메뉴 건너뛰기




Volumn 18, Issue 6, 2009, Pages 595-617

Reconstructing transcriptional regulatory networks through genomics data

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTIC METHOD; BAYES THEOREM; CALCULATION; CLUSTER BASED ANALYSIS; GAUSSIAN GRAPHICAL METHOD; GENE EXPRESSION REGULATION; GENE NUMBER; GENE REGULATORY NETWORK; GENOMICS; INTERMETHOD COMPARISON; KINETIC MODELS FOR MRNA SYNTHESIS; MRNA DECAY DATA; REGULATION MODEL; RELEVANCE NETWORK; REVIEW; STATE-SPACE MODELS; STATISTICAL ANALYSIS; TIME COURSE MICROARRAY GENE EXPRESSION DATA;

EID: 73449106062     PISSN: 09622802     EISSN: None     Source Type: Journal    
DOI: 10.1177/0962280209351890     Document Type: Review
Times cited : (14)

References (114)
  • 1
    • 33847070442 scopus 로고    scopus 로고
    • The role of chromatin during transcription
    • Li B., Carey M., Workman JL The role of chromatin during transcription. Cell 2007; 128 (4). 707-719.
    • (2007) Cell , vol.128 , Issue.4 , pp. 707-719
    • Li, B.1    Carey, M.2    Workman, J.L.3
  • 2
    • 39449088572 scopus 로고    scopus 로고
    • Genome-wide approaches to studying chromatin modifications
    • Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nature Reviews Genetics 2008; 9 (3). 179-191.
    • (2008) Nature Reviews Genetics , vol.9 , Issue.3 , pp. 179-191
    • Schones, D.E.1    Zhao, K.2
  • 4
    • 0035945567 scopus 로고    scopus 로고
    • Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF
    • Iyer VR, Horak CE, Scafe CS, Botstein D., Snyder M., Brown PO Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001; 409 (6819). 533-538.
    • (2001) Nature , vol.409 , Issue.6819 , pp. 533-538
    • Iyer, V.R.1    Horak, C.E.2    Scafe, C.S.3    Botstein, D.4    Snyder, M.5    Brown, P.O.6
  • 5
    • 0034704248 scopus 로고    scopus 로고
    • Genome-wide location and function of DNA binding proteins
    • Ren B., Robert F., Wyrick JJ et al. Genome-wide location and function of DNA binding proteins. Science 2000; 290 (5500). 2306-2309.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2306-2309
    • Ren, B.1    Robert, F.2    Wyrick, J.J.3
  • 6
    • 33750442923 scopus 로고    scopus 로고
    • Genome-wide analysis of estrogen receptor binding sites
    • Carroll JS, Meyer CA, Song J. et al. Genome-wide analysis of estrogen receptor binding sites. Nature Genetics 2006; 38: 1289-1297.
    • (2006) Nature Genetics , vol.38 , pp. 1289-1297
    • Carroll, J.S.1    Meyer, C.A.2    Song, J.3
  • 7
    • 33646865180 scopus 로고    scopus 로고
    • Control of developmental regulators by Polycomb in human embryonic stem cells
    • Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301-313.
    • (2006) Cell , vol.125 , pp. 301-313
    • Lee, T.I.1    Jenner, R.G.2    Boyer, L.A.3
  • 8
    • 34250159524 scopus 로고    scopus 로고
    • Genome-wide mapping of in vivo protein-DNA interactions
    • Johnson DS, Mortazavi A., Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007; 316: 1497-1502.
    • (2007) Science , vol.316 , pp. 1497-1502
    • Johnson, D.S.1    Mortazavi, A.2    Myers, R.M.3    Wold, B.4
  • 9
    • 34547633677 scopus 로고    scopus 로고
    • Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing
    • Robertson G., Hirst M., Bainbridge M. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 2007; 4: 651-657.
    • (2007) Nature Methods , vol.4 , pp. 651-657
    • Robertson, G.1    Hirst, M.2    Bainbridge, M.3
  • 10
    • 15544375816 scopus 로고    scopus 로고
    • DIP-chip: Rapid and accurate determination of DNA-binding specificity
    • Liu X., Noll DM, Lieb JD, Clarke ND DIP-chip: rapid and accurate determination of DNA-binding specificity. Genome Research 2005; 15 (3). 421-427.
