-
1
-
-
77956483883
-
Bayesian Ying-Yang system, best harmony learning, and five action circling
-
Frontiers of Electrical and Electronic Engineering in China
-
Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling. A special issue on Emerging Themes on Information Theory and Bayesian Approach, Frontiers of Electrical and Electronic Engineering in China, 2010, 5(3): 281-328.
-
(2010)
A special issue on Emerging Themes on Information Theory and Bayesian Approach
, vol.5
, Issue.3
, pp. 281-328
-
-
Xu, L.1
-
3
-
-
0002266094
-
EM algorithm for ML factor analysis
-
Rubi D, Thayer D. EM algorithm for ML factor analysis. Psychometrika, 1976, 57: 69-76.
-
(1976)
Psychometrika
, vol.57
, pp. 69-76
-
-
Rubi, D.1
Thayer, D.2
-
4
-
-
2142731041
-
FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC
-
Bozdogan H, Ramirez D E. FACAIC: model selection algorithm for the orthogonal factor model using AIC and FACAIC. Psychometrika, 1988, 53(3): 407-415.
-
(1988)
Psychometrika
, vol.53
, Issue.3
, pp. 407-415
-
-
Bozdogan, H.1
Ramirez, D.E.2
-
5
-
-
0002543590
-
Maximum likelihood source separation by the expectation maximization technique: Deterministic and stochastic implementation
-
Belouchrani A, Cardoso J. Maximum likelihood source separation by the expectation maximization technique: deterministic and stochastic implementation. In: Proceedings of NOLTA95. 1995, 49-53.
-
(1995)
Proceedings of NOLTA95
, pp. 49-53
-
-
Belouchrani, A.1
Cardoso, J.2
-
6
-
-
0032213587
-
Bayesian Kullback Ying-Yang dependence reduction theory
-
Xu L. Bayesian Kullback Ying-Yang dependence reduction theory. Neurocomputing, 1998, 22(1-3): 81-111.
-
(1998)
Neurocomputing
, vol.22
, Issue.1-3
, pp. 81-111
-
-
Xu, L.1
-
7
-
-
0037380850
-
BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
-
Xu L. BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units, Neurocomputing, 2003, 51: 277-301.
-
(2003)
Neurocomputing
, vol.51
, pp. 277-301
-
-
Xu, L.1
-
8
-
-
3843136240
-
Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination
-
Xu L. Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Transactions on Neural Networks, 2004, 15(4): 885-902.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.4
, pp. 885-902
-
-
Xu, L.1
-
9
-
-
3843095548
-
Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective
-
Xu L. Independent component analysis and extensions with noise and time: a Bayesian Ying-Yang learning perspective. Neural Information Processing-Letters and Reviews, 2003, 1(1): 1-52.
-
(2003)
Neural Information Processing-Letters and Reviews
, vol.1
, Issue.1
, pp. 1-52
-
-
Xu, L.1
-
10
-
-
0030676410
-
-
Moulines E, Cardoso J, Gassiat E. Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In: Proc. ICASSP97. 1997, 3617-3620.
-
-
-
-
11
-
-
0033561886
-
Independent factor analysis
-
Attias H. Independent factor analysis. Neural Computation, 1999, 11(4): 803-851.
-
(1999)
Neural Computation
, vol.11
, Issue.4
, pp. 803-851
-
-
Attias, H.1
-
12
-
-
3142756981
-
Investigations on non-Gaussian factor analysis
-
Liu Z Y, Chiu K C, Xu L. Investigations on non-Gaussian factor analysis. IEEE Signal Processing Letters, 2004, 11(7): 597-600.
-
(2004)
IEEE Signal Processing Letters
, vol.11
, Issue.7
, pp. 597-600
-
-
Liu, Z.Y.1
Chiu, K.C.2
Xu, L.3
-
13
-
-
77956473522
-
Independent subspaces
-
J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey (PA): IGI Global
-
Xu L. Independent subspaces. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence, Hershey (PA): IGI Global. 2008, 903-912.
-
(2008)
Encyclopedia of Artificial Intelligence
, pp. 903-912
-
-
Xu, L.1
-
14
-
-
0003040479
-
A multiple cause mixture model for unsupervised learning
-
Saund E. A multiple cause mixture model for unsupervised learning. Neural Computation, 1995, 7(1): 51-71.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 51-71
-
-
Saund, E.1
-
15
-
-
0030179714
-
Learning multiple causes by competition enhanced least mean square error reconstruction
-
Zhang B L, Xu L, Fu M Y. Learning multiple causes by competition enhanced least mean square error reconstruction. International Journal of Neural Systems, 1996, 7(3): 223-236.
-
(1996)
International Journal of Neural Systems
, vol.7
, Issue.3
, pp. 223-236
-
-
Zhang, B.L.1
Xu, L.2
Fu, M.Y.3
-
16
-
-
0031490684
-
The past and future of multidimensional item response theory
-
Reckase M D. The past and future of multidimensional item response theory. Applied Psychological Measurement, 1997, 21(1): 25-36.
-
(1997)
Applied Psychological Measurement
, vol.21
, Issue.1
, pp. 25-36
-
-
Reckase, M.D.1
-
17
-
-
0034345467
-
Generalized latent trait models
-
Moustaki I, Knott M. Generalized latent trait models. Psychometrika, 2000, 65(3): 391-411.
-
(2000)
Psychometrika
, vol.65
, Issue.3
, pp. 391-411
-
-
Moustaki, I.1
Knott, M.2
-
18
-
-
0003524537
-
-
New York: Oxford University Press
-
Bartholomew D J, Knott M. Latent variable models and factor analysis, Kendalls, Library of Statistics, Vol. 7. New York: Oxford University Press, 1999.
-
(1999)
Latent Variable Models and Factor Analysis, Kendalls, Library of Statistics
, vol.7
-
-
Bartholomew, D.J.1
Knott, M.2
-
19
-
-
0028561099
-
Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
-
Paatero P, Tapper U. Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994, 5(2): 111-126.
