-
2
-
-
77954757210
-
Machine learning problems from optimization perspective
-
Xu L. Machine learning problems from optimization perspective. Journal of Global Optimization, 2010, 47: 369-401.
-
(2010)
Journal of Global Optimization
, vol.47
, pp. 369-401
-
-
Xu, L.1
-
3
-
-
46049106446
-
Bayesian Ying Yang learning
-
Xu L. Bayesian Ying Yang learning. Scholarpedia, 2007, 2(3): 1809 http://scholarpedia. org/article/Bayesian Ying_Yang learning.
-
(2007)
Scholarpedia
, vol.2
, Issue.3
, pp. 1809
-
-
Xu, L.1
-
6
-
-
0025399567
-
Identification and control of dynamical systems using neural networks
-
Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27.
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, Issue.1
, pp. 4-27
-
-
Narendra, K.S.1
Parthasarathy, K.2
-
7
-
-
0021404166
-
Mixture densities, maximum likelihood, and the EM algorithm
-
Redner R A, Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review, 1984, 26(2): 195-239.
-
(1984)
SIAM Review
, vol.26
, Issue.2
, pp. 195-239
-
-
Redner, R.A.1
Walker, H.F.2
-
8
-
-
2342533082
-
On convergence properties of the EM algorithm for Gaussian mixtures
-
Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8(1): 129-151.
-
(1996)
Neural Computation
, vol.8
, Issue.1
, pp. 129-151
-
-
Xu, L.1
Jordan, M.I.2
-
10
-
-
0002266094
-
EM algorithm for ML factor analysis
-
Rubi D, Thayer D. EM algorithm for ML factor analysis. Psychometrika, 1976, 57: 69-76.
-
(1976)
Psychometrika
, vol.57
, pp. 69-76
-
-
Rubi, D.1
Thayer, D.2
-
11
-
-
2142731041
-
FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC
-
Bozdogan H, Ramirez D E. FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC. Psychometrika, 1988, 53(3): 407-415.
-
(1988)
Psychometrika
, vol.53
, Issue.3
, pp. 407-415
-
-
Bozdogan, H.1
Ramirez, D.E.2
-
14
-
-
0025490985
-
Networks for approximation and learning
-
Poggio T, Girosi F. Networks for approximation and learning. Proceedings of the IEEE, 1990, 78(9): 1481-1497.
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
15
-
-
33749754615
-
A new learning algorithm for blind separation of sources
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Cambridge: MIT Press
-
Amari S I, Cichocki A, Yang H. A new learning algorithm for blind separation of sources. In: Touretzky D S, Mozer M C, Hasselmo M E, eds. Advances in Neural Information Processing System 8. Cambridge: MIT Press, 1996, 757-763.
-
(1996)
Advances in Neural Information Processing System 8
, pp. 757-763
-
-
Amari, S.I.1
Cichocki, A.2
Yang, H.3
-
16
-
-
0029411030
-
An information-maximization approach to blind separation and blind deconvolution
-
Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6): 1129-1159.
-
(1995)
Neural Computation
, vol.7
, Issue.6
, pp. 1129-1159
-
-
Bell, A.J.1
Sejnowski, T.J.2
-
17
-
-
3843095548
-
Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective
-
Xu L. Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective. Neural Information Processing - Letters and Reviews, 2003, 1(1): 1-52.
-
(2003)
Neural Information Processing - Letters and Reviews
, vol.1
, Issue.1
, pp. 1-52
-
-
Xu, L.1
-
18
-
-
77956473522
-
Independent subspaces
-
J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey(PA): IGI Global
-
Xu L. Independent subspaces. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence, Hershey(PA): IGI Global. 2008, 903-912.
-
(2008)
Encyclopedia of Artificial Intelligence
, pp. 903-912
-
-
Xu, L.1
-
19
-
-
0027206958
-
Least mean square error reconstruction principle for self-organizing neural-nets
-
Xu L. Least mean square error reconstruction principle for self-organizing neural-nets. Neural Networks, 1993, 6(5): 627-648.