    • (2005) Genome Research , vol.15 , Issue.3 , pp. 421-427
    • Liu, X.1    Noll, D.M.2    Lieb, J.D.3    Clarke, N.D.4
  • 11
    • 9644268153 scopus 로고    scopus 로고
    • Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays
    • Mukherjee S., Berger MF, Jona G. et al. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nature Genetics 2004; 36 (12). 1331-1339.
    • (2004) Nature Genetics , vol.36 , Issue.12 , pp. 1331-1339
    • Mukherjee, S.1    Berger, M.F.2    Jona, G.3
  • 12
    • 17944372930 scopus 로고    scopus 로고
    • Serial regulation of transcriptional regulators in the yeast cell cycle
    • Simon I., Barnett J., Hannett N. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 2001; 106 (6). 697-708.
    • (2001) Cell , vol.106 , Issue.6 , pp. 697-708
    • Simon, I.1    Barnett, J.2    Hannett, N.3
  • 13
    • 2942582468 scopus 로고    scopus 로고
    • Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data
    • Gao F., Foat BC, Bussemaker HJ Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 2004; 5: 31.
    • (2004) BMC Bioinformatics , vol.5 , pp. 31
    • Gao, F.1    Foat, B.C.2    Bussemaker, H.J.3
  • 14
    • 39149093082 scopus 로고    scopus 로고
    • Statistical methods to infer cooperative binding among transcription factors in Saccharomyces cerevisiae
    • Datta D., Zhao H. Statistical methods to infer cooperative binding among transcription factors in Saccharomyces cerevisiae. Bioinformatics 2008; 24 (4). 545-552.
    • (2008) Bioinformatics , vol.24 , Issue.4 , pp. 545-552
    • Datta, D.1    Zhao, H.2
  • 15
    • 0032561246 scopus 로고    scopus 로고
    • The transcriptional program of sporulation in budding yeast
    • Chu S., DeRisi J., Eisen M. et al. The transcriptional program of sporulation in budding yeast. Science 1998; 282 (5389). 699-705.
    • (1998) Science , vol.282 , Issue.5389 , pp. 699-705
    • Chu, S.1    Derisi, J.2    Eisen, M.3
  • 16
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch AP, Spellman PT, Kao CM et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell 2000; 11 (12). 4241-4257.
    • (2000) Molecular Biology of the Cell , vol.11 , Issue.12 , pp. 4241-4257
    • Gasch, A.P.1    Spellman, P.T.2    Kao, C.M.3
  • 17
    • 0034616930 scopus 로고    scopus 로고
    • Functional discovery via a compendium of expression profiles
    • Hughes TR, Marton MJ, Jones AR et al. Functional discovery via a compendium of expression profiles. Cell 2000; 102 (1). 109-126.
    • (2000) Cell , vol.102 , Issue.1 , pp. 109-126
    • Hughes, T.R.1    Marton, M.J.2    Jones, A.R.3
  • 18
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman PT, Sherlock G., Zhang MQ et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 1998; 9 (12). 3273-3297.
    • (1998) Molecular Biology of the Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 20
    • 38349030979 scopus 로고    scopus 로고
    • Inferring transcriptional interactions and regulator activities from experimental data
    • Wang RS, Zhang XS, Chen L. Inferring transcriptional interactions and regulator activities from experimental data. Molecular Cell 2007; 24 (3). 307-315.
    • (2007) Molecular Cell , vol.24 , Issue.3 , pp. 307-315
    • Wang, R.S.1    Zhang, X.S.2    Chen, L.3
  • 23
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin AA, Nemenman I., Basso K. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006; 7 (Suppl 1). S7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 7
    • Margolin, A.A.1    Nemenman, I.2    Basso, K.3
  • 24
    • 15944367731 scopus 로고    scopus 로고
    • Reconstructing biological networks using conditional correlation analysis
    • Rice JJ, Tu Y., Stolovitzky G. Reconstructing biological networks using conditional correlation analysis. Bioinformatics 2005; 21 (6). 765-773.
