메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages 86-119

Codimensional matrix pairing perspective of BYY harmony learning: Hierarchy of bilinear systems, joint decomposition of data-covariance, and applications of network biology

Author keywords

Automatic model selection; Bayesian Ying Yang (BYY) harmony learning; Bi clustering; Bi linear stochastic system; Co dimensional matrix pair; De noise embedded local factor analysis (LFA); Denoise embedded Gaussian mixture; Gene transcriptional regulatory; Generalized linear model (GLM); Manifold learning; Network alignment; Network integration; Semi blind learning; Sparse learning; Temporal factor analysis (TFA)

Indexed keywords


EID: 79952291896     PISSN: 16733460     EISSN: 16733584     Source Type: Journal    
DOI: 10.1007/s11460-011-0135-1     Document Type: Article
Times cited : (14)

References (149)
  • 1
    • 77956483883 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system, best harmony learning, and five action circling
    • Frontiers of Electrical and Electronic Engineering in China
    • Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling. A special issue on Emerging Themes on Information Theory and Bayesian Approach, Frontiers of Electrical and Electronic Engineering in China, 2010, 5(3): 281-328.
    • (2010) A special issue on Emerging Themes on Information Theory and Bayesian Approach , vol.5 , Issue.3 , pp. 281-328
    • Xu, L.1
  • 3
    • 0002266094 scopus 로고
    • EM algorithm for ML factor analysis
    • Rubi D, Thayer D. EM algorithm for ML factor analysis. Psychometrika, 1976, 57: 69-76.
    • (1976) Psychometrika , vol.57 , pp. 69-76
    • Rubi, D.1    Thayer, D.2
  • 4
    • 2142731041 scopus 로고
    • FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC
    • Bozdogan H, Ramirez D E. FACAIC: model selection algorithm for the orthogonal factor model using AIC and FACAIC. Psychometrika, 1988, 53(3): 407-415.
    • (1988) Psychometrika , vol.53 , Issue.3 , pp. 407-415
    • Bozdogan, H.1    Ramirez, D.E.2
  • 5
    • 0002543590 scopus 로고
    • Maximum likelihood source separation by the expectation maximization technique: Deterministic and stochastic implementation
    • Belouchrani A, Cardoso J. Maximum likelihood source separation by the expectation maximization technique: deterministic and stochastic implementation. In: Proceedings of NOLTA95. 1995, 49-53.
    • (1995) Proceedings of NOLTA95 , pp. 49-53
    • Belouchrani, A.1    Cardoso, J.2
  • 6
    • 0032213587 scopus 로고    scopus 로고
    • Bayesian Kullback Ying-Yang dependence reduction theory
    • Xu L. Bayesian Kullback Ying-Yang dependence reduction theory. Neurocomputing, 1998, 22(1-3): 81-111.
    • (1998) Neurocomputing , vol.22 , Issue.1-3 , pp. 81-111
    • Xu, L.1
  • 7
    • 0037380850 scopus 로고    scopus 로고
    • BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
    • Xu L. BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units, Neurocomputing, 2003, 51: 277-301.
    • (2003) Neurocomputing , vol.51 , pp. 277-301
    • Xu, L.1
  • 8
    • 3843136240 scopus 로고    scopus 로고
    • Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination
    • Xu L. Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Transactions on Neural Networks, 2004, 15(4): 885-902.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.4 , pp. 885-902
    • Xu, L.1
  • 9
    • 3843095548 scopus 로고    scopus 로고
    • Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective
    • Xu L. Independent component analysis and extensions with noise and time: a Bayesian Ying-Yang learning perspective. Neural Information Processing-Letters and Reviews, 2003, 1(1): 1-52.
    • (2003) Neural Information Processing-Letters and Reviews , vol.1 , Issue.1 , pp. 1-52
    • Xu, L.1
  • 10
    • 0030676410 scopus 로고    scopus 로고
    • Moulines E, Cardoso J, Gassiat E. Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In: Proc. ICASSP97. 1997, 3617-3620.
  • 11
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias H. Independent factor analysis. Neural Computation, 1999, 11(4): 803-851.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 12
    • 3142756981 scopus 로고    scopus 로고
    • Investigations on non-Gaussian factor analysis
    • Liu Z Y, Chiu K C, Xu L. Investigations on non-Gaussian factor analysis. IEEE Signal Processing Letters, 2004, 11(7): 597-600.