-
(1993)
Neural Networks
, vol.6
, Issue.5
, pp. 627-648
-
-
Xu, L.1
-
21
-
-
0002629270
-
Maximum-likelihood from incomplete data via the EM algorithm
-
Dempster A P, Laird N M, Rubin D B. Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 1977, 39(1): 1-38.
-
(1977)
Journal of the Royal Statistical Society: Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
22
-
-
0029587111
-
Information geometry of the EM and EM algorithms for neural networks
-
Amari S. Information geometry of the EM and EM algorithms for neural networks. Neural Networks, 1995, 8(9): 1379-1408.
-
(1995)
Neural Networks
, vol.8
, Issue.9
, pp. 1379-1408
-
-
Amari, S.1
-
24
-
-
0026463329
-
On the computational architecture of the neocortex II: The role of cortico-cortical loops
-
Mumford D. On the computational architecture of the neocortex II: The role of cortico-cortical loops. Biological Cybernetics, 1992, 66(3): 241-251.
-
(1992)
Biological Cybernetics
, vol.66
, Issue.3
, pp. 241-251
-
-
Mumford, D.1
-
26
-
-
33746220445
-
Vision as Bayesian inference: Analysis by synthesis
-
Yuille A L, Kersten D. Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Sciences, 2006, 10(7): 301-308.
-
(2006)
Trends in Cognitive Sciences
, vol.10
, Issue.7
, pp. 301-308
-
-
Yuille, A.L.1
Kersten, D.2
-
27
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. Annals of Statistics, 1978, 6(2): 461-464.
-
(1978)
Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
28
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen J. Modeling by shortest data description. Automatica, 1978, 14: 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
31
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
Mackay D J C. A practical Bayesian framework for backpropagation networks. Neural Computation, 1992, 4(3): 448-472.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
Mackay, D.J.C.1
-
33
-
-
0000107517
-
An information measure for classification
-
Wallace C S, Boulton D M. An information measure for classification. Computer Journal, 1968, 11(2): 185-194.
-
(1968)
Computer Journal
, vol.11
, Issue.2
, pp. 185-194
-
-
Wallace, C.S.1
Boulton, D.M.2
-
34
-
-
0032684826
-
Minimum message length and Kolmogorov complexity
-
Wallace C S, Dowe D R. Minimum message length and Kolmogorov complexity. Computer Journal, 1999, 42(4): 270-280.
-
(1999)
Computer Journal
, vol.42
, Issue.4
, pp. 270-280
-
-
Wallace, C.S.1
Dowe, D.R.2
-
35
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
Bourlard H, Kamp Y. Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 1988, 59: 291-294.
-
(1988)
Biological Cybernetics
, vol.59
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
36
-
-
0027663185
-
Anti-Hebbian learning in topologically constrained linear networks: A tutorial
-
Palmieri F, Zhu J, Chang C. Anti-Hebbian learning in topologically constrained linear networks: A tutorial. IEEE Transactions on Neural Networks, 1993, 4(5): 748-761.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.5
, pp. 748-761
-
-
Palmieri, F.1
Zhu, J.2
Chang, C.3
-
38
-
-
0021776661
-
A massively parallel architecture for a self-organizing neural pattern recognition machine
-
Carpenter G A, Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 1987, 37: 54-115.
-
(1987)
Computer Vision, Graphics, and Image Processing
, vol.37
, pp. 54-115
-
-
Carpenter, G.A.1
Grossberg, S.2
-
39
-
-
3843115044
-
Cerebellum and motor control
-
2nd ed.th edn., M. A. Arbib (Ed.), Cambridge: MIT Press
-
Kawato M. Cerebellum and motor control. In: Arbib M A, ed. The Handbook of Brain Theory and Neural Networks. 2nd ed. Cambridge: MIT Press, 2002, 190-195.