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
20
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
Lee D D, Seung H S. Learning the parts of objects by nonnegative matrix factorization. Nature, 1999, 401(6755): 788-791.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
21
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
Lee D D, Seung H S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process, 2001, 13: 556-562.
-
(2001)
Adv. Neural Inf. Process
, vol.13
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
22
-
-
67349093319
-
Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
-
Kim H, Park H. Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM Journal on Matrix Analysis and Applications, 2008, 30(2): 713-730.
-
(2008)
SIAM Journal on Matrix Analysis and Applications
, vol.30
, Issue.2
, pp. 713-730
-
-
Kim, H.1
Park, H.2
-
23
-
-
34547844077
-
Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
-
Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics (Oxford, England), 2007, 23(12): 1495-1502.
-
(2007)
Bioinformatics (Oxford, England)
, vol.23
, Issue.12
, pp. 1495-1502
-
-
Kim, H.1
Park, H.2
-
24
-
-
57149147265
-
Non-negative matrix factorization for semi-supervised data clustering
-
Chen Y, Rege M, Dong M, Hua J. Non-negative matrix factorization for semi-supervised data clustering. Knowledge and Information Systems, 2008, 17(3): 355-379.
-
(2008)
Knowledge and Information Systems
, vol.17
, Issue.3
, pp. 355-379
-
-
Chen, Y.1
Rege, M.2
Dong, M.3
Hua, J.4
-
25
-
-
46449137567
-
Non-negative matrix factorization with fixed row and column sums
-
Ho N, Vandooren P. Non-negative matrix factorization with fixed row and column sums. Linear Algebra and Its Applications, 2008, 429(5-6): 1020-1025.
-
(2008)
Linear Algebra and Its Applications
, vol.429
, Issue.5-6
, pp. 1020-1025
-
-
Ho, N.1
Vandooren, P.2
-
28
-
-
79952029910
-
A binary matrix factorization algorithm for protein complex prediction
-
Hong Kong, December
-
Tu S, Chen R, Xu L. A binary matrix factorization algorithm for protein complex prediction. In: Proceedings of the BIBM 2010 International Workshop on Computational Proteomics, Hong Kong, December 18-21, 2010.
-
(2010)
Proceedings of the BIBM 2010 International Workshop on Computational Proteomics
, pp. 18-21
-
-
Tu, S.1
Chen, R.2
Xu, L.3
-
29
-
-
0021404166
-
Mixture densities, maximum likelihood, and the EM algorithm
-
Redner R A, Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review, 1984, 26(2): 195-239.
-
(1984)
SIAM Review
, vol.26
, Issue.2
, pp. 195-239
-
-
Redner, R.A.1
Walker, H.F.2
-
30
-
-
2342533082
-
On convergence properties of the EM algorithm for Gaussian mixtures
-
Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8(1): 129-151.
-
(1996)
Neural Computation
, vol.8
, Issue.1
, pp. 129-151
-
-
Xu, L.1
Jordan, M.I.2
-
32
-
-
0028731590
-
Multisets modeling learning: A unified theory for supervised and unsupervised learning
-
Xu L. Multisets modeling learning: a unified theory for supervised and unsupervised learning. In: Proceedings of IEEE ICNN94. 1994, I: 315-320.
-
(1994)
Proceedings of IEEE ICNN94
, vol.I
, pp. 315-320
-
-
Xu, L.1
-
33
-
-
0002754576
-
A unified learning framework: Multisets modeling learning
-
Xu L. A unified learning framework: multisets modeling learning. In: Proceedings of WCNN95. 1995, 1: 35-42.
-
(1995)
Proceedings of WCNN95
, vol.1
, pp. 35-42
-
-
Xu, L.1
-
34
-
-
0031628777
-
Rival penalized competitive learning, finite mixture, and multisets clustering
-
Xu L. Rival penalized competitive learning, finite mixture, and multisets clustering. In: Proceedings of IEEE-INNS IJCNN98, Anchorage, Alaska, vol. II. 1998, 2525-2530.
-
(1998)
Proceedings of IEEE-INNS IJCNN98, Anchorage, Alaska
, vol.II
, pp. 2525-2530
-
-
Xu, L.1
-
35
-
-
0036790879
-
BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models
-
Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models. Neural Networks, 2002, (8-9): 1125-1151.
-
(2002)
Neural Networks
, vol.8-9
, pp. 1125-1151
-
-
Xu, L.1
-
36
-
-
0038355082
-
Data smoothing regularization, multi-sets-learning, and problem solving strategies
-
Xu L. Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks, 2003, 16(5-6): 817-825.
-
(2003)
Neural Networks
, vol.16
, Issue.5-6
, pp. 817-825
-
-
Xu, L.1
-
37
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15(6): 1373-1396.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
39
-
-
0032684826
-
Minimum message length and Kolmogorov complexity
-
Wallace C S, Dowe D R. Minimum message length and Kolmogorov complexity. Computer Journal, 1999, 42(4): 270-283.
-
(1999)
Computer Journal
, vol.42
, Issue.4
, pp. 270-283
-
-
Wallace, C.S.1
Dowe, D.R.2
-
41
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 117-143
-
-
Williams, P.M.1
-
42
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 1996, 58(1): 267-288.
-
(1996)
J. Royal. Statist. Soc B.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
43
-
-
0031214394
-
Regularization with a pruning prior
-
Hansen L K, Goutte C. Regularization with a pruning prior. Neural Networks, 1997, 10(6): 1053-1059.
-
(1997)
Neural Networks
, vol.10
, Issue.6
, pp. 1053-1059
-
-
Hansen, L.K.1
Goutte, C.2
-
44
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. Annals of Statistics, 1978, 6(2): 461-464.
