cutting Edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol 2006; 177: 7515-7519.
    • (2006) J Immunol , vol.177 , pp. 7515-7519
    • Takemoto, N.1    Intlekofer, A.M.2    Northrup, J.T.3    Wherry, E.J.4    Reiner, S.L.5
  • 91
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009; 30: 832-44.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1    Kole, T.P.2    Zheng, Y.3
  • 93
    • 0033104824 scopus 로고    scopus 로고
    • Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation
    • Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 1999; 162: 2775-2784.
    • (1999) J Immunol , vol.162 , pp. 2775-2784
    • Powell, J.D.1    Lerner, C.G.2    Schwartz, R.H.3
  • 94
    • 0035889885 scopus 로고    scopus 로고
    • Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: Enhanced cell cycle progression promotes recall antigen responsiveness
    • Vanasek TL, Khoruts A, Zell T, Mueller DL. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J Immunol 2001; 167: 5636-5644.
    • (2001) J Immunol , vol.167 , pp. 5636-5644
    • Vanasek, T.L.1    Khoruts, A.2    Zell, T.3    Mueller, D.L.4
  • 95
    • 67749091321 scopus 로고    scopus 로고
    • Infectious tolerance via the consumption of essential amino acids and mTOR signaling
    • Cobbold SP, Adams E, Farquhar CA, et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci USA 2009; 106: 12055-12060.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 12055-12060
    • Cobbold, S.P.1    Adams, E.2    Farquhar, C.A.3
  • 96
    • 77953783023 scopus 로고    scopus 로고
    • The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis
    • Walsh CM, Edinger AL. The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol Rev 2010; 236: 95-109.
    • (2010) Immunol Rev , vol.236 , pp. 95-109
    • Walsh, C.M.1    Edinger, A.L.2
  • 97
    • 0033151622 scopus 로고    scopus 로고
    • Reactive oxygen species regulate activation-induced T cell apoptosis
    • Hildeman DA, Mitchell T, Teague TK, et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 1999; 10: 735-744.
    • (1999) Immunity , vol.10 , pp. 735-744
    • Hildeman, D.A.1    Mitchell, T.2    Teague, T.K.3
  • 98
    • 34247161367 scopus 로고    scopus 로고
    • Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein
    • Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 2007; 282: 5641-5652.
    • (2007) J Biol Chem , vol.282 , pp. 5641-5652
    • Sarkar, S.1    Davies, J.E.2    Huang, Z.3    Tunnacliffe, A.4    Rubinsztein, D.C.5
  • 99
    • 57649227693 scopus 로고    scopus 로고
    • Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies
    • Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009; 16: 46-56.
    • (2009) Cell Death Differ , vol.16 , pp. 46-56
    • Sarkar, S.1    Ravikumar, B.2    Floto, R.A.3    Rubinsztein, D.C.4
  • 100
    • 42249106042 scopus 로고    scopus 로고
    • Novel targets for Huntington's disease in an mTOR-independent autophagy pathway
    • Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4: 295-305.
    • (2008) Nat Chem Biol , vol.4 , pp. 295-305
    • Williams, A.1    Sarkar, S.2    Cuddon, P.3
  • 101
    • 0036776168 scopus 로고    scopus 로고
    • A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling
    • Chen J, Fang Y. A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochem Pharmacol 2002; 64: 1071-1077.
    • (2002) Biochem Pharmacol , vol.64 , pp. 1071-1077
    • Chen, J.1    Fang, Y.2
  • 102
    • 0037007014 scopus 로고    scopus 로고
    • FKBP12-rapamycinassociated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction
    • Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycinassociated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci USA 2002; 99: 4319-4324.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 4319-4324
    • Desai, B.N.1    Myers, B.R.2    Schreiber, S.L.3
  • 103
    • 28244475972 scopus 로고    scopus 로고
    • Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells
    • Paglin S, Lee NY, Nakar C, et al. Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Res 2005; 65: 11061-11070.