-
(2002)
The Handbook of Brain Theory and Neural Networks
, pp. 190-195
-
-
Kawato, M.1
-
40
-
-
0027488969
-
Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum
-
Shidara M, Kawano K, Gomi H, Kawato M. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature, 1993, 365(6441): 50-52.
-
(1993)
Nature
, vol.365
, Issue.6441
, pp. 50-52
-
-
Shidara, M.1
Kawano, K.2
Gomi, H.3
Kawato, M.4
-
41
-
-
0032192424
-
Multiple paired forward and inverse models for motor control
-
Wolpert D, Kawato M. Multiple paired forward and inverse models for motor control. Neural Networks, 1998, 11(7-8): 1317-1329.
-
(1998)
Neural Networks
, vol.11
, Issue.7-8
, pp. 1317-1329
-
-
Wolpert, D.1
Kawato, M.2
-
42
-
-
0029652445
-
The wake-sleep algorithm for unsupervised learning neural networks
-
Hinton G E, Dayan P, Frey B J, Neal R N. The wake-sleep algorithm for unsupervised learning neural networks. Science, 1995, 268(5214): 1158-1160.
-
(1995)
Science
, vol.268
, Issue.5214
, pp. 1158-1160
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.N.4
-
43
-
-
0029372831
-
The Helmholtz machine
-
Dayan P, Hinton G E, Neal R M, Zemel R S. The Helmholtz machine. Neural Computation, 1995, 7(5): 889-904.
-
(1995)
Neural Computation
, vol.7
, Issue.5
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.S.4
-
44
-
-
4043084564
-
Tutorial on variational approximation methods
-
M. Opper and D. Saad (Eds.), Cambridge: MIT press
-
Jaakkola T S. Tutorial on variational approximation methods. In: Opper M, Saad D, eds. Advanced Mean Field Methods: Theory and Practice. Cambridge: MIT press, 2001, 129-160.
-
(2001)
Advanced Mean Field Methods: Theory and Practice
, pp. 129-160
-
-
Jaakkola, T.S.1
-
45
-
-
0033225865
-
Introduction to variational methods for graphical models
-
Jordan M, Ghahramani Z, Jaakkola T, Saul L. Introduction to variational methods for graphical models. Machine Learning, 1999, 37(2): 183-233.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
46
-
-
77956460436
-
-
Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Jaakkola T, Richardson T, eds. Proceedings of the Eighth International Conference on Artificial Intelligence and Statistics. 2001, 27-34.
-
-
-
-
47
-
-
77956455384
-
-
Xu L. Bayesian-Kullback coupled YING-YANG machines: Unified learning and new results on vector quantization. In: Proceedings of the International Conference on Neural Information Processing. 1995, 977-988 (A further version in NIPS8. In: Touretzky D S, et al. eds. Cambridge: MIT Press, 444-450).
-
-
-
-
48
-
-
0242474188
-
Ying-Yang learning
-
2nd ed.th edn., M. A. Arbib (Ed.), Cambridge: MIT Press
-
Xu L. Ying-Yang learning. In: Arbib M A, ed. The Handbook of Brain Theory and Neural Networks. 2nd ed. Cambridge: MIT Press, 2002, 1231-1237.
-
(2002)
The Handbook of Brain Theory and Neural Networks
, pp. 1231-1237
-
-
Xu, L.1
-
49
-
-
3843136240
-
Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination
-
Xu L. Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Transactions on Neural Networks, 2004, 15(4): 885-902.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.4
, pp. 885-902
-
-
Xu, L.1
-
50
-
-
77956476076
-
Learning algorithms for RBF functions and subspace based functions
-
E. Olivas (Ed.), Hershey(PA): IGI Global
-
Xu L. Learning algorithms for RBF functions and subspace based functions. In: Olivas E, et al. eds. Handbook of Research on Machine Learning, Applications and Trends: Algorithms, Methods and Techniques. Hershey(PA): IGI Global, 2009, 60-94.