    • (2004) IEEE Signal Processing Letters , vol.11 , Issue.7 , pp. 597-600
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 13
    • 77956473522 scopus 로고    scopus 로고
    • Independent subspaces
    • J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey (PA): IGI Global
    • Xu L. Independent subspaces. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence, Hershey (PA): IGI Global. 2008, 903-912.
    • (2008) Encyclopedia of Artificial Intelligence , pp. 903-912
    • Xu, L.1
  • 14
    • 0003040479 scopus 로고
    • A multiple cause mixture model for unsupervised learning
    • Saund E. A multiple cause mixture model for unsupervised learning. Neural Computation, 1995, 7(1): 51-71.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 51-71
    • Saund, E.1
  • 15
    • 0030179714 scopus 로고    scopus 로고
    • Learning multiple causes by competition enhanced least mean square error reconstruction
    • Zhang B L, Xu L, Fu M Y. Learning multiple causes by competition enhanced least mean square error reconstruction. International Journal of Neural Systems, 1996, 7(3): 223-236.
    • (1996) International Journal of Neural Systems , vol.7 , Issue.3 , pp. 223-236
    • Zhang, B.L.1    Xu, L.2    Fu, M.Y.3
  • 16
    • 0031490684 scopus 로고    scopus 로고
    • The past and future of multidimensional item response theory
    • Reckase M D. The past and future of multidimensional item response theory. Applied Psychological Measurement, 1997, 21(1): 25-36.
    • (1997) Applied Psychological Measurement , vol.21 , Issue.1 , pp. 25-36
    • Reckase, M.D.1
  • 17
    • 0034345467 scopus 로고    scopus 로고
    • Generalized latent trait models
    • Moustaki I, Knott M. Generalized latent trait models. Psychometrika, 2000, 65(3): 391-411.
    • (2000) Psychometrika , vol.65 , Issue.3 , pp. 391-411
    • Moustaki, I.1    Knott, M.2
  • 19
    • 0028561099 scopus 로고
    • Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
    • Paatero P, Tapper U. Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994, 5(2): 111-126.
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 20
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee D D, Seung H S. Learning the parts of objects by nonnegative matrix factorization. Nature, 1999, 401(6755): 788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 21
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Lee D D, Seung H S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process, 2001, 13: 556-562.
    • (2001) Adv. Neural Inf. Process , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 22
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications, 2008, 30(2): 713-730.
    • (2008) SIAM Journal on Matrix Analysis and Applications , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 23
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics (Oxford, England), 2007, 23(12): 1495-1502.
    • (2007) Bioinformatics (Oxford, England) , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 24
    • 57149147265 scopus 로고    scopus 로고
    • Non-negative matrix factorization for semi-supervised data clustering
    • Chen Y, Rege M, Dong M, Hua J. Non-negative matrix factorization for semi-supervised data clustering. Knowledge and Information Systems, 2008, 17(3): 355-379.
    • (2008) Knowledge and Information Systems , vol.17 , Issue.3 , pp. 355-379
    • Chen, Y.1    Rege, M.2    Dong, M.3    Hua, J.4
  • 25
    • 46449137567 scopus 로고    scopus 로고
    • Non-negative matrix factorization with fixed row and column sums
    • Ho N, Vandooren P. Non-negative matrix factorization with fixed row and column sums. Linear Algebra and Its Applications, 2008, 429(5-6): 1020-1025.
    • (2008) Linear Algebra and Its Applications , vol.429 , Issue.5-6 , pp. 1020-1025
    • Ho, N.1    Vandooren, P.2
  • 29
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • Redner R A, Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review, 1984, 26(2): 195-239.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 30
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8(1): 129-151.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 32
    • 0028731590 scopus 로고
    • Multisets modeling learning: A unified theory for supervised and unsupervised learning
    • Xu L. Multisets modeling learning: a unified theory for supervised and unsupervised learning. In: Proceedings of IEEE ICNN94. 1994, I: 315-320.
    • (1994) Proceedings of IEEE ICNN94 , vol.I , pp. 315-320
    • Xu, L.1
  • 33
    • 0002754576 scopus 로고
    • A unified learning framework: Multisets modeling learning
    • Xu L. A unified learning framework: multisets modeling learning. In: Proceedings of WCNN95. 1995, 1: 35-42.