-
(1978)
Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
45
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen J. Modeling by shortest data description. Automatica, 1978, 14: 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
47
-
-
4043061882
-
Variational Bayesian model selection for mixture distributions
-
Jaakkola T, Richardson T, eds. Morgan Kaufmann
-
Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Jaakkola T, Richardson T, eds. Artificial Intelligence and Statistics, Morgan Kaufmann. 2001, 27-34.
-
(2001)
Artificial Intelligence and Statistics
, pp. 27-34
-
-
Corduneanu, A.1
Bishop, C.M.2
-
48
-
-
0037270849
-
Variational mixture of Bayesian independent component analyzers
-
Choudrey R A, Roberts S J. Variational mixture of Bayesian independent component analyzers. Neural Computation, 2003, 15(1): 213-252.
-
(2003)
Neural Computation
, vol.15
, Issue.1
, pp. 213-252
-
-
Choudrey, R.A.1
Roberts, S.J.2
-
49
-
-
34247869715
-
Variational approximations in Bayesian model selection for finite mixture distributions
-
McGrory C A, Titterington D M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis, 2007, 51(11): 5352-5367.
-
(2007)
Computational Statistics & Data Analysis
, vol.51
, Issue.11
, pp. 5352-5367
-
-
McGrory, C.A.1
Titterington, D.M.2
-
51
-
-
84887495232
-
Improved Simulated Annealing, Boltzmann Machine and Attributed Graph Matching
-
Goos G, Hartmanis J, eds. Springer-Verlag
-
Xu L, Oja E. Improved Simulated Annealing, Boltzmann Machine and Attributed Graph Matching. In: Goos G, Hartmanis J, eds. Lecture Notes in Computer Sciences, Springer-Verlag, 1989, 412: 151-160.
-
(1989)
Lecture Notes in Computer Sciences
, vol.412
, pp. 151-160
-
-
Xu, L.1
Oja, E.2
-
52
-
-
3142716665
-
Thirty years of Graph Matching in Pattern Recognition
-
Conte D, Foggiay P, Sansoney C, Vento M. Thirty years of Graph Matching in Pattern Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(3): 265-298.
-
(2004)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.18
, Issue.3
, pp. 265-298
-
-
Conte, D.1
Foggiay, P.2
Sansoney, C.3
Vento, M.4
-
54
-
-
0035482004
-
A PCA approach for fast retrieval of structural patterns in attributed graphs
-
Xu L, King I. A PCA approach for fast retrieval of structural patterns in attributed graphs. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2001, 31(5): 812-817.
-
(2001)
IEEE Transactions on Systems, Man and Cybernetics, Part B
, vol.31
, Issue.5
, pp. 812-817
-
-
Xu, L.1
King, I.2
-
55
-
-
0032668139
-
Computationally efficient maximum likelihood estimation of structured covariance matrices
-
Li H B, Stoica P, Li J. Computationally efficient maximum likelihood estimation of structured covariance matrices. IEEE Transactions on Signal Processing, 1999, 47(5): 1314-1323.
-
(1999)
IEEE Transactions on Signal Processing
, vol.47
, Issue.5
, pp. 1314-1323
-
-
Li, H.B.1
Stoica, P.2
Li, J.3
-
56
-
-
0020183044
-
Estimation of structured covariance matrices
-
Burg J, Luenberger D, Wenger D. Estimation of structured covariance matrices. Proceedings of the IEEE, 1982, 70(9): 963-974.
-
(1982)
Proceedings of the IEEE
, vol.70
, Issue.9
, pp. 963-974
-
-
Burg, J.1
Luenberger, D.2
Wenger, D.3
-
57
-
-
37849041641
-
Beyond PCA learning: From linear to nonlinear and from global representation to local representation
-
Xu L. Beyond PCA learning: from linear to nonlinear and from global representation to local representation. In: Proceedings of ICONIP94. 1994, 2: 943-949.
-
(1994)
Proceedings of ICONIP94
, vol.2
, pp. 943-949
-
-
Xu, L.1
-
59
-
-
0030737323
-
Modeling the manifolds of images of handwritten digits
-
Hinton G E, Dayan P, Revow M. Modeling the manifolds of images of handwritten digits. IEEE Transactions on Neural Networks, 1997, 8(1): 65-74.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.1
, pp. 65-74
-
-
Hinton, G.E.1
Dayan, P.2
Revow, M.3
-
60
-
-
0042842439
-
Strip line detection and thinning by RPCL-based local PCA
-
Liu Z Y, Chiu K C, Xu L. Strip line detection and thinning by RPCL-based local PCA. Pattern Recognition Letters, 2003, 24(14): 2335-2344.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.14
, pp. 2335-2344
-
-
Liu, Z.Y.1
Chiu, K.C.2
Xu, L.3
-
61
-
-
0345257348
-
Topological local principal component analysis
-
Liu Z Y, Xu L. Topological local principal component analysis. Neurocomputing, 2003, 55(3-4): 739-745.
-
(2003)
Neurocomputing
, vol.55
, Issue.3-4
, pp. 739-745
-
-
Liu, Z.Y.1
Xu, L.2
-
62
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
Tipping M E, Bishop C M. Mixtures of probabilistic principal component analyzers. Neural Computation, 1999, 11(2): 443-482.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
-
64
-
-
0035345442
-
Bayesian analysis of mixtures of factor analyzers
-
Utsugi A, Kumagai T. Bayesian analysis of mixtures of factor analyzers. Neural Computation, 2001, 13(5): 993-1002.
-
(2001)
Neural Computation
, vol.13
, Issue.5
, pp. 993-1002
-
-
Utsugi, A.1
Kumagai, T.2
-
65
-
-
84898934543
-
-
Cambridge, MA: MIT Press
-
Ghahramani Z, Beal M. Variational inference for Bayesian mixtures of factor analysers, Advances in neural information processing systems 12. Cambridge, MA: MIT Press, 2000, 449-455.