-
(2009)
Handbook of Research on Machine Learning, Applications and Trends: Algorithms, Methods and Techniques
, pp. 60-94
-
-
Xu, L.1
-
51
-
-
46049101030
-
-
Xu L. Bayesian Ying Yang system, best harmony learning, and Gaussian manifold based family. In: Zurada et al. eds. Computational Intelligence: Research Frontiers, WCCI2008 Plenary/Invited Lectures. Lecture Notes in Computer Science, 2008, 5050: 48-78.
-
-
-
-
52
-
-
67649406363
-
Randomized Hough transform
-
J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey(PA): IGI Global
-
Xu L, Oja E. Randomized Hough transform. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. Hershey(PA): IGI Global, 2008, 1354-1361.
-
(2008)
Encyclopedia of Artificial Intelligence
, pp. 1354-1361
-
-
Xu, L.1
Oja, E.2
-
54
-
-
77956455166
-
-
Vapnik, V. Estimation of Dependences Based on Empirical Data. Springer, 2006.
-
-
-
-
56
-
-
0033561894
-
On cross validation for model selection
-
Rivals I, Personnaz L. On cross validation for model selection. Neural Computation, 1999, 11(4): 863-870.
-
(1999)
Neural Computation
, vol.11
, Issue.4
, pp. 863-870
-
-
Rivals, I.1
Personnaz, L.2
-
57
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 714-723.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 714-723
-
-
Akaike, H.1
-
58
-
-
34250108028
-
Model selection and Akaike's information criterion (AIC): The general theory and its analytical extension
-
Bozdogan H. Model selection and Akaike's information criterion (AIC): The general theory and its analytical extension. Psychometrika, 1987, 52(3): 345-370.
-
(1987)
Psychometrika
, vol.52
, Issue.3
, pp. 345-370
-
-
Bozdogan, H.1
-
59
-
-
0031591140
-
Unifying the derivations for the Akaike and corrected Akaike information criteria
-
Cavanaugh J E. Unifying the derivations for the Akaike and corrected Akaike information criteria. Statistics & Probability Letters, 1997, 33(2): 201-208.
-
(1997)
Statistics & Probability Letters
, vol.33
, Issue.2
, pp. 201-208
-
-
Cavanaugh, J.E.1
-
60
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 117-143
-
-
Williams, P.M.1
-
62
-
-
0001025418
-
Bayesian interpolation
-
MacKay D J C. Bayesian interpolation. Neural Computation, 1992, 4(3): 415-447.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
Mackay, D.J.C.1
-
64
-
-
0027629412
-
Rival penalized competitive learning for clustering analysis, RBF net and curve detection
-
Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Transactions on Neural Networks, 1993, 4(4): 636-649.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.4
, pp. 636-649
-
-
Xu, L.1
Krzyzak, A.2
Oja, E.3
-
66
-
-
46049083679
-
Rival penalized competitive learning
-
Xu L. Rival penalized competitive learning. Scholarpedia, 2007, 2(8): 1810 http://www. scholarpedia. org/article/Rival penalized competitive learning.
-
(2007)
Scholarpedia
, vol.2
, Issue.8
, pp. 1810
-
-
Xu, L.1
-
67
-
-
77956457776
-
-
Corduneanu A, Bishop C M. Variational Bayesian model selection for mixture distributions. In: Richardson T, Jaakkola T, eds. Proceedings of the Eighth International Conference on Artificial Intelligence and Statistics. 2001, 27-34.
-
-
-
-
68
-
-
34247869715
-
Variational approximations in Bayesian model selection for finite mixture distributions
-
McGrory C A, Titterington D M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis, 2007, 51(11): 5352-5367.
-
(2007)
Computational Statistics & Data Analysis
, vol.51
, Issue.11
, pp. 5352-5367
-
-
McGrory, C.A.1
Titterington, D.M.2
-
69
-
-
85143581556
-
-
Tu S, Xu L. A study of several model selection criteria for determining the number of signals. In: Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. 2010, 1966-1969.