    • (1995) Proceedings of WCNN95 , vol.1 , pp. 35-42
    • Xu, L.1
  • 34
    • 0031628777 scopus 로고    scopus 로고
    • Rival penalized competitive learning, finite mixture, and multisets clustering
    • Xu L. Rival penalized competitive learning, finite mixture, and multisets clustering. In: Proceedings of IEEE-INNS IJCNN98, Anchorage, Alaska, vol. II. 1998, 2525-2530.
    • (1998) Proceedings of IEEE-INNS IJCNN98, Anchorage, Alaska , vol.II , pp. 2525-2530
    • Xu, L.1
  • 35
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models
    • Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models. Neural Networks, 2002, (8-9): 1125-1151.
    • (2002) Neural Networks , vol.8-9 , pp. 1125-1151
    • Xu, L.1
  • 36
    • 0038355082 scopus 로고    scopus 로고
    • Data smoothing regularization, multi-sets-learning, and problem solving strategies
    • Xu L. Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks, 2003, 16(5-6): 817-825.
    • (2003) Neural Networks , vol.16 , Issue.5-6 , pp. 817-825
    • Xu, L.1
  • 37
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 39
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Wallace C S, Dowe D R. Minimum message length and Kolmogorov complexity. Computer Journal, 1999, 42(4): 270-283.
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.S.1    Dowe, D.R.2
  • 41
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1
  • 42
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 1996, 58(1): 267-288.
    • (1996) J. Royal. Statist. Soc B. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 43
    • 0031214394 scopus 로고    scopus 로고
    • Regularization with a pruning prior
    • Hansen L K, Goutte C. Regularization with a pruning prior. Neural Networks, 1997, 10(6): 1053-1059.
    • (1997) Neural Networks , vol.10 , Issue.6 , pp. 1053-1059
    • Hansen, L.K.1    Goutte, C.2
  • 44
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics, 1978, 6(2): 461-464.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 45
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica, 1978, 14: 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 47
    • 4043061882 scopus 로고    scopus 로고
    • Variational Bayesian model selection for mixture distributions
    • Jaakkola T, Richardson T, eds. Morgan Kaufmann
    • Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Jaakkola T, Richardson T, eds. Artificial Intelligence and Statistics, Morgan Kaufmann. 2001, 27-34.
    • (2001) Artificial Intelligence and Statistics , pp. 27-34
    • Corduneanu, A.1    Bishop, C.M.2
  • 48
    • 0037270849 scopus 로고    scopus 로고
    • Variational mixture of Bayesian independent component analyzers
    • Choudrey R A, Roberts S J. Variational mixture of Bayesian independent component analyzers. Neural Computation, 2003, 15(1): 213-252.
    • (2003) Neural Computation , vol.15 , Issue.1 , pp. 213-252
    • Choudrey, R.A.1    Roberts, S.J.2
  • 49
    • 34247869715 scopus 로고    scopus 로고
    • Variational approximations in Bayesian model selection for finite mixture distributions
    • McGrory C A, Titterington D M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis, 2007, 51(11): 5352-5367.
    • (2007) Computational Statistics & Data Analysis , vol.51 , Issue.11 , pp. 5352-5367
    • McGrory, C.A.1    Titterington, D.M.2
  • 51
    • 84887495232 scopus 로고
    • Improved Simulated Annealing, Boltzmann Machine and Attributed Graph Matching
    • Goos G, Hartmanis J, eds. Springer-Verlag
    • Xu L, Oja E. Improved Simulated Annealing, Boltzmann Machine and Attributed Graph Matching. In: Goos G, Hartmanis J, eds. Lecture Notes in Computer Sciences, Springer-Verlag, 1989, 412: 151-160.
    • (1989) Lecture Notes in Computer Sciences , vol.412 , pp. 151-160
    • Xu, L.1    Oja, E.2
  • 54
    • 0035482004 scopus 로고    scopus 로고
    • A PCA approach for fast retrieval of structural patterns in attributed graphs
    • Xu L, King I. A PCA approach for fast retrieval of structural patterns in attributed graphs. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2001, 31(5): 812-817.