-
(2000)
Variational Inference for Bayesian Mixtures of Factor Analysers, Advances in Neural Information Processing Systems 12
, pp. 449-455
-
-
Ghahramani, Z.1
Beal, M.2
-
66
-
-
46049101030
-
Bayesian Ying Yang System, Best Harmony Learning, and Gaussian Manifold Based Family
-
Zurada et al, eds. LNCS5050
-
Xu L, Bayesian Ying Yang System, Best Harmony Learning, and Gaussian Manifold Based Family. In: Zurada et al, eds. Computational Intelligence: Research Frontiers (WCCI2008 Plenary/Invited Lectures), LNCS5050, 2008, 48-78.
-
(2008)
Computational Intelligence: Research Frontiers (WCCI2008 Plenary/Invited Lectures)
, pp. 48-78
-
-
Xu, L.1
-
67
-
-
77956476076
-
Learning algorithms for RBF functions and subspace based functions
-
E. S. Olivas (Ed.), Hershey (PA): IGI Global
-
Xu L. Learning algorithms for RBF functions and subspace based functions. In: Olivas E S, et al, eds. Handbook of Research on Machine Learning, Applications and Trends: Algorithms, Methods and Techniques, Hershey (PA): IGI Global. 2009, 60-94.
-
(2009)
Handbook of Research on Machine Learning, Applications and Trends: Algorithms, Methods and Techniques
, pp. 60-94
-
-
Xu, L.1
-
69
-
-
0038259620
-
Bayesian Ying Yang System and Theory as a Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling
-
K. M. Wong, D. Y. Yeung, and I. King (Eds.), Berlin: Springer-Verlag
-
Xu L. Bayesian Ying Yang System and Theory as a Unified Statistical Learning Approach (II): From Unsupervised Learning to Supervised Learning and Temporal Modeling. In: Wong K M, Yeung D Y, King I, et al, eds. Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective. Berlin: Springer-Verlag, 1997, 25-60.
-
(1997)
Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective
, pp. 25-60
-
-
Xu, L.1
-
70
-
-
0033330628
-
Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration
-
Washington
-
Xu L. Temporal BYY learning and its applications to extended Kalman filtering, hidden Markov model, and sensormotor integration. In: Proceedings of IEEE-INNS 1999 Intl J. Conf on Neural Networks, Washington. 1999, 2: 949-954.
-
(1999)
Proceedings of IEEE-INNS 1999 Intl J. Conf on Neural Networks
, vol.2
, pp. 949-954
-
-
Xu, L.1
-
71
-
-
0012707139
-
Bayesian Ying-Yang system and theory as a unified statistical learning approach:(V) temporal modeling for temporal perception and control
-
Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach:(V) temporal modeling for temporal perception and control. In: Proceedings of ICONIP98, Kitakyushu. 1998, 2: 877-884.
-
(1998)
Proceedings of ICONIP98, Kitakyushu.
, vol.2
, pp. 877-884
-
-
Xu, L.1
-
72
-
-
0034170950
-
Variational learning for switching state-space models
-
Ghahramani Z, Hinton G E. Variational learning for switching state-space models. Neural Computation, 2000, 12(4): 831-864.
-
(2000)
Neural Computation
, vol.12
, Issue.4
, pp. 831-864
-
-
Ghahramani, Z.1
Hinton, G.E.2
-
73
-
-
0033716741
-
Temporal BYY learning for state space approach, hidden Markov model and blind source separation
-
Xu L. Temporal BYY learning for state space approach, hidden Markov model and blind source separation. IEEE Transactions on Signal Processing, 2000, 48(7): 2132-2144.
-
(2000)
IEEE Transactions on Signal Processing
, vol.48
, Issue.7
, pp. 2132-2144
-
-
Xu, L.1
-
74
-
-
0035391741
-
BYY harmony learning, independent state space, and generalized APT financial analyses
-
Xu L. BYY harmony learning, independent state space, and generalized APT financial analyses. IEEE Transactions on Neural Networks, 2001, 12(4): 822-849.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.4
, pp. 822-849
-
-
Xu, L.1
-
75
-
-
3843066216
-
Temporal BYY encoding, Markovian state spaces, and space dimension determination
-
Xu L. Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Transactions on Neural Networks, 2004, 15(5): 1276-1295.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.5
, pp. 1276-1295
-
-
Xu, L.1
-
76
-
-
0345824737
-
Network component analysis: Reconstruction of regulatory signals in biological systems
-
Liao J C, Boscolo R, Yang Y L, Tran L M, Sabatti C, Roychowdhury V P. Network component analysis: reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15522-15527.
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.26
, pp. 15522-15527
-
-
Liao, J.C.1
Boscolo, R.2
Yang, Y.L.3
Tran, L.M.4
Sabatti, C.5
Roychowdhury, V.P.6
-
77
-
-
23744491001
-
Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach
-
Boulesteix A L, Strimmer K. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theoretical Biology & Medical Modelling, 2005, 2(1): 23.
-
(2005)
Theoretical Biology & Medical Modelling
, vol.2
, Issue.1
, pp. 23
-
-
Boulesteix, A.L.1
Strimmer, K.2
-
78
-
-
33845365903
-
A Gibbs sampler for the identification of gene expression and network connectivity consistency
-
Brynildsen M P, Tran L M, Liao J C. A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics (Oxford, England), 2006, 22(24): 3040-3046.
-
(2006)
Bioinformatics (Oxford, England)
, vol.22
, Issue.24
, pp. 3040-3046
-
-
Brynildsen, M.P.1
Tran, L.M.2
Liao, J.C.3
-
79
-
-
34547858483
-
Biological network mapping and source signal deduction
-
Brynildsen M P, Wu T Y, Jang S S, Liao J C. Biological network mapping and source signal deduction. Bioinformatics (Oxford, England), 2007, 23(14): 1783-1791.
