메뉴 건너뛰기




Volumn 3496, Issue I, 2005, Pages 5-20

One-bit-matching ICA theorem, convex-concave programming, and combinatorial optimization

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMIC PROGRAMMING; PARTIAL DIFFERENTIAL EQUATIONS; PROBABILITY; PROBABILITY DENSITY FUNCTION; SEPARATION;

EID: 24944561673     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11427391_2     Document Type: Conference Paper
Times cited : (7)

References (27)
  • 1
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind separation of sources
    • MIT Press, Cambridge, MA
    • Amari, S. I., Cichocki, A., Yang, H.: A New Learning Algorithm for Blind Separation of Sources. Advances in Neural Information Processing. Vol. 8. MIT Press, Cambridge, MA (1996) 757-763
    • (1996) Advances in Neural Information Processing , vol.8 , pp. 757-763
    • Amari, S.I.1    Cichocki, A.2    Yang, H.3
  • 2
    • 0031277419 scopus 로고    scopus 로고
    • Stability analysis of adaptive blind source separation
    • Amari, S., Chen, T.-P., & Cichocki, A.: Stability analysis of adaptive blind source separation, Neural Networks, 10 (1997) 1345-1351
    • (1997) Neural Networks , vol.10 , pp. 1345-1351
    • Amari, S.1    Chen, T.-P.2    Cichocki, A.3
  • 4
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell, A., Sejnowski, T.: An Information-maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 7 (1995) 1129-1159
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 5
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • Cardoso, J.-F. Blind signal separation: Statistical Principles, Proc. of IEEE, 86 (1998) 2009-2025
    • (1998) Proc. of IEEE , vol.86 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 6
    • 0033991708 scopus 로고    scopus 로고
    • Some global and local convergence analysis on the information-theoretic independent component analysis approach
    • Cheung, C. C., Xu, L.: Some Global and Local Convergence Analysis on the Information-theoretic Independent Component Analysis Approach. Neurocomputing, 30 (2000) 79-102
    • (2000) Neurocomputing , vol.30 , pp. 79-102
    • Cheung, C.C.1    Xu, L.2
  • 7
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept ?
    • Comon, P.: Independent component analysis - a new concept ? Signal Processing 36 (1994) 287-314
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 8
    • 0002308310 scopus 로고
    • Adaptive blind separation of independent sources: A deflation approach
    • Delfosse, N., Loubation, P.: Adaptive Blind Separation of Independent Sources: A Deflation Approach. Signal Processing, 45 (1995) 59-83
    • (1995) Signal Processing , vol.45 , pp. 59-83
    • Delfosse, N.1    Loubation, P.2
  • 9
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints
    • Edelman, A., Arias, T.A., Smith, S.T.: The Geometry of Algorithms with Orthogonality Constraints, SIAM J. Matrix Anal. APPL., 20 (1998) 303-353
    • (1998) SIAM J. Matrix Anal. APPL. , vol.20 , pp. 303-353
    • Edelman, A.1    Arias, T.A.2    Smith, S.T.3
  • 10
    • 0033570807 scopus 로고    scopus 로고
    • Independent component analysis: A flexible nonlinearity and decorrelating manifold approach
    • Everson, R., Roberts, S.: Independent Component Analysis: A Flexible Nonlinearity and Decorrelating Manifold Approach. Neural Computation, 11 (1999) 1957-1983
    • (1999) Neural Computation , vol.11 , pp. 1957-1983
    • Everson, R.1    Roberts, S.2
  • 11
    • 0000324990 scopus 로고    scopus 로고
    • An alternative perspective on adaptive independent component analysis algorithms
    • Girolami, M.: An Alternative Perspective on Adaptive Independent Component Analysis Algorithms. Neural Computation, 10 (1998) 2103-2114
    • (1998) Neural Computation , vol.10 , pp. 2103-2114
    • Girolami, M.1
  • 12
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield, J. J. & Tank, D. W.: Neural computation of decisions in optimization problems, Biological Cybernetics 52, 141-152 (1985).
    • (1985) Biological Cybernetics , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 14
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources
    • Lee, T. W., Girolami, M., Sejnowski, T. J.: Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation, 11 (1999) 417-441
    • (1999) Neural Computation , vol.11 , pp. 417-441
    • Lee, T.W.1    Girolami, M.2    Sejnowski, T.J.3
  • 15