    • (2001) IEEE Transactions on Systems, Man and Cybernetics, Part B , vol.31 , Issue.5 , pp. 812-817
    • Xu, L.1    King, I.2
  • 55
    • 0032668139 scopus 로고    scopus 로고
    • Computationally efficient maximum likelihood estimation of structured covariance matrices
    • Li H B, Stoica P, Li J. Computationally efficient maximum likelihood estimation of structured covariance matrices. IEEE Transactions on Signal Processing, 1999, 47(5): 1314-1323.
    • (1999) IEEE Transactions on Signal Processing , vol.47 , Issue.5 , pp. 1314-1323
    • Li, H.B.1    Stoica, P.2    Li, J.3
  • 56
  • 57
    • 37849041641 scopus 로고
    • Beyond PCA learning: From linear to nonlinear and from global representation to local representation
    • Xu L. Beyond PCA learning: from linear to nonlinear and from global representation to local representation. In: Proceedings of ICONIP94. 1994, 2: 943-949.
    • (1994) Proceedings of ICONIP94 , vol.2 , pp. 943-949
    • Xu, L.1
  • 60
    • 0042842439 scopus 로고    scopus 로고
    • Strip line detection and thinning by RPCL-based local PCA
    • Liu Z Y, Chiu K C, Xu L. Strip line detection and thinning by RPCL-based local PCA. Pattern Recognition Letters, 2003, 24(14): 2335-2344.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.14 , pp. 2335-2344
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 61
    • 0345257348 scopus 로고    scopus 로고
    • Topological local principal component analysis
    • Liu Z Y, Xu L. Topological local principal component analysis. Neurocomputing, 2003, 55(3-4): 739-745.
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 739-745
    • Liu, Z.Y.1    Xu, L.2
  • 62
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • Tipping M E, Bishop C M. Mixtures of probabilistic principal component analyzers. Neural Computation, 1999, 11(2): 443-482.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 64
    • 0035345442 scopus 로고    scopus 로고
    • Bayesian analysis of mixtures of factor analyzers
    • Utsugi A, Kumagai T. Bayesian analysis of mixtures of factor analyzers. Neural Computation, 2001, 13(5): 993-1002.
    • (2001) Neural Computation , vol.13 , Issue.5 , pp. 993-1002
    • Utsugi, A.1    Kumagai, T.2
  • 66
    • 46049101030 scopus 로고    scopus 로고
    • Bayesian Ying Yang System, Best Harmony Learning, and Gaussian Manifold Based Family
    • Zurada et al, eds. LNCS5050
    • Xu L, Bayesian Ying Yang System, Best Harmony Learning, and Gaussian Manifold Based Family. In: Zurada et al, eds. Computational Intelligence: Research Frontiers (WCCI2008 Plenary/Invited Lectures), LNCS5050, 2008, 48-78.
    • (2008) Computational Intelligence: Research Frontiers (WCCI2008 Plenary/Invited Lectures) , pp. 48-78
    • Xu, L.1
  • 69
    • 0038259620 scopus 로고    scopus 로고
    • Bayesian Ying Yang System and Theory as a Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling
    • K. M. Wong, D. Y. Yeung, and I. King (Eds.), Berlin: Springer-Verlag
    • Xu L. Bayesian Ying Yang System and Theory as a Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling. In: Wong K M, Yeung D Y, King I, et al, eds. Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective. Berlin: Springer-Verlag, 1997, 25-60.
    • (1997) Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective , pp. 25-60
    • Xu, L.1
  • 70
    • 0033330628 scopus 로고    scopus 로고
    • Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration
    • Washington
    • Xu L. Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration. In: Proceedings of IEEE-INNS 1999 Intl J. Conf on Neural Networks, Washington. 1999, 2: 949-954.
    • (1999) Proceedings of IEEE-INNS 1999 Intl J. Conf on Neural Networks , vol.2 , pp. 949-954
    • Xu, L.1
  • 71
    • 0012707139 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach:(V) temporal modeling for temporal perception and control
    • Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach:(V) temporal modeling for temporal perception and control. In: Proceedings of ICONIP98, Kitakyushu. 1998, 2: 877-884.
    • (1998) Proceedings of ICONIP98, Kitakyushu. , vol.2 , pp. 877-884
    • Xu, L.1
  • 72
    • 0034170950 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Ghahramani Z, Hinton G E. Variational learning for switching state-space models. Neural Computation, 2000, 12(4): 831-864.
