메뉴 건너뛰기




Volumn 5, Issue 3, 2010, Pages 281-328

Bayesian Ying-Yang system, best harmony learning, and five action circling

Author keywords

A5 paradigm; apex approximation; automatic model selection; Bayesian Ying Yang (BYY) system; best harmony; binary FA; factor analysis (FA); Gaussian mixture; hidden Markov model (HMM); hierarchical BYY; local FA; maximum a posteriori (MAP); mixture of experts; non Gaussian FA; radial basis function (RBF) networks; randomized Hough transform (RHT); rival penalized competitive learning (RPCL); semi supervised learning; state space modeling; subspace based function (SBF); temporal FA; three layer networks; WuXing; Yin Yang philosophy; Ying Yang alternation

Indexed keywords


EID: 77956483883     PISSN: 16733460     EISSN: 16733584     Source Type: Journal    
DOI: 10.1007/s11460-010-0108-9     Document Type: Article
Times cited : (45)

References (111)
  • 2
    • 77954757210 scopus 로고    scopus 로고
    • Machine learning problems from optimization perspective
    • Xu L. Machine learning problems from optimization perspective. Journal of Global Optimization, 2010, 47: 369-401.
    • (2010) Journal of Global Optimization , vol.47 , pp. 369-401
    • Xu, L.1
  • 3
    • 46049106446 scopus 로고    scopus 로고
    • Bayesian Ying Yang learning
    • Xu L. Bayesian Ying Yang learning. Scholarpedia, 2007, 2(3): 1809 http://scholarpedia. org/article/Bayesian Ying_Yang learning.
    • (2007) Scholarpedia , vol.2 , Issue.3 , pp. 1809
    • Xu, L.1
  • 6
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1990, 1(1): 4-27.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 7
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • Redner R A, Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review, 1984, 26(2): 195-239.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 8
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8(1): 129-151.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 10
    • 0002266094 scopus 로고
    • EM algorithm for ML factor analysis
    • Rubi D, Thayer D. EM algorithm for ML factor analysis. Psychometrika, 1976, 57: 69-76.
    • (1976) Psychometrika , vol.57 , pp. 69-76
    • Rubi, D.1    Thayer, D.2
  • 11
    • 2142731041 scopus 로고
    • FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC
    • Bozdogan H, Ramirez D E. FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC. Psychometrika, 1988, 53(3): 407-415.
    • (1988) Psychometrika , vol.53 , Issue.3 , pp. 407-415
    • Bozdogan, H.1    Ramirez, D.E.2
  • 14
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F. Networks for approximation and learning. Proceedings of the IEEE, 1990, 78(9): 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 15
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind separation of sources
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Cambridge: MIT Press
    • Amari S I, Cichocki A, Yang H. A new learning algorithm for blind separation of sources. In: Touretzky D S, Mozer M C, Hasselmo M E, eds. Advances in Neural Information Processing System 8. Cambridge: MIT Press, 1996, 757-763.
    • (1996) Advances in Neural Information Processing System 8 , pp. 757-763
    • Amari, S.I.1    Cichocki, A.2    Yang, H.3
  • 16
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 1995, 7(6): 1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 17
    • 3843095548 scopus 로고    scopus 로고
    • Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective
    • Xu L. Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective. Neural Information Processing - Letters and Reviews, 2003, 1(1): 1-52.
    • (2003) Neural Information Processing - Letters and Reviews , vol.1 , Issue.1 , pp. 1-52
    • Xu, L.1
  • 18
    • 77956473522 scopus 로고    scopus 로고
    • Independent subspaces
    • J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey(PA): IGI Global
    • Xu L. Independent subspaces. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence, Hershey(PA): IGI Global. 2008, 903-912.
    • (2008) Encyclopedia of Artificial Intelligence , pp. 903-912
    • Xu, L.1
  • 19
    • 0027206958 scopus 로고
    • Least mean square error reconstruction principle for self-organizing neural-nets
    • Xu L. Least mean square error reconstruction principle for self-organizing neural-nets. Neural Networks, 1993, 6(5): 627-648.
    • (1993) Neural Networks , vol.6 , Issue.5 , pp. 627-648
    • Xu, L.1
  • 22
    • 0029587111 scopus 로고
    • Information geometry of the EM and EM algorithms for neural networks
    • Amari S. Information geometry of the EM and EM algorithms for neural networks. Neural Networks, 1995, 8(9): 1379-1408.
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1379-1408
    • Amari, S.1
  • 24
    • 0026463329 scopus 로고
    • On the computational architecture of the neocortex II: The role of cortico-cortical loops
    • Mumford D. On the computational architecture of the neocortex II: The role of cortico-cortical loops. Biological Cybernetics, 1992, 66(3): 241-251.
    • (1992) Biological Cybernetics , vol.66 , Issue.3 , pp. 241-251