-
(2007)
Bioinformatics (Oxford, England)
, vol.23
, Issue.14
, pp. 1783-1791
-
-
Brynildsen, M.P.1
Wu, T.Y.2
Jang, S.S.3
Liao, J.C.4
-
80
-
-
0016495712
-
Blind deconvolution through digital signal processing
-
Stockham T G, Cannon T M, Ingebretsen R B. Blind deconvolution through digital signal processing. Proceedings of the IEEE, 1975, 63(4): 678-692.
-
(1975)
Proceedings of the IEEE
, vol.63
, Issue.4
, pp. 678-692
-
-
Stockham, T.G.1
Cannon, T.M.2
Ingebretsen, R.B.3
-
82
-
-
79952303448
-
Semi-blind deconvolution of finite length sequence: (I) linear problem & (II). Nonlinear Problem
-
SCIENTIA SINICA, Series A
-
Xu L, Yan P F, Chang T. Semi-blind deconvolution of finite length sequence: (I) linear problem & (II). Nonlinear Problem, SCIENTIA SINICA, Series A, 1987, (12): 1318-1344.
-
(1987)
, vol.12
, pp. 1318-1344
-
-
Xu, L.1
Yan, P.F.2
Chang, T.3
-
84
-
-
77955505357
-
Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks
-
De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol, 2010, 6(6): e1000807.
-
(2010)
PLoS Comput Biol
, vol.6
, Issue.6
-
-
de Las Rivas, J.1
Fontanillo, C.2
-
85
-
-
38849146505
-
Understanding biological functions through molecular networks
-
Han J D. Understanding biological functions through molecular networks. Cell Research, 2008, 18(2): 224-237.
-
(2008)
Cell Research
, vol.18
, Issue.2
, pp. 224-237
-
-
Han, J.D.1
-
86
-
-
2442449354
-
Identifiability Issues in Noisy ICA
-
Davies M. Identifiability Issues in Noisy ICA. IEEE SIGNAL PROCESSING LETTERS, 2004, 11(5): 470-473.
-
(2004)
IEEE SIGNAL PROCESSING LETTERS
, vol.11
, Issue.5
, pp. 470-473
-
-
Davies, M.1
-
87
-
-
0002233396
-
Natural exponential families with quadratic variance functions
-
Morris C. Natural exponential families with quadratic variance functions. Annals of Statistics, 1982, 10(1): 65-80.
-
(1982)
Annals of Statistics
, vol.10
, Issue.1
, pp. 65-80
-
-
Morris, C.1
-
89
-
-
84938437360
-
Selection of variables for fitting equations to data
-
Gorman J W, Toman R J. Selection of variables for fitting equations to data. Technometrics, 1966, 8: 27-51.
-
(1966)
Technometrics
, vol.8
, pp. 27-51
-
-
Gorman, J.W.1
Toman, R.J.2
-
90
-
-
84915425007
-
Some comments on Cp
-
Mallows C L. Some comments on Cp. Technometrics, 1973, 15: 661-675.
-
(1973)
Technometrics
, vol.15
, pp. 661-675
-
-
Mallows, C.L.1
-
91
-
-
0000107517
-
An information measure for classification
-
Wallace C S, Boulton D M. An information measure for classification. Computer Journal, 1968, 11(2): 185-194.
-
(1968)
Computer Journal
, vol.11
, Issue.2
, pp. 185-194
-
-
Wallace, C.S.1
Boulton, D.M.2
-
92
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 714-723.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 714-723
-
-
Akaike, H.1
-
93
-
-
4544279425
-
A formal theory of inductive inference
-
Solomonoff R J. A formal theory of inductive inference. Part I. Information and Control, 1964, 7(1): 1-22.
-
(1964)
Part I. Information and Control
, vol.7
, Issue.1
, pp. 1-22
-
-
Solomonoff, R.J.1
-
94
-
-
0001902056
-
Three approaches to the quantitative definition of information
-
Kolmogorov A N. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1965, 1(1): 1-11.
-
(1965)
Problems of Information Transmission
, vol.1
, Issue.1
, pp. 1-11
-
-
Kolmogorov, A.N.1
-
96
-
-
0027629412
-
Rival penalized competitive learning for clustering analysis, RBF net and curve detection
-
Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Transactions on Neural Networks, 1993, 4(4): 636-649.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.4
, pp. 636-649
-
-
Xu, L.1
Krzyzak, A.2
Oja, E.3
-
98
-
-
79952286873
-
-
Tu S K, Xu L. Parameterizations make different model selections: empirical findings from factor analysis, to appear on Frontiers of Electrical and Electronic Engineering in China, 2011.
-
-
-
-
99
-
-
67149134695
-
-
Sun K, Tu S, Gao D Y, Xu L. Canonical dual approach to binary factor analysis. In: Adali T, Jutten C, Romano J M T, Barros A K, eds. Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, 2009, 5441: 346-353.
-
-
-
-
100
-
-
77954757210
-
Machine learning problems from optimization perspective
-
Xu L. Machine learning problems from optimization perspective. Journal of Global Optimization, 2010, 47(3): 369-401.
-
(2010)
Journal of Global Optimization
, vol.47
, Issue.3
, pp. 369-401
-
-
Xu, L.1
-
102
-
-
34548583274
-
A tutorial on spectral clustering
-
Luxburg U. A tutorial on spectral clustering. Statistics and Computing, 2007, 17(4): 395-416.
-
(2007)
Statistics and Computing
, vol.17
, Issue.4
, pp. 395-416
-
-
Luxburg, U.1
-
103
-
-
0003882879
-
-
Providence, RI: Amer. Math. Soc
-
Chung F R. Spectral Graph Theory. Amer. Math. Soc., Providence, RI. MR1421568, 1997.