    • (2000) Neural Computation , vol.12 , Issue.4 , pp. 831-864
    • Ghahramani, Z.1    Hinton, G.E.2
  • 73
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model and blind source separation
    • Xu L. Temporal BYY learning for state space approach, hidden Markov model and blind source separation. IEEE Transactions on Signal Processing, 2000, 48(7): 2132-2144.
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.7 , pp. 2132-2144
    • Xu, L.1
  • 74
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space, and generalized APT financial analyses
    • Xu L. BYY harmony learning, independent state space, and generalized APT financial analyses. IEEE Transactions on Neural Networks, 2001, 12(4): 822-849.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1
  • 75
    • 3843066216 scopus 로고    scopus 로고
    • Temporal BYY encoding, Markovian state spaces, and space dimension determination
    • Xu L. Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Transactions on Neural Networks, 2004, 15(5): 1276-1295.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.5 , pp. 1276-1295
    • Xu, L.1
  • 77
    • 23744491001 scopus 로고    scopus 로고
    • Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach
    • Boulesteix A L, Strimmer K. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theoretical Biology & Medical Modelling, 2005, 2(1): 23.
    • (2005) Theoretical Biology & Medical Modelling , vol.2 , Issue.1 , pp. 23
    • Boulesteix, A.L.1    Strimmer, K.2
  • 78
    • 33845365903 scopus 로고    scopus 로고
    • A Gibbs sampler for the identification of gene expression and network connectivity consistency
    • Brynildsen M P, Tran L M, Liao J C. A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics (Oxford, England), 2006, 22(24): 3040-3046.
    • (2006) Bioinformatics (Oxford, England) , vol.22 , Issue.24 , pp. 3040-3046
    • Brynildsen, M.P.1    Tran, L.M.2    Liao, J.C.3
  • 82
    • 79952303448 scopus 로고
    • Semi-blind deconvolution of finite length sequence: (I) linear problem & (II). Nonlinear Problem
    • SCIENTIA SINICA, Series A
    • Xu L, Yan P F, Chang T. Semi-blind deconvolution of finite length sequence: (I) linear problem & (II). Nonlinear Problem, SCIENTIA SINICA, Series A, 1987, (12): 1318-1344.
    • (1987) , vol.12 , pp. 1318-1344
    • Xu, L.1    Yan, P.F.2    Chang, T.3
  • 84
    • 77955505357 scopus 로고    scopus 로고
    • Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks
    • De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol, 2010, 6(6): e1000807.
    • (2010) PLoS Comput Biol , vol.6 , Issue.6
    • de Las Rivas, J.1    Fontanillo, C.2
  • 85
    • 38849146505 scopus 로고    scopus 로고
    • Understanding biological functions through molecular networks
    • Han J D. Understanding biological functions through molecular networks. Cell Research, 2008, 18(2): 224-237.
    • (2008) Cell Research , vol.18 , Issue.2 , pp. 224-237
    • Han, J.D.1
  • 86
    • 2442449354 scopus 로고    scopus 로고
    • Identifiability Issues in Noisy ICA
    • Davies M. Identifiability Issues in Noisy ICA. IEEE SIGNAL PROCESSING LETTERS, 2004, 11(5): 470-473.
    • (2004) IEEE SIGNAL PROCESSING LETTERS , vol.11 , Issue.5 , pp. 470-473
    • Davies, M.1
  • 87
    • 0002233396 scopus 로고
    • Natural exponential families with quadratic variance functions
    • Morris C. Natural exponential families with quadratic variance functions. Annals of Statistics, 1982, 10(1): 65-80.
    • (1982) Annals of Statistics , vol.10 , Issue.1 , pp. 65-80
    • Morris, C.1
  • 89
    • 84938437360 scopus 로고
    • Selection of variables for fitting equations to data
    • Gorman J W, Toman R J. Selection of variables for fitting equations to data. Technometrics, 1966, 8: 27-51.
    • (1966) Technometrics , vol.8 , pp. 27-51
    • Gorman, J.W.1    Toman, R.J.2
  • 90
    • 84915425007 scopus 로고
    • Some comments on Cp
    • Mallows C L. Some comments on Cp. Technometrics, 1973, 15: 661-675.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 91
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace C S, Boulton D M. An information measure for classification. Computer Journal, 1968, 11(2): 185-194.