    • 0346399881 scopus 로고    scopus 로고
    • One-bit-matching conjecture for independent component analysis
    • Liu, Z.Y., Chiu, K.C., Xu, L.: One-Bit-Matching Conjecture for Independent Component Analysis, Neural Computation, 16 (2004) 383-399
    • (2004) Neural Computation , vol.16 , pp. 383-399
    • Liu, Z.Y.1    Chiu, K.C.2    Xu, L.3
  • 18
    • 0027635389 scopus 로고
    • Waveform-preserving blind estimation of multiple independent sources
    • Tong, L., Inouye, Y., Liu, R.: Waveform-preserving Blind Estimation of Multiple Independent Sources. Signal Processing, 41 (1993) 2461-2470
    • (1993) Signal Processing , vol.41 , pp. 2461-2470
    • Tong, L.1    Inouye, Y.2    Liu, R.3
  • 19
    • 0035292754 scopus 로고    scopus 로고
    • A constrained em algorithm for independent component analysis
    • Welling, M., Weber, M.: A Constrained EM Algorithm for Independent Component Analysis. Neural Computation, 13 (2001) 677-689
    • (2001) Neural Computation , vol.13 , pp. 677-689
    • Welling, M.1    Weber, M.2
  • 20
    • 3843095548 scopus 로고    scopus 로고
    • Independent component analysis and extensions with noise and time: A bayesian ying-yang learning perspective
    • Xu, L.: Independent Component Analysis and Extensions with Noise and Time: A Bayesian Ying-Yang Learning Perspective, Neural Information Processing Letters and Reviews, 1 (2003) 1-52
    • (2003) Neural Information Processing Letters and Reviews , vol.1 , pp. 1-52
    • Xu, L.1
  • 21
    • 0141633856 scopus 로고    scopus 로고
    • Distribution approximation, combinatorial optimization, and lagrange-barrier
    • July 20-24, Jantzen Beach, Portland, Oregon
    • Xu, L.: Distribution Approximation, Combinatorial Optimization, and Lagrange-Barrier, Proc. of International Joint Conference on Neural Networks 2003 (IJCNN '03), July 20-24, Jantzen Beach, Portland, Oregon, (2003) 2354-2359
    • (2003) Proc. of International Joint Conference on Neural Networks 2003 (IJCNN '03) , pp. 2354-2359
    • Xu, L.1
  • 22
    • 0346194659 scopus 로고    scopus 로고
    • Further results on nonlinearity and separtion capability of a liner mixture ICA method and learned LPM
    • C. Fyfe (Ed.)
    • Xu, L., Cheung, C. C., Amari, S. I.: Further Results on Nonlinearity and Separtion Capability of a Liner Mixture ICA Method and Learned LPM. In C. Fyfe (Ed.), Proceedings of the I&ANN78 (pp39-45) (1998a)
    • (1998) Proceedings of the I&ANN78 , pp. 39-45
    • Xu, L.1    Cheung, C.C.2    Amari, S.I.3
  • 23
    • 0345019851 scopus 로고    scopus 로고
    • Learned parametric mixture based ICA algorithm
    • Xu, L., Cheung, C. C., & Amari, S. I.: Learned Parametric Mixture Based ICA Algorithm. Neurocomputing, 22 69-80 (1998b)
    • (1998) Neurocomputing , vol.22 , pp. 69-80
    • Xu, L.1    Cheung, C.C.2    Amari, S.I.3
  • 24
    • 0030706830 scopus 로고    scopus 로고
    • Independent component analysis by the information-theoretic approach with mixture of density
    • Houston, TX
    • Xu, L., Cheung, C. C., Yang, H. H., Amari, S. I.: Independent component analysis by the information-theoretic approach with mixture of density. Proc. of 1997 IEEE Intl. Conf on Neural Networks, Houston, TX. 3 1821-1826 (1997)
    • (1997) Proc. of 1997 IEEE Intl. Conf on Neural Networks , vol.3 , pp. 1821-1826
    • Xu, L.1    Cheung, C.C.2    Yang, H.H.3    Amari, S.I.4
  • 26
    • 0345109528 scopus 로고    scopus 로고
    • Signal source separation by mixtures: Accumulative distribution functions or mixture of bell-shape density distribution functions
    • Japan: Institute of Physical and Chemical Research, April
    • Xu, L., Yang, H. H., Amari, S. I.: Signal Source Separation by Mixtures: Accumulative Distribution Functions or Mixture of Bell-shape Density Distribution Functions. Rresentation at FRONTIER FORUM. Japan: Institute of Physical and Chemical Research, April (1996)
    • (1996) Rresentation at FRONTIER FORUM
    • Xu, L.1    Yang, H.H.2    Amari, S.I.3
  • 27
    • 85121777290 scopus 로고
    • Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches
    • San Diego
    • Xu, L.: Combinatorial optimization neural nets based on a hybrid of Lagrange and transformation approaches, Proc. of World Congress on Neural Networks, San Diego, 399-404 (1994).
    • (1994) Proc. of World Congress on Neural Networks , pp. 399-404
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.