-
-
-
-
70
-
-
33847155556
-
Fundamentals, challenges, and advances of statistical learning for knowledge discovery and problem solving: A BYY harmony perspective, keynote talk
-
Xu L. Fundamentals, challenges, and advances of statistical learning for knowledge discovery and problem solving: A BYY harmony perspective, keynote talk. In: Proceedings of the International Conference on Neural Networks and Brain. 2005, 1: 24-55.
-
(2005)
Proceedings of the International Conference on Neural Networks and Brain
, vol.1
, pp. 24-55
-
-
Xu, L.1
-
71
-
-
0002834189
-
Autoencoders, minimum description length and Helmholtz free energy
-
J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), San Mateo: Morgan Kaufmann
-
Hinton G E, Zemel R S. Autoencoders, minimum description length and Helmholtz free energy. In: Cowan J D, Tesauro G, Alspector J, eds. Advances in Neural Information Processing Systems 6. San Mateo: Morgan Kaufmann, 1994, 449-455.
-
(1994)
Advances in Neural Information Processing Systems 6
, pp. 449-455
-
-
Hinton, G.E.1
Zemel, R.S.2
-
72
-
-
0038355082
-
Data smoothing regularization, multi-sets-learning, and problem solving strategies
-
Xu L. Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks, 2003, 16(5-6): 817-825.
-
(2003)
Neural Networks
, vol.16
, Issue.5-6
, pp. 817-825
-
-
Xu, L.1
-
73
-
-
77956466836
-
-
Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (I) Unsupervised and semi-unsupervised learning. In: Amari S, Kassabov N, eds. Brain-like Computing and Intelligent Information Systems. Springer-Verlag, 1997, 241-274.
-
-
-
-
74
-
-
77956458653
-
-
Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (II) From unsupervised learning to supervised learning and temporal modeling and (III) Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning. In: Wong K M, King I, Yeung D Y, eds. Proceedings of Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective. 1997: 25-60.
-
-
-
-
75
-
-
0000274977
-
Bayesian Ying Yang system and theory as a unified statistical learning approach (VII): Data smoothing
-
Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach (VII): Data smoothing. In: Proceedings of the International Conference on Neural Information Processing. 1998, 1: 243-248.
-
(1998)
Proceedings of the International Conference on Neural Information Processing
, vol.1
, pp. 243-248
-
-
Xu, L.1
-
76
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
Bishop C M. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 1995, 7(1): 108-116.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 108-116
-
-
Bishop, C.M.1
-
77
-
-
34247105235
-
A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
-
Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition, 2007, 40(8): 2129-2153.
-
(2007)
Pattern Recognition
, vol.40
, Issue.8
, pp. 2129-2153
-
-
Xu, L.1
-
78
-
-
33747992562
-
A new curve detection method randomized Hough transform (RHT)
-
Xu L, Oja E, Kultanen P. A new curve detection method randomized Hough transform (RHT). Pattern Recognition Letters, 1990, 11(5): 331-338.
-
(1990)
Pattern Recognition Letters
, vol.11
, Issue.5
, pp. 331-338
-
-
Xu, L.1
Oja, E.2
Kultanen, P.3
-
79
-
-
77956454296
-
-
Hough P V C. Method and means for recognizing complex patterns. US Patent, 3069654, 1962-12-18.
-
-
-
-
80
-
-
0035259214
-
Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets
-
Xu L. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets. International Journal of Neural Systems, 2001, 11(1): 3-69.
-
(2001)
International Journal of Neural Systems
, vol.11
, Issue.1
, pp. 3-69
-
-
Xu, L.1
-
81
-
-
0002898308
-
Bayesian Ying-Yang learning theory for data dimension reduction and determination
-
Xu L. Bayesian Ying-Yang learning theory for data dimension reduction and determination. Journal of Computational Intelligence in Finance, 1998, 6(5): 6-18.