    • (1968) Computer Journal , vol.11 , Issue.2 , pp. 185-194
    • Wallace, C.S.1    Boulton, D.M.2
  • 92
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 714-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 714-723
    • Akaike, H.1
  • 93
  • 94
    • 0001902056 scopus 로고
    • Three approaches to the quantitative definition of information
    • Kolmogorov A N. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1965, 1(1): 1-11.
    • (1965) Problems of Information Transmission , vol.1 , Issue.1 , pp. 1-11
    • Kolmogorov, A.N.1
  • 96
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net and curve detection
    • Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Transactions on Neural Networks, 1993, 4(4): 636-649.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 98
    • 79952286873 scopus 로고    scopus 로고
    • Tu S K, Xu L. Parameterizations make different model selections: empirical findings from factor analysis, to appear on Frontiers of Electrical and Electronic Engineering in China, 2011.
  • 99
    • 67149134695 scopus 로고    scopus 로고
    • Sun K, Tu S, Gao D Y, Xu L. Canonical dual approach to binary factor analysis. In: Adali T, Jutten C, Romano J M T, Barros A K, eds. Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, 2009, 5441: 346-353.
  • 100
    • 77954757210 scopus 로고    scopus 로고
    • Machine learning problems from optimization perspective
    • Xu L. Machine learning problems from optimization perspective. Journal of Global Optimization, 2010, 47(3): 369-401.
    • (2010) Journal of Global Optimization , vol.47 , Issue.3 , pp. 369-401
    • Xu, L.1
  • 102
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007, 17(4): 395-416.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.1
  • 103
    • 0003882879 scopus 로고    scopus 로고
    • Providence, RI: Amer. Math. Soc
    • Chung F R. Spectral Graph Theory. Amer. Math. Soc., Providence, RI. MR1421568, 1997.
    • (1997) Spectral Graph Theory
    • Chung, F.R.1
  • 104
    • 0141633856 scopus 로고    scopus 로고
    • Xu L. Distribution approximation, combinatorial optimization, and Lagrange-Barrier. In: Proceedings of International Joint Conference on Neural Networks 2003 (IJCNN 03), Jantzen Beach, Portland. 2003, 2354-2359.
  • 105
    • 85121777290 scopus 로고
    • Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches
    • San Die go, CA
    • Xu L. Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches. In: Proceedings Of World Congress on Neural Networks. San Diego, CA. 1994, 399-404.
    • (1994) Proceedings Of World Congress on Neural Networks , pp. 399-404
    • Xu, L.1
  • 106
    • 0141757082 scopus 로고
    • On the hybrid LT combinatorial optimization: New U-shape barrier, sigmoid activation, least leaking energy and maximum entropy
    • Beijing
    • Xu L. On the hybrid LT combinatorial optimization: new U-shape barrier, sigmoid activation, least leaking energy and maximum entropy. In: Proceedings of Intl. Conf. on Neural Information Processing, Beijing. 1995, 309-312.
    • (1995) Proceedings of Intl. Conf. on Neural Information Processing , pp. 309-312
    • Xu, L.1
  • 107
    • 24944561673 scopus 로고    scopus 로고
    • One-bit-matching ICA theorem, convex-concave programming, and combinatorial optimization
    • LNCS, Berlin: Springer-Verlag
    • Xu L. One-bit-matching ICA theorem, convex-concave programming, and combinatorial optimization. In: Advances in neural networks: ISNN 2005, LNCS 3496. Berlin: Springer-Verlag, 2005, 5-20.
    • (2005) Advances in Neural Networks: ISNN 2005 , vol.3496 , pp. 5-20
    • Xu, L.1
  • 108
    • 33847287742 scopus 로고    scopus 로고
    • One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics
    • Xu L. One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics. Neural Computation, 2007, 19(2): 546-569.
    • (2007) Neural Computation , vol.19 , Issue.2 , pp. 546-569
    • Xu, L.1
  • 109
    • 77956465653 scopus 로고    scopus 로고
    • Combining Classifiers and Learning Mixture-of-Experts
    • Ramón J, Dopico R, Dorado J, Pazos A, eds. IGI Global (IGI) publishing company
    • Xu L, Amari S I. Combining Classifiers and Learning Mixture-of-Experts, In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. IGI Global (IGI) publishing company, 2008, 318-326.
    • (2008) Encyclopedia of Artificial Intelligence , pp. 318-326
    • Xu, L.1    Amari, S.I.2
  • 110
    • 34247105235 scopus 로고    scopus 로고
    • A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
    • Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition, 2007, 40(8): 2129-2153.