-
(1997)
Spectral Graph Theory
-
-
Chung, F.R.1
-
104
-
-
0141633856
-
-
Xu L. Distribution approximation, combinatorial optimization, and Lagrange-Barrier. In: Proceedings of International Joint Conference on Neural Networks 2003 (IJCNN 03), Jantzen Beach, Portland. 2003, 2354-2359.
-
-
-
-
105
-
-
85121777290
-
Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches
-
San Die go, CA
-
Xu L. Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches. In: Proceedings Of World Congress on Neural Networks. San Diego, CA. 1994, 399-404.
-
(1994)
Proceedings Of World Congress on Neural Networks
, pp. 399-404
-
-
Xu, L.1
-
106
-
-
0141757082
-
On the hybrid LT combinatorial optimization: New U-shape barrier, sigmoid activation, least leaking energy and maximum entropy
-
Beijing
-
Xu L. On the hybrid LT combinatorial optimization: new U-shape barrier, sigmoid activation, least leaking energy and maximum entropy. In: Proceedings of Intl. Conf. on Neural Information Processing, Beijing. 1995, 309-312.
-
(1995)
Proceedings of Intl. Conf. on Neural Information Processing
, pp. 309-312
-
-
Xu, L.1
-
107
-
-
24944561673
-
One-bit-matching ICA theorem, convex-concave programming, and combinatorial optimization
-
LNCS, Berlin: Springer-Verlag
-
Xu L. One-bit-matching ICA theorem, convex-concave programming, and combinatorial optimization. In: Advances in neural networks: ISNN 2005, LNCS 3496. Berlin: Springer-Verlag, 2005, 5-20.
-
(2005)
Advances in Neural Networks: ISNN 2005
, vol.3496
, pp. 5-20
-
-
Xu, L.1
-
108
-
-
33847287742
-
One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics
-
Xu L. One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics. Neural Computation, 2007, 19(2): 546-569.
-
(2007)
Neural Computation
, vol.19
, Issue.2
, pp. 546-569
-
-
Xu, L.1
-
109
-
-
77956465653
-
Combining Classifiers and Learning Mixture-of-Experts
-
Ramón J, Dopico R, Dorado J, Pazos A, eds. IGI Global (IGI) publishing company
-
Xu L, Amari S I. Combining Classifiers and Learning Mixture-of-Experts, In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. IGI Global (IGI) publishing company, 2008, 318-326.
-
(2008)
Encyclopedia of Artificial Intelligence
, pp. 318-326
-
-
Xu, L.1
Amari, S.I.2
-
110
-
-
34247105235
-
A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
-
Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition, 2007, 40(8): 2129-2153.
-
(2007)
Pattern Recognition
, vol.40
, Issue.8
, pp. 2129-2153
-
-
Xu, L.1
-
111
-
-
73449106062
-
Reconstructing transcriptional regulatory networks through genomics data
-
Sun N, Zhao H Y. Reconstructing transcriptional regulatory networks through genomics data. Statistical Methods in Medical Research, 2009, 18(6): 595-617.
-
(2009)
Statistical Methods in Medical Research
, vol.18
, Issue.6
, pp. 595-617
-
-
Sun, N.1
Zhao, H.Y.2
-
112
-
-
10744226222
-
Computational discovery of gene modules and regulatory networks
-
Bar-Joseph Z, Gerber G K, Lee T I, Rinaldi N J, Yoo J Y, Robert F, Gordon D B, Fraenkel E, Jaakkola T S, Young R A, Gifford D K. Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 2003, 21(11): 1337-1342.
-
(2003)
Nature Biotechnology
, vol.21
, Issue.11
, pp. 1337-1342
-
-
Bar-Joseph, Z.1
Gerber, G.K.2
Lee, T.I.3
Rinaldi, N.J.4
Yoo, J.Y.5
Robert, F.6
Gordon, D.B.7
Fraenkel, E.8
Jaakkola, T.S.9
Young, R.A.10
Gifford, D.K.11
-
113
-
-
77955505357
-
Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks
-
De Las Rivas J, Fontanillo C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol, 2010, 6(6): e1000807.
-
(2010)
PLoS Comput Biol
, vol.6
, Issue.6
-
-
de Las Rivas, J.1
Fontanillo, C.2
-
114
-
-
51349087811
-
Global alignment of multiple protein interaction networks with application to functional orthology detection
-
Singh R, Xu J B, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35): 12763-12768.
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.35
, pp. 12763-12768
-
-
Singh, R.1
Xu, J.B.2
Berger, B.3
-
116
-
-
0038074373
-
Topological structure analysis of the protein-protein interaction network in budding yeast
-
Bu D, Zhao Y, Cai L, Xue H, Zhu X, Lu H, Zhang J, Sun S, Ling L, Zhang N, Li G, Chen R. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research, 2003, 31(9): 2443-2450.
-
(2003)
Nucleic Acids Research
, vol.31
, Issue.9
, pp. 2443-2450
-
-
Bu, D.1
Zhao, Y.2
Cai, L.3
Xue, H.4
Zhu, X.5
Lu, H.6
Zhang, J.7
Sun, S.8
Ling, L.9
Zhang, N.10
Li, G.11
Chen, R.12
-
119
-
-
0037941585
-
Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
-
Segal E, Shapira M, Regev A, Peer D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 2003, 34(2): 166-176.
-
(2003)
Nature Genetics
, vol.34
, Issue.2
, pp. 166-176
-
-
Segal, E.1
Shapira, M.2
Regev, A.3
Peer, D.4
Botstein, D.5
Koller, D.6
Friedman, N.7
-
120
-
-
33746067911
-
Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
-
Reiss D J, Baliga N S, Bonneau R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics, 2006, 7(1): 280.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 280
-
-
Reiss, D.J.1
Baliga, N.S.2
Bonneau, R.3
-
121
-
-
33745128746
-
Inferring transcriptional modules from ChIP-chip, motif and microarray data
-
R37
-
Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biology, 2006, 7(5): R37(1-14).