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 765-773
    • Rice, J.J.1    Tu, Y.2    Stolovitzky, G.3
  • 26
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling
    • Toh H., Horimoto K. Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 2002; 18 (2). 287-297.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 28
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • Li H., Gui J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 2006; 7 (2). 302-317.
    • (2006) Biostatistics , vol.7 , Issue.2 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 29
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen N., Buhlmann P. High-dimensional graphs and variable selection with the Lasso. Annals of Statistics 2006; 34 (3). 1436.
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436
    • Meinshausen, N.1    Buhlmann, P.2
  • 31
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • Rogers S., Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 2005; 21 (14). 3131-3137.
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 32
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Schafer J., Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology 2005; 4: Article 32.
    • (2005) Statistical Applications in Genetics and Molecular Biology , vol.4
    • Schafer, J.1    Strimmer, K.2
  • 33
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schafer J., Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005; 21 (6). 754-764.
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 34
    • 46749151407 scopus 로고    scopus 로고
    • Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data
    • Shimamura T., Imoto S., Yamaguchi R., Miyano S. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics 2007; 19: 142-153.
    • (2007) Genome Informatics , vol.19 , pp. 142-153
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Miyano, S.4
  • 36
    • 55249119797 scopus 로고    scopus 로고
    • Heuristic approach to sparse approximation of gene regulatory networks
    • Andrecut M., Huang S., Kauffman SA Heuristic approach to sparse approximation of gene regulatory networks. Journal of Computational Biology 2008; 15 (9). 1173-1186.
    • (2008) Journal of Computational Biology , vol.15 , Issue.9 , pp. 1173-1186
    • Andrecut, M.1    Huang, S.2    Kauffman, S.A.3
  • 38
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner TS, di Bernardo D., Lorenz D., Collins JJ Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003; 301 (5629). 102-105.
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 40
    • 0033707946 scopus 로고    scopus 로고
    • Peĝ€™er D. Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman I., Peĝ€™er D. Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000; 7 (3-4). 601-620.
    • (2000) Journal of Computational Biology , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3
  • 41
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • Hartemink AJ, Gifford DK, Jaakkola TS, Young RA Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In Pacific Symposium on Biocomputing, Hawaii; 2001: 422-33.
    • Pacific Symposium on Biocomputing
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 42
    • 49549100459 scopus 로고    scopus 로고
    • Learning causal Bayesian network structures from experimental data
    • Ellis B., Wong WH Learning causal Bayesian network structures from experimental data. Journal of the American Statistical Association 2008; 103 (482). 778-789.
    • (2008) Journal of the American Statistical Association , vol.103 , Issue.482 , pp. 778-789
    • Ellis, B.1    Wong, W.H.2
  • 44
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M., Conzen SD A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 2005; 21 (1). 71-79.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 46
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003; 19 (17). 2271-2282.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 47
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: Synthetic versus real data
    • Soranzo N., Bianconi G., Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 2007; 23 (13). 1640-1647.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1640-1647
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 48
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks
    • Werhli AV, Grzegorczyk M., Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. Bioinformatics 2006; 22 (20). 2523-2531.
    • (2006) Bioinformatics , vol.22 , Issue.20 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3
  • 49
    • 33645307955 scopus 로고    scopus 로고
    • Inference of gene regulatory networks and compound mode of action from time course gene expression profiles
    • Bansal M., Gatta GD, di Bernardo D. Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 2006; 22 (7). 815-822.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 815-822
    • Bansal, M.1    Gatta, G.D.2    Di Bernardo, D.3
  • 50
    • 4644238174 scopus 로고    scopus 로고
    • Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm
    • Wang SC Reconstructing genetic networks from time ordered gene expression data using Bayesian method with global search algorithm. Journal of Bioinformatics and Computational Biology 2004; 2 (3). 441-458.