-
(1998)
Journal of Computational Intelligence in Finance
, vol.6
, Issue.5
, pp. 6-18
-
-
Xu, L.1
-
82
-
-
67149143233
-
-
Tu S, Xu L. Theoretical analysis and comparison of several criteria on linear model dimension reduction. In: Adali T, Jutten C, Romano J M T, Barros A K, eds. Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, 2009, 5441: 154-162.
-
-
-
-
83
-
-
0035391741
-
BYY harmony learning, independent state space and generalized APT financial analyses
-
Xu L. BYY harmony learning, independent state space and generalized APT financial analyses. IEEE Transactions on Neural Networks, 2001, 12(4): 822-849.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.4
, pp. 822-849
-
-
Xu, L.1
-
84
-
-
3843066216
-
Temporal BYY encoding, Markovian state spaces, and space dimension determination
-
Xu L. Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Transactions on Neural Networks, 2004, 15(5): 1276-1295.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.5
, pp. 1276-1295
-
-
Xu, L.1
-
85
-
-
85024429815
-
-
Kalman R E. A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering, 1960, 35-45.
-
-
-
-
86
-
-
67149134695
-
-
Sun K, Tu S, Gao D Y, Xu L. Canonical dual approach to binary factor analysis. In: Adali T, Jutten C, Romano J M T, Barros A K, eds. Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, 2009, 5441: 346-353.
-
-
-
-
87
-
-
0024182121
-
Science and medicine in imperial China - The state of the field
-
Nathan S. Science and medicine in imperial China - The state of the field. The Journal of Asian Studies, 1988, 47(1): 41-90.
-
(1988)
The Journal of Asian Studies
, vol.47
, Issue.1
, pp. 41-90
-
-
Nathan, S.1
-
88
-
-
0003473169
-
The I Ching or Book of Changes, with Foreword by Carl Jung
-
3rd ed.th edn., Princeton: Princeton University Press
-
Wilhelm R, Baynes C. The I Ching or Book of Changes, with Foreword by Carl Jung. 3rd ed. Bollingen Series XIX. Princeton: Princeton University Press, 1967.
-
(1967)
Bollingen Series XIX
-
-
Wilhelm, R.1
Baynes, C.2
-
91
-
-
0001199215
-
A general class of coefficients of divergence of one distribution from another
-
Ali S M, Silvey S D. A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society: Series B, 1966, 28(1): 131-140.
-
(1966)
Journal of the Royal Statistical Society: Series B
, vol.28
, Issue.1
, pp. 131-140
-
-
Ali, S.M.1
Silvey, S.D.2
-
94
-
-
0020183044
-
Estimation of structured covariance matrices
-
Burg J P, Luenberger D G, Wenger D L. Estimation of structured covariance matrices. Proceedings of the IEEE, 1982, 70(9): 963-974.
-
(1982)
Proceedings of the IEEE
, vol.70
, Issue.9
, pp. 963-974
-
-
Burg, J.P.1
Luenberger, D.G.2
Wenger, D.L.3
-
95
-
-
11944266539
-
Information theory and statistical mechanics
-
Jaynes E T. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620-630.
-
(1957)
Physical Review
, vol.106
, Issue.4
, pp. 620-630
-
-
Jaynes, E.T.1
-
96
-
-
0033716741
-
Temporal BYY learning for state space approach, hidden Markov model and blind source separation
-
Xu L. Temporal BYY learning for state space approach, hidden Markov model and blind source separation. IEEE Transactions on Signal Processing, 2000, 48(7): 2132-2144.
-
(2000)
IEEE Transactions on Signal Processing
, vol.48
, Issue.7
, pp. 2132-2144
-
-
Xu, L.1
-
98
-
-
0004404090
-
BYY learning system and theory for parameter estimation, data smoothing based regularization and model selection
-
Xu L. BYY learning system and theory for parameter estimation, data smoothing based regularization and model selection. Neural, Parallel and Scientific Computations, 2000, 8(1): 55-82.