-
(2006)
Genome Biology
, vol.7
, Issue.5
, pp. 1-14
-
-
Lemmens, K.1
Dhollander, T.2
de Bie, T.3
Monsieurs, P.4
Engelen, K.5
Smets, B.6
Winderickx, J.7
de Moor, B.8
Marchal, K.9
-
122
-
-
77955039075
-
Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model
-
Youn A, Reiss D J, Stuetzle W. Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model. Bioinformatics (Oxford, England), 2010, 26(15): 1879-1886.
-
(2010)
Bioinformatics (Oxford, England)
, vol.26
, Issue.15
, pp. 1879-1886
-
-
Youn, A.1
Reiss, D.J.2
Stuetzle, W.3
-
123
-
-
0034682504
-
Fundamental patterns underlying gene expression profiles: Simplicity from complexity
-
Holter N S, Mitra M, Maritan A, Cieplak M, Banavar J R, Fedoroff N V. Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8409-8414.
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.15
, pp. 8409-8414
-
-
Holter, N.S.1
Mitra, M.2
Maritan, A.3
Cieplak, M.4
Banavar, J.R.5
Fedoroff, N.V.6
-
124
-
-
0037197936
-
Reverse engineering gene networks using singular value decomposition and robust regression
-
Yeung M K, Tegnr J, Collins J J. Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 6163-6168.
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.9
, pp. 6163-6168
-
-
Yeung, M.K.1
Tegnr, J.2
Collins, J.J.3
-
125
-
-
0034730140
-
Singular value decomposition for genome-wide expression data processing and modeling
-
Alter O, Brown P O, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(18): 10101-10106.
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.18
, pp. 10101-10106
-
-
Alter, O.1
Brown, P.O.2
Botstein, D.3
-
126
-
-
0037452966
-
Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms
-
Alter O, Brown P O, Botstein D. Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(6): 3351-3356.
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.6
, pp. 3351-3356
-
-
Alter, O.1
Brown, P.O.2
Botstein, D.3
-
127
-
-
0035135420
-
Regulatory element detection using correlation with expression
-
Bussemaker H J, Li H, Siggia E D. Regulatory element detection using correlation with expression. Nature Genetics, 2001, 27(2): 167-174.
-
(2001)
Nature Genetics
, vol.27
, Issue.2
, pp. 167-174
-
-
Bussemaker, H.J.1
Li, H.2
Siggia, E.D.3
-
128
-
-
1542473171
-
Application of independent component analysis to microarrays
-
Lee S I, Batzoglou S. Application of independent component analysis to microarrays. Genome Biology, 2003, 4(11): R76.
-
(2003)
Genome Biology
, vol.4
, Issue.11
-
-
Lee, S.I.1
Batzoglou, S.2
-
129
-
-
0036166753
-
Linear modes of gene expression determined by independent component analysis
-
Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics (Oxford, England), 2002, 18(1): 51-60.
-
(2002)
Bioinformatics (Oxford, England)
, vol.18
, Issue.1
, pp. 51-60
-
-
Liebermeister, W.1
-
130
-
-
33744501241
-
Bayesian error analysis model for reconstructing transcriptional regulatory networks
-
Sun N, Carroll R J, Zhao H. Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(21): 7988-7993.
-
(2006)
Proceedings of the National Academy of Sciences of the United States of America
, vol.103
, Issue.21
, pp. 7988-7993
-
-
Sun, N.1
Carroll, R.J.2
Zhao, H.3
-
131
-
-
33645107349
-
Bayesian sparse hidden components analysis for transcription regulation networks
-
Sabatti C, James G M. Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics, 2006, 22(6): 739-746.
-
(2006)
Bioinformatics
, vol.22
, Issue.6
, pp. 739-746
-
-
Sabatti, C.1
James, G.M.2
-
132
-
-
34848855728
-
Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIPchip data
-
Liu X, Jessen W J, Sivaganesan S, Aronow B J, Medvedovic M. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIPchip data. BMC Bioinformatics, 2007, 8(1): 283.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 283
-
-
Liu, X.1
Jessen, W.J.2
Sivaganesan, S.3
Aronow, B.J.4
Medvedovic, M.5
-
133
-
-
15944376548
-
A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data
-
Xing B, van der Laan M J. A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data. Journal of Computational Biology, 2005, 12(2): 229-246.
-
(2005)
Journal of Computational Biology
, vol.12
, Issue.2
, pp. 229-246
-
-
Xing, B.1
van der Laan, M.J.2
-
134
-
-
33947409985
-
Factor analysis for gene regulatory networks and transcription factor activity profiles
-
Pournara I, Wernisch L. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics, 2007, 8(1): 61.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 61
-
-
Pournara, I.1
Wernisch, L.2
-
135
-
-
0038048325
-
Inferring genetic networks and identifying compound mode of action via expression profiling
-
Gardner T S, di Bernardo D, Lorenz D, Collins J J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 2003, 301(5629): 102-105.
-
(2003)
Science
, vol.301
, Issue.5629
, pp. 102-105
-
-
Gardner, T.S.1
di Bernardo, D.2
Lorenz, D.3
Collins, J.J.4
-
136
-
-
3142744689
-
Modeling T-cell activation using gene expression profiling and state-space models
-
Rangel C, Angus J, Ghahramani Z, Lioumi M, Sotheran E, Gaiba A, Wild D L, Falciani F. Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics (Oxford, England), 2004, 20(9): 1361-1372.
-
(2004)
Bioinformatics (Oxford, England)
, vol.20
, Issue.9
, pp. 1361-1372
-
-
Rangel, C.1
Angus, J.2
Ghahramani, Z.3
Lioumi, M.4
Sotheran, E.5
Gaiba, A.6
Wild, D.L.7
Falciani, F.8
-
137
-
-
13844253637
-
A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
-
Beal M J, Falciani F, Ghahramani Z, Rangel C, Wild D L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics (Oxford, England), 2005, 21(3): 349-356.