    • (2004) Journal of Bioinformatics and Computational Biology , vol.2 , Issue.3 , pp. 441-458
    • Wang, S.C.1
  • 51
    • 0014658880 scopus 로고
    • Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation
    • Savageau MA Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. Journal of Theoretical Biology 1969; 25 (3). 370-379.
    • (1969) Journal of Theoretical Biology , vol.25 , Issue.3 , pp. 370-379
    • Savageau, M.A.1
  • 52
    • 0014649230 scopus 로고
    • Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions
    • Savageau MA Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology 1969; 25 (3). 365-369.
    • (1969) Journal of Theoretical Biology , vol.25 , Issue.3 , pp. 365-369
    • Savageau, M.A.1
  • 53
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R., Reiss DJ, Shannon P. et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biology 2006; 7 (5). R36.
    • (2006) Genome Biology , vol.7 , Issue.5 , pp. 36
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3
  • 56
    • 44449136102 scopus 로고    scopus 로고
    • Bayesian biclustering of gene expression data
    • Gu J., Liu JS Bayesian biclustering of gene expression data. BMC Genomics 2008; 9 (Suppl 1). S4.
    • (2008) BMC Genomics , vol.9 , Issue.1 , pp. 4
    • Gu, J.1    Liu, J.S.2
  • 59
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E., Shapira M., Regev A. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 2003; 34 (2). 166-176.
    • (2003) Nature Genetics , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3
  • 60
    • 2442446708 scopus 로고    scopus 로고
    • Genome-wide discovery of transcriptional modules from DNA sequence and gene expression
    • Segal E., Yelensky R., Koller D. Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 2003; 19 (Suppl 1). i273-82.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 273-82
    • Segal, E.1    Yelensky, R.2    Koller, D.3
  • 61
    • 33746067911 scopus 로고    scopus 로고
    • Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks
    • Reiss DJ, Baliga NS, Bonneau R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 2006; 7: 280.
    • (2006) BMC Bioinformatics , vol.7 , pp. 280
    • Reiss, D.J.1    Baliga, N.S.2    Bonneau, R.3
  • 62
    • 10744226222 scopus 로고    scopus 로고
    • Computational discovery of gene modules and regulatory networks
    • Bar-Joseph Z., Gerber GK, Lee TI et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnology 2003; 21 (11). 1337-1342.
    • (2003) Nature Biotechnology , vol.21 , Issue.11 , pp. 1337-1342
    • Bar-Joseph, Z.1    Gerber, G.K.2    Lee, T.I.3
  • 63
    • 33745128746 scopus 로고    scopus 로고
    • Inferring transcriptional modules from ChIP-chip, motif and microarray data
    • Lemmens K., Dhollander T., De Bie T. et al. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biology 2006; 7 (5). R37.
    • (2006) Genome Biology , vol.7 , Issue.5 , pp. 37
    • Lemmens, K.1    Dhollander, T.2    De Bie, T.3
  • 65
    • 73449121698 scopus 로고    scopus 로고
    • Statistical methods for inference of genetic networks and regulatory modules
    • Emmert-Streid, Dehmer, eds. Wiley VCH, Verlag GmbH & Co. KGaA;
    • Li H. Statistical methods for inference of genetic networks and regulatory modules. In Emmert-Streid, Dehmer, eds. Analysis of microarray data: network-based approaches. Wiley VCH, Verlag GmbH & Co. KGaA; 2008: 143-167.
    • (2008) Analysis of Microarray Data: Network-based Approaches , pp. 143-167
    • Li, H.1
  • 66
    • 34848855728 scopus 로고    scopus 로고
    • Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data
    • Liu X., Jessen WJ, Sivaganesan S., Aronow BJ, Medvedovic M. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data. BMC Bioinformatics 2007; 8: 283.
    • (2007) BMC Bioinformatics , vol.8 , pp. 283
    • Liu, X.1    Jessen, W.J.2    Sivaganesan, S.3    Aronow, B.J.4    Medvedovic, M.5
  • 67
    • 34548390720 scopus 로고    scopus 로고
    • Statistical reconstruction of transcription factor activity using Michaelis-Menten kinetics
    • Khanin R., Vinciotti V., Mersinias V., Smith CP, Wit E. Statistical reconstruction of transcription factor activity using Michaelis-Menten kinetics. Biometrics 2007; 63 (3). 816-823.