    • Mumford, D.1
  • 26
    • 33746220445 scopus 로고    scopus 로고
    • Vision as Bayesian inference: Analysis by synthesis
    • Yuille A L, Kersten D. Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Sciences, 2006, 10(7): 301-308.
    • (2006) Trends in Cognitive Sciences , vol.10 , Issue.7 , pp. 301-308
    • Yuille, A.L.1    Kersten, D.2
  • 27
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics, 1978, 6(2): 461-464.
    • (1978) Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 28
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen J. Modeling by shortest data description. Automatica, 1978, 14: 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 31
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay D J C. A practical Bayesian framework for backpropagation networks. Neural Computation, 1992, 4(3): 448-472.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 33
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace C S, Boulton D M. An information measure for classification. Computer Journal, 1968, 11(2): 185-194.
    • (1968) Computer Journal , vol.11 , Issue.2 , pp. 185-194
    • Wallace, C.S.1    Boulton, D.M.2
  • 34
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Wallace C S, Dowe D R. Minimum message length and Kolmogorov complexity. Computer Journal, 1999, 42(4): 270-280.
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 270-280
    • Wallace, C.S.1    Dowe, D.R.2
  • 35
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • Bourlard H, Kamp Y. Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 1988, 59: 291-294.
    • (1988) Biological Cybernetics , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 36
    • 0027663185 scopus 로고
    • Anti-Hebbian learning in topologically constrained linear networks: A tutorial
    • Palmieri F, Zhu J, Chang C. Anti-Hebbian learning in topologically constrained linear networks: A tutorial. IEEE Transactions on Neural Networks, 1993, 4(5): 748-761.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.5 , pp. 748-761
    • Palmieri, F.1    Zhu, J.2    Chang, C.3
  • 38
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • Carpenter G A, Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 1987, 37: 54-115.
    • (1987) Computer Vision, Graphics, and Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 39
    • 3843115044 scopus 로고    scopus 로고
    • Cerebellum and motor control
    • 2nd ed.th edn., M. A. Arbib (Ed.), Cambridge: MIT Press
    • Kawato M. Cerebellum and motor control. In: Arbib M A, ed. The Handbook of Brain Theory and Neural Networks. 2nd ed. Cambridge: MIT Press, 2002, 190-195.
    • (2002) The Handbook of Brain Theory and Neural Networks , pp. 190-195
    • Kawato, M.1
  • 40
    • 0027488969 scopus 로고
    • Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum
    • Shidara M, Kawano K, Gomi H, Kawato M. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature, 1993, 365(6441): 50-52.
    • (1993) Nature , vol.365 , Issue.6441 , pp. 50-52
    • Shidara, M.1    Kawano, K.2    Gomi, H.3    Kawato, M.4
  • 41
    • 0032192424 scopus 로고    scopus 로고
    • Multiple paired forward and inverse models for motor control
    • Wolpert D, Kawato M. Multiple paired forward and inverse models for motor control. Neural Networks, 1998, 11(7-8): 1317-1329.
    • (1998) Neural Networks , vol.11 , Issue.7-8 , pp. 1317-1329
    • Wolpert, D.1    Kawato, M.2
  • 42
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised learning neural networks
    • Hinton G E, Dayan P, Frey B J, Neal R N. The wake-sleep algorithm for unsupervised learning neural networks. Science, 1995, 268(5214): 1158-1160.
    • (1995) Science , vol.268 , Issue.5214 , pp. 1158-1160
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.N.4
  • 44
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • M. Opper and D. Saad (Eds.), Cambridge: MIT press
    • Jaakkola T S. Tutorial on variational approximation methods. In: Opper M, Saad D, eds. Advanced Mean Field Methods: Theory and Practice. Cambridge: MIT press, 2001, 129-160.
    • (2001) Advanced Mean Field Methods: Theory and Practice , pp. 129-160
    • Jaakkola, T.S.1
  • 45
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • Jordan M, Ghahramani Z, Jaakkola T, Saul L. Introduction to variational methods for graphical models. Machine Learning, 1999, 37(2): 183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 46
    • 77956460436 scopus 로고    scopus 로고
    • Corduneanu A, Bishop CM. Variational Bayesian model selection for mixture distributions. In: Jaakkola T, Richardson T, eds. Proceedings of the Eighth International Conference on Artificial Intelligence and Statistics. 2001, 27-34.
  • 47
    • 77956455384 scopus 로고    scopus 로고
    • Xu L. Bayesian-Kullback coupled YING-YANG machines: Unified learning and new results on vector quantization. In: Proceedings of the International Conference on Neural Information Processing. 1995, 977-988 (A further version in NIPS8. In: Touretzky D S, et al. eds. Cambridge: MIT Press, 444-450).
  • 48