    • (2007) Pattern Recognition , vol.40 , Issue.8 , pp. 2129-2153
    • Xu, L.1
  • 111
    • 73449106062 scopus 로고    scopus 로고
    • Reconstructing transcriptional regulatory networks through genomics data
    • Sun N, Zhao H Y. Reconstructing transcriptional regulatory networks through genomics data. Statistical Methods in Medical Research, 2009, 18(6): 595-617.
    • (2009) Statistical Methods in Medical Research , vol.18 , Issue.6 , pp. 595-617
    • Sun, N.1    Zhao, H.Y.2
  • 113
    • 77955505357 scopus 로고    scopus 로고
    • Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks
    • De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol, 2010, 6(6): e1000807.
    • (2010) PLoS Comput Biol , vol.6 , Issue.6
    • de Las Rivas, J.1    Fontanillo, C.2
  • 119
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, Peer D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 2003, 34(2): 166-176.
    • (2003) Nature Genetics , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Peer, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 120
    • 33746067911 scopus 로고    scopus 로고
    • Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
    • Reiss D J, Baliga N S, Bonneau R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics, 2006, 7(1): 280.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 280
    • Reiss, D.J.1    Baliga, N.S.2    Bonneau, R.3
  • 122
    • 77955039075 scopus 로고    scopus 로고
    • Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model
    • Youn A, Reiss D J, Stuetzle W. Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model. Bioinformatics (Oxford, England), 2010, 26(15): 1879-1886.
    • (2010) Bioinformatics (Oxford, England) , vol.26 , Issue.15 , pp. 1879-1886
    • Youn, A.1    Reiss, D.J.2    Stuetzle, W.3
  • 126
    • 0037452966 scopus 로고    scopus 로고
    • Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms
    • Alter O, Brown P O, Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(6): 3351-3356.
    • (2003) Proceedings of the National Academy of Sciences of the United States of America , vol.100 , Issue.6 , pp. 3351-3356
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 127
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker H J, Li H, Siggia E D. Regulatory element detection using correlation with expression. Nature Genetics, 2001, 27(2): 167-174.
    • (2001) Nature Genetics , vol.27 , Issue.2 , pp. 167-174
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 128
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • Lee S I, Batzoglou S. Application of independent component analysis to microarrays. Genome Biology, 2003, 4(11): R76.
    • (2003) Genome Biology , vol.4 , Issue.11
    • Lee, S.I.1    Batzoglou, S.2
  • 129
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics (Oxford, England), 2002, 18(1): 51-60.
    • (2002) Bioinformatics (Oxford, England) , vol.18 , Issue.1 , pp. 51-60
    • Liebermeister, W.1
  • 131
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • Sabatti C, James G M. Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics, 2006, 22(6): 739-746.
    • (2006) Bioinformatics , vol.22 , Issue.6 , pp. 739-746
    • Sabatti, C.1    James, G.M.2
  • 132
    • 34848855728 scopus 로고    scopus 로고
    • Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIPchip data
    • Liu X, Jessen W J, Sivaganesan S, Aronow B J, Medvedovic M. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIPchip data. BMC Bioinformatics, 2007, 8(1): 283.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 283
    • Liu, X.1    Jessen, W.J.2    Sivaganesan, S.3    Aronow, B.J.4    Medvedovic, M.5
  • 133
    • 15944376548 scopus 로고    scopus 로고
    • A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data
    • Xing B, van der Laan M J. A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data. Journal of Computational Biology, 2005, 12(2): 229-246.
    • (2005) Journal of Computational Biology , vol.12 , Issue.2 , pp. 229-246
    • Xing, B.1    van der Laan, M.J.2
  • 134
    • 33947409985 scopus 로고    scopus 로고
    • Factor analysis for gene regulatory networks and transcription factor activity profiles
    • Pournara I, Wernisch L. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics, 2007, 8(1): 61.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 61
    • Pournara, I.1    Wernisch, L.2
  • 135
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner T S, di Bernardo D, Lorenz D, Collins J J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 2003, 301(5629): 102-105.
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 138
    • 33751008680 scopus 로고    scopus 로고
    • Probabilistic inference of transcription factor concentrations and genespecific regulatory activities
    • Sanguinetti G, Lawrence N D, Rattray M. Probabilistic inference of transcription factor concentrations and genespecific regulatory activities. Bioinformatics (Oxford, England), 2006, 22(22): 2775-2781.