    • (2007) Biometrics , vol.63 , Issue.3 , pp. 816-823
    • Khanin, R.1    Vinciotti, V.2    Mersinias, V.3    Smith, C.P.4    Wit, E.5
  • 68
    • 0036396542 scopus 로고    scopus 로고
    • Rationalization of gene regulation by a eukaryotic transcription factor: Calculation of regulatory region occupancy from predicted binding affinities
    • Liu X., Clarke ND Rationalization of gene regulation by a eukaryotic transcription factor: calculation of regulatory region occupancy from predicted binding affinities. Journal of Molecular Biology 2002; 323 (1). 1-8.
    • (2002) Journal of Molecular Biology , vol.323 , Issue.1 , pp. 1-8
    • Liu, X.1    Clarke, N.D.2
  • 69
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • Nachman I., Regev A., Friedman N. Inferring quantitative models of regulatory networks from expression data. Bioinformatics 2004; 20 (Suppl 1). i248-256.
    • (2004) Bioinformatics , vol.20 , Issue.1 , pp. 248-256
    • Nachman, I.1    Regev, A.2    Friedman, N.3
  • 70
    • 34547844132 scopus 로고    scopus 로고
    • Connecting quantitative regulatory-network models to the genome
    • Pan Y., Durfee T., Bockhorst J., Craven M. Connecting quantitative regulatory-network models to the genome. Bioinformatics 2007; 23 (13). i367-376.
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 367-376
    • Pan, Y.1    Durfee, T.2    Bockhorst, J.3    Craven, M.4
  • 71
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Chen KC, Wang TY, Tseng HH, Huang CY, Kao CY A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 2005; 21 (12). 2883-2890.
    • (2005) Bioinformatics , vol.21 , Issue.12 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3    Huang, C.Y.4    Kao, C.Y.5
  • 72
    • 4444339832 scopus 로고    scopus 로고
    • Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle
    • Chen HC, Lee HC, Lin TY, Li WH, Chen BS Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 2004; 20 (12). 1914-1927.
    • (2004) Bioinformatics , vol.20 , Issue.12 , pp. 1914-1927
    • Chen, H.C.1    Lee, H.C.2    Lin, T.Y.3    Li, W.H.4    Chen, B.S.5
  • 74
    • 57149100747 scopus 로고    scopus 로고
    • Structural identification of piecewise-linear models of genetic regulatory networks
    • Porreca R., Drulhe S., de Jong H., Ferrari-Trecate G. Structural identification of piecewise-linear models of genetic regulatory networks. Journal of Computational Biology 2008; 15 (10). 1365-1380.
    • (2008) Journal of Computational Biology , vol.15 , Issue.10 , pp. 1365-1380
    • Porreca, R.1    Drulhe, S.2    De Jong, H.3    Ferrari-Trecate, G.4
  • 75
    • 58149120776 scopus 로고    scopus 로고
    • Modeling the dynamics of transcriptional gene regulatory networks for animal development
    • Ben-Tabou de-Leon S., Davidson EH Modeling the dynamics of transcriptional gene regulatory networks for animal development. Developmental Biology 2009; 325 (2). 317-328.
    • (2009) Developmental Biology , vol.325 , Issue.2 , pp. 317-328
    • Ben-Tabou De-Leon, S.1    Davidson, E.H.2
  • 76
    • 34249856850 scopus 로고    scopus 로고
    • Bayesian model-based inference of transcription factor activity
    • Rogers S., Khanin R., Girolami M. Bayesian model-based inference of transcription factor activity. BMC Bioinformatics 2007; 8 Suppl 2: S2.
    • (2007) BMC Bioinformatics , vol.8 , Issue.2 , pp. 2
    • Rogers, S.1    Khanin, R.2    Girolami, M.3
  • 77
    • 38049170632 scopus 로고    scopus 로고
    • Inferring activity changes of transcription factors by binding association with sorted expression profiles
    • Cheng C., Yan X., Sun F., Li LM Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinformatics 2007; 8: 452.