    • 0242474188 scopus 로고    scopus 로고
    • Ying-Yang learning
    • 2nd ed.th edn., M. A. Arbib (Ed.), Cambridge: MIT Press
    • Xu L. Ying-Yang learning. In: Arbib M A, ed. The Handbook of Brain Theory and Neural Networks. 2nd ed. Cambridge: MIT Press, 2002, 1231-1237.
    • (2002) The Handbook of Brain Theory and Neural Networks , pp. 1231-1237
    • Xu, L.1
  • 49
    • 3843136240 scopus 로고    scopus 로고
    • Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination
    • Xu L. Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Transactions on Neural Networks, 2004, 15(4): 885-902.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.4 , pp. 885-902
    • Xu, L.1
  • 51
    • 46049101030 scopus 로고    scopus 로고
    • Xu L. Bayesian Ying Yang system, best harmony learning, and Gaussian manifold based family. In: Zurada et al. eds. Computational Intelligence: Research Frontiers, WCCI2008 Plenary/Invited Lectures. Lecture Notes in Computer Science, 2008, 5050: 48-78.
  • 52
    • 67649406363 scopus 로고    scopus 로고
    • Randomized Hough transform
    • J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey(PA): IGI Global
    • Xu L, Oja E. Randomized Hough transform. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. Hershey(PA): IGI Global, 2008, 1354-1361.
    • (2008) Encyclopedia of Artificial Intelligence , pp. 1354-1361
    • Xu, L.1    Oja, E.2
  • 54
    • 77956455166 scopus 로고    scopus 로고
    • Vapnik, V. Estimation of Dependences Based on Empirical Data. Springer, 2006.
  • 56
    • 0033561894 scopus 로고    scopus 로고
    • On cross validation for model selection
    • Rivals I, Personnaz L. On cross validation for model selection. Neural Computation, 1999, 11(4): 863-870.
    • (1999) Neural Computation , vol.11 , Issue.4 , pp. 863-870
    • Rivals, I.1    Personnaz, L.2
  • 57
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 714-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 714-723
    • Akaike, H.1
  • 58
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC): The general theory and its analytical extension
    • Bozdogan H. Model selection and Akaike's information criterion (AIC): The general theory and its analytical extension. Psychometrika, 1987, 52(3): 345-370.
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 59
    • 0031591140 scopus 로고    scopus 로고
    • Unifying the derivations for the Akaike and corrected Akaike information criteria
    • Cavanaugh J E. Unifying the derivations for the Akaike and corrected Akaike information criteria. Statistics & Probability Letters, 1997, 33(2): 201-208.
    • (1997) Statistics & Probability Letters , vol.33 , Issue.2 , pp. 201-208
    • Cavanaugh, J.E.1
  • 60
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams P M. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 1995, 7(1): 117-143.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P.M.1
  • 62
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D J C. Bayesian interpolation. Neural Computation, 1992, 4(3): 415-447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.J.C.1
  • 64
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net and curve detection
    • Xu L, Krzyzak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Transactions on Neural Networks, 1993, 4(4): 636-649.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 66
    • 46049083679 scopus 로고    scopus 로고
    • Rival penalized competitive learning
    • Xu L. Rival penalized competitive learning. Scholarpedia, 2007, 2(8): 1810 http://www. scholarpedia. org/article/Rival penalized competitive learning.
    • (2007) Scholarpedia , vol.2 , Issue.8 , pp. 1810
    • Xu, L.1
  • 67
    • 77956457776 scopus 로고    scopus 로고
    • Corduneanu A, Bishop C M. Variational Bayesian model selection for mixture distributions. In: Richardson T, Jaakkola T, eds. Proceedings of the Eighth International Conference on Artificial Intelligence and Statistics. 2001, 27-34.
  • 68
    • 34247869715 scopus 로고    scopus 로고
    • Variational approximations in Bayesian model selection for finite mixture distributions
    • McGrory C A, Titterington D M. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics & Data Analysis, 2007, 51(11): 5352-5367.
    • (2007) Computational Statistics & Data Analysis , vol.51 , Issue.11 , pp. 5352-5367
    • McGrory, C.A.1    Titterington, D.M.2
  • 69
    • 85143581556 scopus 로고    scopus 로고
    • Tu S, Xu L. A study of several model selection criteria for determining the number of signals. In: Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. 2010, 1966-1969.
  • 70
    • 33847155556 scopus 로고    scopus 로고
    • Fundamentals, challenges, and advances of statistical learning for knowledge discovery and problem solving: A BYY harmony perspective, keynote talk
    • Xu L. Fundamentals, challenges, and advances of statistical learning for knowledge discovery and problem solving: A BYY harmony perspective, keynote talk. In: Proceedings of the International Conference on Neural Networks and Brain. 2005, 1: 24-55.