    • (2005) Cancer Res , vol.65 , pp. 11061-11070
    • Paglin, S.1    Lee, N.Y.2    Nakar, C.3
  • 104
    • 0037623419 scopus 로고    scopus 로고
    • Molecular actions of sirolimus: Sirolimus and mTor
    • Kirken RA, Wang YL. Molecular actions of sirolimus: sirolimus and mTor. Transplant Proc 2003; 35(3 Suppl): 227S-30S.
    • (2003) Transplant Proc , vol.35 , Issue.3 SUPPL
    • Kirken, R.A.1    Wang, Y.L.2
  • 105
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159-168.
    • (2006) Mol Cell , vol.22 , pp. 159-168
    • Sarbassov, D.D.1    Ali, S.M.2    Sengupta, S.3
  • 106
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe GM, Pollizzi KN, Waickman AT, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011; 12: 295-303.
    • (2011) Nat Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1    Pollizzi, K.N.2    Waickman, A.T.3
  • 107
    • 33746530366 scopus 로고    scopus 로고
    • Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: A randomised multicentre study. The Rapamune US Study Group
    • Kahan BD. Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 2000; 356: 194-202.
    • (2000) Lancet , vol.356 , pp. 194-202
    • Kahan, B.D.1
  • 108
    • 38749111823 scopus 로고    scopus 로고
    • mTOR as a target for therapy of renal cancer
    • Hudes GR. mTOR as a target for therapy of renal cancer. Clin Adv Hematol Oncol 2007; 5: 772-774.
    • (2007) Clin Adv Hematol Oncol , vol.5 , pp. 772-774
    • Hudes, G.R.1
  • 110
    • 0028107540 scopus 로고
    • Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus
    • Warner LM, Adams LM, Sehgal SN. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus. Arthritis Rheum 1994; 37: 289-297.
    • (1994) Arthritis Rheum , vol.37 , pp. 289-297
    • Warner, L.M.1    Adams, L.M.2    Sehgal, S.N.3
  • 111
    • 33749345289 scopus 로고    scopus 로고
    • Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus
    • Fernandez D, Bonilla E, Mirza N, Niland B, Perl A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum 2006; 54: 2983-2988.
    • (2006) Arthritis Rheum , vol.54 , pp. 2983-2988
    • Fernandez, D.1    Bonilla, E.2    Mirza, N.3    Niland, B.4    Perl, A.5
  • 114
    • 34249805413 scopus 로고    scopus 로고
    • Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigenspecific Foxp3+ T regulatory cells and promote organ transplant tolerance
    • Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigenspecific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 2007; 178: 7018-7031.
    • (2007) J Immunol , vol.178 , pp. 7018-7031
    • Turnquist, H.R.1    Raimondi, G.2    Zahorchak, A.F.3    Fischer, R.T.4    Wang, Z.5    Thomson, A.W.6
  • 116
    • 0029006893 scopus 로고
    • Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity
    • Rieux-Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995; 268: 1347-139.
    • (1995) Science , vol.268 , pp. 1347-1349
    • Rieux-Laucat, F.1    le Deist, F.2    Hivroz, C.3
  • 117
    • 0026758658 scopus 로고
    • A novel lymphoproliferative/ autoimmune syndrome resembling murine lpr/gld disease
    • Sneller MC, Straus SE, Jaffe ES, et al. A novel lymphoproliferative/ autoimmune syndrome resembling murine lpr/gld disease. J Clin Invest 1992; 90: 334-341.
    • (1992) J Clin Invest , vol.90 , pp. 334-341
    • Sneller, M.C.1    Straus, S.E.2    Jaffe, E.S.3
  • 118
    • 72649096618 scopus 로고    scopus 로고
    • Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS)
    • Teachey DT, Seif AE, Grupp SA. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol 2010; 148: 205-216.