-
(2000)
Neural, Parallel and Scientific Computations
, vol.8
, Issue.1
, pp. 55-82
-
-
Xu, L.1
-
100
-
-
3843056324
-
Bayesian Ying Yang learning
-
N. Zhong and J. Liu (Eds.), Berlin: Springer
-
Xu L. Bayesian Ying Yang learning. In: Zhong N, Liu J, eds. Intelligent Technologies for Information Analysis. Berlin: Springer, 2004, 615-706.
-
(2004)
Intelligent Technologies for Information Analysis
, pp. 615-706
-
-
Xu, L.1
-
101
-
-
0032183995
-
The minimum description length principle in coding and modeling
-
Barron A, Rissanen J, Yu B. The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory, 1998, 44(6): 2743-2760.
-
(1998)
IEEE Transactions on Information Theory
, vol.44
, Issue.6
, pp. 2743-2760
-
-
Barron, A.1
Rissanen, J.2
Yu, B.3
-
102
-
-
77956465653
-
Combining classifiers and learning mixtureof-experts
-
J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey(PA): IGI Global
-
Xu L, Amari S. Combining classifiers and learning mixtureof-experts. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. Hershey(PA): IGI Global, 2008, 318-326.
-
(2008)
Encyclopedia of Artificial Intelligence
, pp. 318-326
-
-
Xu, L.1
Amari, S.2
-
103
-
-
0037380850
-
BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
-
Xu L. BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units. Neurocomputing, 2003, 51: 277-301 (Errata on Neurocomputing, 2003, 55(1-2): 405-406).
-
(2003)
Neurocomputing
, vol.51
, pp. 277-301
-
-
Xu, L.1
-
105
-
-
85143571676
-
-
Su D, Wu X H, Xu L. GMM-HMM acoustic model training by a two level procedure with Gaussian components determined by automatic model selection. In: Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. 2010, 4890-4893.
-
-
-
-
106
-
-
1642377925
-
Factor analysed hidden Markov models for speech recognition
-
Rosti A V, Gales M. Factor analysed hidden Markov models for speech recognition. Computer Speech and Language, 2004, 18(2): 181-200.
-
(2004)
Computer Speech and Language
, vol.18
, Issue.2
, pp. 181-200
-
-
Rosti, A.V.1
Gales, M.2
-
107
-
-
48049097464
-
-
Gales M J F. Discriminative models for speech recognition. In: Proceedings of Information Theory and Applications Workshop. 2007, 170-176.
-
-
-
-
108
-
-
0036461035
-
Large scale discriminative training of hidden Markov models for speech recognition
-
Woodland P C, Povey D. Large scale discriminative training of hidden Markov models for speech recognition. Computer Speech and Language, 2002, 16(1): 25-47.
-
(2002)
Computer Speech and Language
, vol.16
, Issue.1
, pp. 25-47
-
-
Woodland, P.C.1
Povey, D.2
-
109
-
-
77956462098
-
-
Csiszár I, Tusnády G. Information geometry and alternating minimization procedures. Statistics and Decisions, 1984, (Suppl. 1): 205-237.
-
-
-
-
110
-
-
0026745682
-
Modified Hebbian learning for curve and surface fitting
-
Xu L, Oja E, Suen C Y. Modified Hebbian learning for curve and surface fitting. Neural Networks, 1992, 5(3): 441-457.
-
(1992)
Neural Networks
, vol.5
, Issue.3
, pp. 441-457
-
-
Xu, L.1
Oja, E.2
Suen, C.Y.3
-
111
-
-
0000280443
-
A neural net for dual subspace pattern recognition methods
-
Xu L, Krzyzak A, Oja E. A neural net for dual subspace pattern recognition methods. International Journal of Neural Systems, 1991, 2(3): 169-184.
-
(1991)
International Journal of Neural Systems
, vol.2
, Issue.3
, pp. 169-184
-
-
Xu, L.1
Krzyzak, A.2
Oja, E.3
|