메뉴 건너뛰기




Volumn 19, Issue 2, 2007, Pages 546-569

One-bit-matching theorem for ICA, convex-concave programming on polyhedral set, and distribution approximation for combinatorics

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33847287742     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.19.2.546     Document Type: Article
Times cited : (11)

References (28)
  • 1
    • 0031277419 scopus 로고    scopus 로고
    • Stability analysis of adaptive blind source separation
    • Amari, S., Chen, T.-P., & Cichocki, A. (1997). Stability analysis of adaptive blind source separation. Neural Networks, 10, 1345-1351.
    • (1997) Neural Networks , vol.10 , pp. 1345-1351
    • Amari, S.1    Chen, T.-P.2    Cichocki, A.3
  • 2
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind separation of sources
    • D. Toureteky, M. Mozer, & M. Hasselmo Eds, Cambridge, MA: MIT Press
    • Amari, S. I., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind separation of sources. In D. Toureteky, M. Mozer, & M. Hasselmo (Eds.), Advances in neural information processing, 8 (pp. 757-763). Cambridge, MA: MIT Press.
    • (1996) Advances in neural information processing , vol.8 , pp. 757-763
    • Amari, S.I.1    Cichocki, A.2    Yang, H.3
  • 4
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell, A., & Sejnowski, T. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7, 1129-1159.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 5
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • Cardoso, J.-F. (1998). Blind signal separation: Statistical principles. Proc. IEEE, 86(10), 2009-2025.
    • (1998) Proc. IEEE , vol.86 , Issue.10 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 6
    • 0033991708 scopus 로고    scopus 로고
    • Some global and local convergence analysis on the information-theoretic independent component analysis approach
    • Cheung, C. C., & Xu, L. (2000). Some global and local convergence analysis on the information-theoretic independent component analysis approach. Neurocomputing, 30, 79-102.
    • (2000) Neurocomputing , vol.30 , pp. 79-102
    • Cheung, C.C.1    Xu, L.2
  • 7
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • Comon, P. (1994). Independent component analysis: A new concept? Signal Processing, 36, 267-314.
    • (1994) Signal Processing , vol.36 , pp. 267-314
    • Comon, P.1
  • 8
    • 0002308310 scopus 로고
    • Adaptive blind separation of independent sources: A deflation approach
    • Delfosse, N., & Loubation, P. (1995). Adaptive blind separation of independent sources: A deflation approach. Signal Processing, 45, 59-83.
    • (1995) Signal Processing , vol.45 , pp. 59-83
    • Delfosse, N.1    Loubation, P.2
  • 9
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints
    • Edelman, A., Arias, T. A., & Smith, S. T. (1998). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20, 303-353.
    • (1998) SIAM J. Matrix Anal. Appl , vol.20 , pp. 303-353
    • Edelman, A.1    Arias, T.A.2    Smith, S.T.3
  • 10
    • 0033570807 scopus 로고    scopus 로고
    • Independent component analysis: A flexible nonlinearity and decorrelating manifold approach
    • Everson, R., & Roberts, S. (1999). Independent component analysis: A flexible nonlinearity and decorrelating manifold approach. Neural Computation, 11, 1957-1983.
    • (1999) Neural Computation , vol.11 , pp. 1957-1983
    • Everson, R.1    Roberts, S.2
  • 11
    • 0000324990 scopus 로고    scopus 로고
    • An alternative perspective on adaptive independent component analysis algorithms
    • Girolami, M. (1998). An alternative perspective on adaptive independent component analysis algorithms. Neural Computation, 10, 2103-2114.
    • (1998) Neural Computation , vol.10 , pp. 2103-2114
    • Girolami, M.1
  • 12
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield, J. J., & Tank, D. W. (1985). Neural computation of decisions in optimization problems. Biological Cybernetics, 52, 141-152.
    • (1985) Biological Cybernetics , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 14