    • (2010) Br J Haematol , vol.148 , pp. 205-216
    • Teachey, D.T.1    Seif, A.E.2    Grupp, S.A.3
  • 119
    • 27744547521 scopus 로고    scopus 로고
    • Pyrimethamine (2,4-diamino-5-p-chlorophenyl-6-ethylpyrimidine) induces apoptosis of freshly isolated human T lymphocytes, bypassing CD95/Fas molecule but involving its intrinsic pathway
    • Pierdominici M, Giammarioli AM, Gambardella L, et al. Pyrimethamine (2,4-diamino-5-p-chlorophenyl-6-ethylpyrimidine) induces apoptosis of freshly isolated human T lymphocytes, bypassing CD95/Fas molecule but involving its intrinsic pathway. J Pharmacol Exp Ther 2005; 315: 1046-1057.
    • (2005) J Pharmacol Exp Ther , vol.315 , pp. 1046-1057
    • Pierdominici, M.1    Giammarioli, A.M.2    Gambardella, L.3
  • 120
    • 0036223531 scopus 로고    scopus 로고
    • Reversion of autoimmune lymphoproliferative syndrome with an antimalarial drug: Preliminary results of a clinical cohort study and molecular observations
    • van der Werff Ten Bosch J, Schotte P, Ferster A, et al. Reversion of autoimmune lymphoproliferative syndrome with an antimalarial drug: preliminary results of a clinical cohort study and molecular observations. Br J Haematol 2002; 117: 176-188.
    • (2002) Br J Haematol , vol.117 , pp. 176-188
    • van der Werff, T.B.J.1    Schotte, P.2    Ferster, A.3
  • 121
    • 33748681906 scopus 로고    scopus 로고
    • Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS)
    • Teachey DT, Obzut DA, Axsom K, et al. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS). Blood 2006; 108: 1965-1971.
    • (2006) Blood , vol.108 , pp. 1965-1971
    • Teachey, D.T.1    Obzut, D.A.2    Axsom, K.3
  • 122
    • 61949157161 scopus 로고    scopus 로고
    • Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome
    • Teachey DT, Greiner R, Seif A, et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol 2009; 145: 101-106.
    • (2009) Br J Haematol , vol.145 , pp. 101-106
    • Teachey, D.T.1    Greiner, R.2    Seif, A.3
  • 124
    • 0035928391 scopus 로고    scopus 로고
    • Type 1 diabetes: New perspectives on disease pathogenesis and treatment
    • Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001; 358: 221-229.
    • (2001) Lancet , vol.358 , pp. 221-229
    • Atkinson, M.A.1    Eisenbarth, G.S.2
  • 126
    • 43049130746 scopus 로고    scopus 로고
    • Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells
    • Monti P, Scirpoli M, Maffi P, et al. Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells. J Clin Invest 2008; 118: 1806-1814.
    • (2008) J Clin Invest , vol.118 , pp. 1806-1814
    • Monti, P.1    Scirpoli, M.2    Maffi, P.3
  • 127
    • 40549087905 scopus 로고    scopus 로고
    • Autoimmune disease in individuals and close family members and susceptibility to non-Hodgkin's lymphoma
    • Mellemkjaer L, Pfeiffer RM, Engels EA, et al. Autoimmune disease in individuals and close family members and susceptibility to non-Hodgkin's lymphoma. Arthritis Rheum 2008; 58: 657-666.
    • (2008) Arthritis Rheum , vol.58 , pp. 657-666
    • Mellemkjaer, L.1    Pfeiffer, R.M.2    Engels, E.A.3
  • 128
    • 0023754297 scopus 로고
    • Evans syndrome in childhood: Pathophysiology, clinical course, and treatment
    • Wang WC. Evans syndrome in childhood: pathophysiology, clinical course, and treatment. Am J Pediatr Hematol Oncol 1988; 10: 330-338.