    • (2007) BMC Bioinformatics , vol.8 , pp. 452
    • Cheng, C.1    Yan, X.2    Sun, F.3    Li, L.M.4
  • 78
    • 47049084462 scopus 로고    scopus 로고
    • Estimating dynamic models for gene regulation networks
    • Cao J., Zhao H. Estimating dynamic models for gene regulation networks. Bioinformatics 2008; 24 (14). 1619-1624.
    • (2008) Bioinformatics , vol.24 , Issue.14 , pp. 1619-1624
    • Cao, J.1    Zhao, H.2
  • 80
    • 21844466280 scopus 로고    scopus 로고
    • DNA-protein binding and gene expression patterns. Science and Statistics: A Festschrift for Terry Speed
    • Zhao H., Wu B., Sun N. DNA-protein binding and gene expression patterns. Science and Statistics: A Festschrift for Terry Speed. IMS Lecture Notes-Monograph Series 2003; 40: 259-274.
    • (2003) IMS Lecture Notes-Monograph Series , vol.40 , pp. 259-274
    • Zhao, H.1    Wu, B.2    Sun, N.3
  • 81
    • 33748905107 scopus 로고    scopus 로고
    • Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae
    • Cokus S., Rose S., Haynor D., Gronbech-Jensen N., Pellegrini M. Modelling the network of cell cycle transcription factors in the yeast Saccharomyces cerevisiae. BMC Bioinformatics 2006; 7: 381.
    • (2006) BMC Bioinformatics , vol.7 , pp. 381
    • Cokus, S.1    Rose, S.2    Haynor, D.3    Gronbech-Jensen, N.4    Pellegrini, M.5
  • 82
    • 34547840186 scopus 로고    scopus 로고
    • Group SCAD regression analysis for microarray time course gene expression data
    • Wang L., Chen G., Li H. Group SCAD regression analysis for microarray time course gene expression data. Bioinformatics 2007; 23 (12). 1486-1494.
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1486-1494
    • Wang, L.1    Chen, G.2    Li, H.3
  • 83
    • 15944376548 scopus 로고    scopus 로고
    • A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data
    • Xing B., van der Laan MJ A statistical method for constructing transcriptional regulatory networks using gene expression and sequence data. Journal of Computational Biology 2005; 12 (2). 229-246.
    • (2005) Journal of Computational Biology , vol.12 , Issue.2 , pp. 229-246
    • Xing, B.1    Van Der Laan, M.J.2
  • 84
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • Sabatti C., James GM Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics 2006; 22 (6). 739-746.
    • (2006) Bioinformatics , vol.22 , Issue.6 , pp. 739-746
    • Sabatti, C.1    James, G.M.2
  • 85
    • 27744472292 scopus 로고    scopus 로고
    • Inference of transcriptional regulatory network by two-stage constrained space factor analysis
    • Yu T., Li KC Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics 2005; 21 (21). 4033-4038.
    • (2005) Bioinformatics , vol.21 , Issue.21 , pp. 4033-4038
    • Yu, T.1    Li, K.C.2
  • 86
    • 23744491001 scopus 로고    scopus 로고
    • Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach
    • Boulesteix AL, Strimmer K. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theoretical Biology & Medical Modelling 2005; 2: 23.
    • (2005) Theoretical Biology & Medical Modelling , vol.2 , pp. 23
    • Boulesteix, A.L.1    Strimmer, K.2
  • 87
    • 33947409985 scopus 로고    scopus 로고
    • Factor analysis for gene regulatory networks and transcription factor activity profiles
    • Pournara I., Wernisch L. Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics 2007; 8: 61.
    • (2007) BMC Bioinformatics , vol.8 , pp. 61
    • Pournara, I.1    Wernisch, L.2
  • 88
    • 3142550629 scopus 로고    scopus 로고
    • Multilevel modeling and inference of transcription regulation
    • Tanay A., Shamir R. Multilevel modeling and inference of transcription regulation. Journal of Computational Biology 2004; 11 (2-3). 357-375.