    • (2006) Bioinformatics (Oxford, England) , vol.22 , Issue.22 , pp. 2775-2781
    • Sanguinetti, G.1    Lawrence, N.D.2    Rattray, M.3
  • 139
    • 39149107070 scopus 로고    scopus 로고
    • State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast
    • Yamaguchi R, Higuchi T. State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast. International Journal of Data Mining and Bioinformatics, 2006, 1(1): 77-87.
    • (2006) International Journal of Data Mining and Bioinformatics , vol.1 , Issue.1 , pp. 77-87
    • Yamaguchi, R.1    Higuchi, T.2
  • 140
    • 33645108505 scopus 로고    scopus 로고
    • Using a statespace model with hidden variables to infer transcription factor activities
    • Li Z, Shaw S M, Yedwabnick M J, Chan C. Using a statespace model with hidden variables to infer transcription factor activities. Bioinformatics (Oxford, England), 2006, 22(6): 747-754.
    • (2006) Bioinformatics (Oxford, England) , vol.22 , Issue.6 , pp. 747-754
    • Li, Z.1    Shaw, S.M.2    Yedwabnick, M.J.3    Chan, C.4
  • 142
    • 34248572623 scopus 로고    scopus 로고
    • Boolean dynam ics of genetic regulatory networks inferred from microarray time series data
    • Martin S, Zhang Z, Martino A, Faulon J L. Boolean dynam ics of genetic regulatory networks inferred from microarray time series data. Bioinformatics (Oxford, England), 2007, 23(7): 866-874.
    • (2007) Bioinformatics (Oxford, England) , vol.23 , Issue.7 , pp. 866-874
    • Martin, S.1    Zhang, Z.2    Martino, A.3    Faulon, J.L.4
  • 144
    • 39149104076 scopus 로고    scopus 로고
    • Structural systems identification of genetic regulatory networks
    • Xiong H, Choe Y. Structural systems identification of genetic regulatory networks. Bioinformatics (Oxford, England), 2008, 24(4): 553-560.
    • (2008) Bioinformatics (Oxford, England) , vol.24 , Issue.4 , pp. 553-560
    • Xiong, H.1    Choe, Y.2
  • 145
    • 12144277948 scopus 로고    scopus 로고
    • State-space model with time delays for gene regulatory networks
    • Wu F X, Zhang W J, Kusalik A J. State-space model with time delays for gene regulatory networks. Journal of Biological System, 2004, 12(4): 483-500.
    • (2004) Journal of Biological System , vol.12 , Issue.4 , pp. 483-500
    • Wu, F.X.1    Zhang, W.J.2    Kusalik, A.J.3
  • 146
    • 77951942705 scopus 로고    scopus 로고
    • Inferring cluster-based networks from differently stimulated multiple time-course gene expression data
    • Shiraishi Y, Kimura S, Okada M. Inferring cluster-based networks from differently stimulated multiple time-course gene expression data. Bioinformatics (Oxford, England), 2010, 26(8): 1073-1081.
    • (2010) Bioinformatics (Oxford, England) , vol.26 , Issue.8 , pp. 1073-1081
    • Shiraishi, Y.1    Kimura, S.2    Okada, M.3
  • 147
    • 77950621240 scopus 로고    scopus 로고
    • Data integration and analysis of biological networks
    • Kim T Y, Kim H U, Lee S Y. Data integration and analysis of biological networks. Current Opinion in Biotechnology, 2010, 21(1): 78-84.
    • (2010) Current Opinion in Biotechnology , vol.21 , Issue.1 , pp. 78-84
    • Kim, T.Y.1    Kim, H.U.2    Lee, S.Y.3
  • 149
    • 0012647668 scopus 로고
    • Structuring Causal Tree Models with Continuous Variables
    • L. N. Kanal, T. S. Levitt, and J. F. Lemmer (Eds.), Amsterdam: North Holland
    • Xu L, Pearl J. Structuring Causal Tree Models with Continuous Variables. In: Kanal L N, Levitt T S, Lemmer J F, eds. Uncertainty in Artificial Intelligence 3. North Holland, Amsterdam, 1989, 209-219.
    • (1989) Uncertainty in Artificial Intelligence 3 , pp. 209-219
    • Xu, L.1    Pearl, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.