    • (1988) Am J Pediatr Hematol Oncol , vol.10 , pp. 330-338
    • Wang, W.C.1
  • 129
    • 79959610128 scopus 로고    scopus 로고
    • Utility of mTOR Inhibition in Hematologic Malignancies
    • Younes A, Samad N. Utility of mTOR Inhibition in Hematologic Malignancies. Oncologist 2011; 16: 730-741.
    • (2011) Oncologist , vol.16 , pp. 730-741
    • Younes, A.1    Samad, N.2
  • 130
    • 0037393121 scopus 로고    scopus 로고
    • Immunosuppressive drugs and cancer
    • Vial T, Descotes J. Immunosuppressive drugs and cancer. Toxicology 2003; 185: 229-240.
    • (2003) Toxicology , vol.185 , pp. 229-240
    • Vial, T.1    Descotes, J.2
  • 131
    • 78650883355 scopus 로고    scopus 로고
    • A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency
    • Schwalfenberg GK. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol Nutr Food Res 2011; 55: 96-108.
    • (2011) Mol Nutr Food Res , vol.55 , pp. 96-108
    • Schwalfenberg, G.K.1
  • 132
    • 21744438757 scopus 로고    scopus 로고
    • Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25- dihydroxyvitamin D3
    • Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25- dihydroxyvitamin D3. FASEB J 2005; 19: 1067-1077.
    • (2005) FASEB J , vol.19 , pp. 1067-1077
    • Gombart, A.F.1    Borregaard, N.2    Koeffler, H.P.3
  • 133
    • 79952691795 scopus 로고    scopus 로고
    • Vitamin D endocrine system and the immune response in rheumatic diseases
    • Cutolo M, Plebani M, Shoenfeld Y, Adorini L, Tincani A. Vitamin D endocrine system and the immune response in rheumatic diseases. Vitam Horm 2011; 86: 327-351.
    • (2011) Vitam Horm , vol.86 , pp. 327-351
    • Cutolo, M.1    Plebani, M.2    Shoenfeld, Y.3    Adorini, L.4    Tincani, A.5
  • 135
    • 56149101480 scopus 로고    scopus 로고
    • Vitamin D signaling in immune-mediated disorders: Evolving insights and therapeutic opportunities
    • Baeke F, van Etten E, Gysemans C, Overbergh L, Mathieu C. Vitamin D signaling in immune-mediated disorders: Evolving insights and therapeutic opportunities. Mol Aspects Med 2008; 29: 376-387.
    • (2008) Mol Aspects Med , vol.29 , pp. 376-387
    • Baeke, F.1    van Etten, E.2    Gysemans, C.3    Overbergh, L.4    Mathieu, C.5
  • 136
    • 79954614306 scopus 로고    scopus 로고
    • Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling
    • Lisse TS, Liu T, Irmler M, et al. Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTOR signaling. FASEB J 2011; 25: 937-947.
    • (2011) FASEB J , vol.25 , pp. 937-947
    • Lisse, T.S.1    Liu, T.2    Irmler, M.3
  • 137
    • 77954529603 scopus 로고    scopus 로고
    • Inhibition of mTORC1 by RAD001 (everolimus) potentiates the effects of 1,25-dihydroxyvitamin D(3) to induce growth arrest and differentiation of AML cells in vitro and in vivo
    • Yang J, Ikezoe T, Nishioka C, Ni L, Koeffler HP, Yokoyama A. Inhibition of mTORC1 by RAD001 (everolimus) potentiates the effects of 1,25-dihydroxyvitamin D(3) to induce growth arrest and differentiation of AML cells in vitro and in vivo. Exp Hematol 2010; 38: 666-676.
    • (2010) Exp Hematol , vol.38 , pp. 666-676
    • Yang, J.1    Ikezoe, T.2    Nishioka, C.3    Ni, L.4    Koeffler, H.P.5    Yokoyama, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.