    • (2004) Journal of Computational Biology , vol.11 , Issue.2-3 , pp. 357-375
    • Tanay, A.1    Shamir, R.2
  • 89
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • Hirose O., Yoshida R., Imoto S. et al. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics 2008; 24 (7). 932-942.
    • (2008) Bioinformatics , vol.24 , Issue.7 , pp. 932-942
    • Hirose, O.1    Yoshida, R.2    Imoto, S.3
  • 90
    • 2442691914 scopus 로고    scopus 로고
    • Modeling gene expression from microarray expression data with state-space equations
    • Wu FX, Zhang WJ, Kusalik AJ Modeling gene expression from microarray expression data with state-space equations. Pacific Symposium on Biocomputing 2004: 581-592.
    • (2004) Pacific Symposium on Biocomputing , pp. 581-592
    • Wu, F.X.1    Zhang, W.J.2    Kusalik, A.J.3
  • 91
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell activation using gene expression profiling and state-space models
    • Rangel C., Angus J., Ghahramani Z. et al. Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 2004; 20 (9). 1361-1372.
    • (2004) Bioinformatics , vol.20 , Issue.9 , pp. 1361-1372
    • Rangel, C.1    Angus, J.2    Ghahramani, Z.3
  • 92
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal MJ, Falciani F., Ghahramani Z., Rangel C., Wild DL A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 2005; 21 (3). 349-356.
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 349-356
    • Beal, M.J.1    Falciani, F.2    Ghahramani, Z.3    Rangel, C.4    Wild, D.L.5
  • 93
    • 39149104076 scopus 로고    scopus 로고
    • Structural systems identification of genetic regulatory networks
    • Xiong H., Choe Y. Structural systems identification of genetic regulatory networks. Bioinformatics 2008; 24 (4). 553-560.
    • (2008) Bioinformatics , vol.24 , Issue.4 , pp. 553-560
    • Xiong, H.1    Choe, Y.2
  • 94
    • 33751008680 scopus 로고    scopus 로고
    • Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities
    • DOI 10.1093/bioinformatics/btl473
    • Sanguinetti G., Lawrence ND, Rattray M. Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics 2006; 22 (22). 2775-2781. (Pubitemid 44742398)
    • (2006) Bioinformatics , vol.22 , Issue.22 , pp. 2775-2781
    • Sanguinetti, G.1    Lawrence, N.D.2    Rattray, M.3
  • 95
    • 33645108505 scopus 로고    scopus 로고
    • Using a state-space model with hidden variables to infer transcription factor activities
    • Li Z., Shaw SM, Yedwabnick MJ, Chan C. Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics 2006; 22 (6). 747-754.
    • (2006) Bioinformatics , vol.22 , Issue.6 , pp. 747-754
    • Li, Z.1    Shaw, S.M.2    Yedwabnick, M.J.3    Chan, C.4
  • 96
    • 32944459703 scopus 로고    scopus 로고
    • Integrating mRNA decay information into co-regulation study
    • Chen L., Zhao H. Integrating mRNA decay information into co-regulation study. Journal of Computer Science and Technology 2005; 20: 434-438.
    • (2005) Journal of Computer Science and Technology , vol.20 , pp. 434-438
    • Chen, L.1    Zhao, H.2
  • 97
    • 53949098609 scopus 로고    scopus 로고
    • Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation
    • Shalem O., Dahan O., Levo M. et al. Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Molecular Systems Biology 2008; 4: 223.
    • (2008) Molecular Systems Biology , vol.4 , pp. 223
    • Shalem, O.1    Dahan, O.2    Levo, M.3
  • 98
    • 58549106607 scopus 로고    scopus 로고
    • High-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites
    • Whitington T., Perkins AC, Bailey TL High-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites. Nucleic Acids Research 2009; 37 (1). 14-25.
    • Nucleic Acids Research 2009; , vol.37 , Issue.1 , pp. 14-25
    • Whitington, T.1    Perkins, A.C.2    Bailey, T.L.3
  • 99
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker HJ, Li H., Siggia ED Regulatory element detection using correlation with expression. Nature Genetics 2001; 27 (2). 167-171.