-
(2005)
Bioinformatics (Oxford, England)
, vol.21
, Issue.3
, pp. 349-356
-
-
Beal, M.J.1
Falciani, F.2
Ghahramani, Z.3
Rangel, C.4
Wild, D.L.5
-
138
-
-
33751008680
-
Probabilistic inference of transcription factor concentrations and genespecific regulatory activities
-
Sanguinetti G, Lawrence N D, Rattray M. Probabilistic inference of transcription factor concentrations and genespecific regulatory activities. Bioinformatics (Oxford, England), 2006, 22(22): 2775-2781.
-
(2006)
Bioinformatics (Oxford, England)
, vol.22
, Issue.22
, pp. 2775-2781
-
-
Sanguinetti, G.1
Lawrence, N.D.2
Rattray, M.3
-
139
-
-
39149107070
-
State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast
-
Yamaguchi R, Higuchi T. State-space approach with the maximum likelihood principle to identify the system generating time-course gene expression data of yeast. International Journal of Data Mining and Bioinformatics, 2006, 1(1): 77-87.
-
(2006)
International Journal of Data Mining and Bioinformatics
, vol.1
, Issue.1
, pp. 77-87
-
-
Yamaguchi, R.1
Higuchi, T.2
-
140
-
-
33645108505
-
Using a statespace model with hidden variables to infer transcription factor activities
-
Li Z, Shaw S M, Yedwabnick M J, Chan C. Using a statespace model with hidden variables to infer transcription factor activities. Bioinformatics (Oxford, England), 2006, 22(6): 747-754.
-
(2006)
Bioinformatics (Oxford, England)
, vol.22
, Issue.6
, pp. 747-754
-
-
Li, Z.1
Shaw, S.M.2
Yedwabnick, M.J.3
Chan, C.4
-
141
-
-
34648840585
-
Cluster-based network model for time-course gene expression data
-
Inoue L Y, Neira M, Nelson C, Gleave M, Etzioni R. Cluster-based network model for time-course gene expression data. Biostatistics (Oxford, England), 2007, 8(3): 507-525.
-
(2007)
Biostatistics (Oxford, England)
, vol.8
, Issue.3
, pp. 507-525
-
-
Inoue, L.Y.1
Neira, M.2
Nelson, C.3
Gleave, M.4
Etzioni, R.5
-
142
-
-
34248572623
-
Boolean dynam ics of genetic regulatory networks inferred from microarray time series data
-
Martin S, Zhang Z, Martino A, Faulon J L. Boolean dynam ics of genetic regulatory networks inferred from microarray time series data. Bioinformatics (Oxford, England), 2007, 23(7): 866-874.
-
(2007)
Bioinformatics (Oxford, England)
, vol.23
, Issue.7
, pp. 866-874
-
-
Martin, S.1
Zhang, Z.2
Martino, A.3
Faulon, J.L.4
-
143
-
-
41349101972
-
Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
-
Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones D S, Print C, Miyano S. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics (Oxford, England), 2008, 24(7): 932-942.
-
(2008)
Bioinformatics (Oxford, England)
, vol.24
, Issue.7
, pp. 932-942
-
-
Hirose, O.1
Yoshida, R.2
Imoto, S.3
Yamaguchi, R.4
Higuchi, T.5
Charnock-Jones, D.S.6
Print, C.7
Miyano, S.8
-
144
-
-
39149104076
-
Structural systems identification of genetic regulatory networks
-
Xiong H, Choe Y. Structural systems identification of genetic regulatory networks. Bioinformatics (Oxford, England), 2008, 24(4): 553-560.
-
(2008)
Bioinformatics (Oxford, England)
, vol.24
, Issue.4
, pp. 553-560
-
-
Xiong, H.1
Choe, Y.2
-
145
-
-
12144277948
-
State-space model with time delays for gene regulatory networks
-
Wu F X, Zhang W J, Kusalik A J. State-space model with time delays for gene regulatory networks. Journal of Biological System, 2004, 12(4): 483-500.
-
(2004)
Journal of Biological System
, vol.12
, Issue.4
, pp. 483-500
-
-
Wu, F.X.1
Zhang, W.J.2
Kusalik, A.J.3
-
146
-
-
77951942705
-
Inferring cluster-based networks from differently stimulated multiple time-course gene expression data
-
Shiraishi Y, Kimura S, Okada M. Inferring cluster-based networks from differently stimulated multiple time-course gene expression data. Bioinformatics (Oxford, England), 2010, 26(8): 1073-1081.
-
(2010)
Bioinformatics (Oxford, England)
, vol.26
, Issue.8
, pp. 1073-1081
-
-
Shiraishi, Y.1
Kimura, S.2
Okada, M.3
-
147
-
-
77950621240
-
Data integration and analysis of biological networks
-
Kim T Y, Kim H U, Lee S Y. Data integration and analysis of biological networks. Current Opinion in Biotechnology, 2010, 21(1): 78-84.
-
(2010)
Current Opinion in Biotechnology
, vol.21
, Issue.1
, pp. 78-84
-
-
Kim, T.Y.1
Kim, H.U.2
Lee, S.Y.3
-
149
-
-
0012647668
-
Structuring Causal Tree Models with Continuous Variables
-
L. N. Kanal, T. S. Levitt, and J. F. Lemmer (Eds.), Amsterdam: North Holland
-
Xu L, Pearl J. Structuring Causal Tree Models with Continuous Variables. In: Kanal L N, Levitt T S, Lemmer J F, eds. Uncertainty in Artificial Intelligence 3. North Holland, Amsterdam, 1989, 209-219.
-
(1989)
Uncertainty in Artificial Intelligence 3
, pp. 209-219
-
-
Xu, L.1
Pearl, J.2
|