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
    • Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11, 417-441.
    • (1999) Neural Computation , vol.11 , pp. 417-441
    • Lee, T.W.1    Girolami, M.2    Sejnowski, T.J.3
  • 15
    • 0346399881 scopus 로고    scopus 로고
    • One-bit-matching conjecture for independent component analysis
    • Liu, Z. Y., Chiu, K. C., & Xu, L. (2004). One-bit-matching conjecture for independent component analysis. Neural Computation, 16, 383-399.
    • (2004) Neural Computation , vol.16 , pp. 383-399
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 18
    • 0027635389 scopus 로고
    • Waveform-preserving blind estimation of multiple independent sources
    • Tong, L., Inouye, Y., & Liu, R. (1993). Waveform-preserving blind estimation of multiple independent sources. Signal Processing, 41, 2461-2470.
    • (1993) Signal Processing , vol.41 , pp. 2461-2470
    • Tong, L.1    Inouye, Y.2    Liu, R.3
  • 19
    • 0035292754 scopus 로고    scopus 로고
    • A constrained EM algorithm for independent component analysis
    • Welling, M., & Weber, M. (2001). A constrained EM algorithm for independent component analysis. Neural Computation, 13, 677-689.
    • (2001) Neural Computation , vol.13 , pp. 677-689
    • Welling, M.1    Weber, M.2
  • 20
    • 85121777290 scopus 로고
    • Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches
    • San Diego, CA
    • Xu, L. (1994). Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches. In Proc. of World Congress on Neural Networks (pp. 399-404). San Diego, CA.
    • (1994) Proc. of World Congress on Neural Networks , pp. 399-404
    • Xu, L.1
  • 21
    • 0141757082 scopus 로고
    • On the hybrid LT combinatorial optimization: New U-shape barrier, sigmoid activation, least leaking energy and maximum entropy
    • Beijing, China
    • Xu, L., (1995). On the hybrid LT combinatorial optimization: New U-shape barrier, sigmoid activation, least leaking energy and maximum entropy. In Proc. of Intl. Conf. on Neural Information Processing (pp. 309-312). Beijing, China.
    • (1995) Proc. of Intl. Conf. on Neural Information Processing , pp. 309-312
    • Xu, L.1
  • 23
    • 0141633856 scopus 로고    scopus 로고
    • Distribution approximation, combinatorial optimization, and Lagrange-barrier
    • Piscataway, NJ: IEEE
    • Xu, L. (2003). Distribution approximation, combinatorial optimization, and Lagrange-barrier. In Proc. of International Joint Conference on Neural Networks 2003 (pp. 2354-2359). Piscataway, NJ: IEEE.
    • (2003) Proc. of International Joint Conference on Neural Networks 2003 , pp. 2354-2359
    • Xu, L.1
  • 24
    • 24944561673 scopus 로고    scopus 로고
    • One-bit-matching ICA theorem, convex-Concave programming, and Combinatorial optimization
    • Berlin: Springer-Verlag
    • Xu, L. (2005). One-bit-matching ICA theorem, convex-Concave programming, and Combinatorial optimization. In Advances in neural networks (pp. 5-20). Berlin: Springer-Verlag.
    • (2005) Advances in neural networks , pp. 5-20
    • Xu, L.1
  • 26
    • 0345019851 scopus 로고    scopus 로고
    • Learned parametric mixture based ICA algorithm
    • Xu, L., Cheung, C. C., & Amari, S. I. (1998b). Learned parametric mixture based ICA algorithm. Neurocomputing, 22, 69-80.
    • (1998) Neurocomputing , vol.22 , pp. 69-80
    • Xu, L.1    Cheung, C.C.2    Amari, S.I.3
  • 28
    • 0010727733 scopus 로고    scopus 로고
    • Signal source separation by mixtures: Accumulative distribution functions or mixture of bell-shape density distribution functions
    • April, Paper presented at the, Institute of Physical and Chemical Research, Japan
    • Xu, L., Yang, H. H., & Amari, S. I. (1996, April). Signal source separation by mixtures: Accumulative distribution functions or mixture of bell-shape density distribution functions. Paper presented at the Frontier Forum, Institute of Physical and Chemical Research, Japan.
    • (1996) Frontier Forum
    • Xu, L.1    Yang, H.H.2    Amari, S.I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.