    • (2001) Nature Genetics , vol.27 , Issue.2 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 100
    • 0036324753 scopus 로고    scopus 로고
    • An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments
    • Liu XS, Brutlag DL, Liu JS An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nature Biotechnology 2002; 20 (8). 835-839.
    • (2002) Nature Biotechnology , vol.20 , Issue.8 , pp. 835-839
    • Liu, X.S.1    Brutlag, D.L.2    Liu, J.S.3
  • 102
    • 0037177625 scopus 로고    scopus 로고
    • Genetic dissection of transcriptional regulation in budding yeast
    • Brem RB, Yvert G., Clinton R., Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science 2002; 296 (5568). 752-755.
    • (2002) Science , vol.296 , Issue.5568 , pp. 752-755
    • Brem, R.B.1    Yvert, G.2    Clinton, R.3    Kruglyak, L.4
  • 103
    • 4043128071 scopus 로고    scopus 로고
    • Genetic analysis of genome-wide variation in human gene expression
    • Morley M., Molony CM, Weber TM et al. Genetic analysis of genome-wide variation in human gene expression. Nature 2004; 430 (7001). 743-747.
    • (2004) Nature , vol.430 , Issue.7001 , pp. 743-747
    • Morley, M.1    Molony, C.M.2    Weber, T.M.3
  • 104
    • 0037456823 scopus 로고    scopus 로고
    • Genetics of gene expression surveyed in maize, mouse and man
    • Schadt EE, Monks SA, Drake TA et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003; 422 (6929). 297-302.
    • (2003) Nature , vol.422 , Issue.6929 , pp. 297-302
    • Schadt, E.E.1    Monks, S.A.2    Drake, T.A.3
  • 105
    • 0042856391 scopus 로고    scopus 로고
    • Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors
    • Yvert G., Brem RB, Whittle J. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genetics 2003; 35 (1). 57-64.
    • (2003) Nature Genetics , vol.35 , Issue.1 , pp. 57-64
    • Yvert, G.1    Brem, R.B.2    Whittle, J.3
  • 106
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu J., Zhang B., Smith EN et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics 2008; 40 (7). 854-861.
    • (2008) Nature Genetics , vol.40 , Issue.7 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.N.3
  • 107
    • 33646920070 scopus 로고    scopus 로고
    • Iterative reconstruction of transcriptional regulatory networks: An algorithmic approach
    • Barrett CL, Palsson BO Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach. PLoS Computational Biology 2006; 2 (5). e52.
    • (2006) PLoS Computational Biology , vol.2 , Issue.5 , pp. 52
    • Barrett, C.L.1    Palsson, B.O.2
  • 109
    • 54249124501 scopus 로고    scopus 로고
    • Learning biological networks: From modules to dynamics
    • Bonneau R. Learning biological networks: from modules to dynamics. Nature Chemical Biology 2008; 4 (11). 658-664.
    • (2008) Nature Chemical Biology , vol.4 , Issue.11 , pp. 658-664
    • Bonneau, R.1
  • 110
    • 7744225947 scopus 로고    scopus 로고
    • Transcriptional networks: Reverse-engineering gene regulation on a global scale
    • Chua G., Robinson MD, Morris Q., Hughes TR Transcriptional networks: reverse-engineering gene regulation on a global scale. Current Opinion in Microbiology 2004; 7 (6). 638-646.
    • (2004) Current Opinion in Microbiology , vol.7 , Issue.6 , pp. 638-646
    • Chua, G.1    Robinson, M.D.2    Morris, Q.3    Hughes, T.R.4
  • 112
    • 0242490789 scopus 로고    scopus 로고
    • Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network
    • Zak DE, Gonye GE, Schwaber JS, Doyle FJ, 3rd. Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Research 2003; 13 (11). 2396-2405.
    • (2003) Genome Research , vol.13 , Issue.11 , pp. 2396-2405
    • Zak, D.E.1    Gonye, G.E.2    Schwaber, J.S.3    Doyle III, F.J.4
  • 113
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 2009; 10 (1). 57-63.
    • (2009) Nature Reviews Genetics , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.