    • (2005) Proceedings of the International Conference on Neural Networks and Brain , vol.1 , pp. 24-55
    • Xu, L.1
  • 71
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and Helmholtz free energy
    • J. D. Cowan, G. Tesauro, and J. Alspector (Eds.), San Mateo: Morgan Kaufmann
    • Hinton G E, Zemel R S. Autoencoders, minimum description length and Helmholtz free energy. In: Cowan J D, Tesauro G, Alspector J, eds. Advances in Neural Information Processing Systems 6. San Mateo: Morgan Kaufmann, 1994, 449-455.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 449-455
    • Hinton, G.E.1    Zemel, R.S.2
  • 72
    • 0038355082 scopus 로고    scopus 로고
    • Data smoothing regularization, multi-sets-learning, and problem solving strategies
    • Xu L. Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks, 2003, 16(5-6): 817-825.
    • (2003) Neural Networks , vol.16 , Issue.5-6 , pp. 817-825
    • Xu, L.1
  • 73
    • 77956466836 scopus 로고    scopus 로고
    • Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (I) Unsupervised and semi-unsupervised learning. In: Amari S, Kassabov N, eds. Brain-like Computing and Intelligent Information Systems. Springer-Verlag, 1997, 241-274.
  • 74
    • 77956458653 scopus 로고    scopus 로고
    • Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (II) From unsupervised learning to supervised learning and temporal modeling and (III) Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning. In: Wong K M, King I, Yeung D Y, eds. Proceedings of Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective. 1997: 25-60.
  • 75
    • 0000274977 scopus 로고    scopus 로고
    • Bayesian Ying Yang system and theory as a unified statistical learning approach (VII): Data smoothing
    • Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach (VII): Data smoothing. In: Proceedings of the International Conference on Neural Information Processing. 1998, 1: 243-248.
    • (1998) Proceedings of the International Conference on Neural Information Processing , vol.1 , pp. 243-248
    • Xu, L.1
  • 76
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop C M. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 1995, 7(1): 108-116.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 77
    • 34247105235 scopus 로고    scopus 로고
    • A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
    • Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition, 2007, 40(8): 2129-2153.
    • (2007) Pattern Recognition , vol.40 , Issue.8 , pp. 2129-2153
    • Xu, L.1
  • 78
    • 33747992562 scopus 로고
    • A new curve detection method randomized Hough transform (RHT)
    • Xu L, Oja E, Kultanen P. A new curve detection method randomized Hough transform (RHT). Pattern Recognition Letters, 1990, 11(5): 331-338.
    • (1990) Pattern Recognition Letters , vol.11 , Issue.5 , pp. 331-338
    • Xu, L.1    Oja, E.2    Kultanen, P.3
  • 79
    • 77956454296 scopus 로고    scopus 로고
    • Hough P V C. Method and means for recognizing complex patterns. US Patent, 3069654, 1962-12-18.
  • 80
    • 0035259214 scopus 로고    scopus 로고
    • Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets
    • Xu L. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets. International Journal of Neural Systems, 2001, 11(1): 3-69.
    • (2001) International Journal of Neural Systems , vol.11 , Issue.1 , pp. 3-69
    • Xu, L.1
  • 81
    • 0002898308 scopus 로고    scopus 로고
    • Bayesian Ying-Yang learning theory for data dimension reduction and determination
    • Xu L. Bayesian Ying-Yang learning theory for data dimension reduction and determination. Journal of Computational Intelligence in Finance, 1998, 6(5): 6-18.
    • (1998) Journal of Computational Intelligence in Finance , vol.6 , Issue.5 , pp. 6-18
    • Xu, L.1
  • 82
    • 67149143233 scopus 로고    scopus 로고
    • Tu S, Xu L. Theoretical analysis and comparison of several criteria on linear model dimension reduction. In: Adali T, Jutten C, Romano J M T, Barros A K, eds. Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, 2009, 5441: 154-162.
  • 83
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space and generalized APT financial analyses
    • Xu L. BYY harmony learning, independent state space and generalized APT financial analyses. IEEE Transactions on Neural Networks, 2001, 12(4): 822-849.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1
  • 84
    • 3843066216 scopus 로고    scopus 로고
    • Temporal BYY encoding, Markovian state spaces, and space dimension determination
    • Xu L. Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Transactions on Neural Networks, 2004, 15(5): 1276-1295.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.5 , pp. 1276-1295
    • Xu, L.1
  • 85
    • 85024429815 scopus 로고    scopus 로고
    • Kalman R E. A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering, 1960, 35-45.
  • 86
    • 67149134695 scopus 로고    scopus 로고
    • Sun K, Tu S, Gao D Y, Xu L. Canonical dual approach to binary factor analysis. In: Adali T, Jutten C, Romano J M T, Barros A K, eds. Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, 2009, 5441: 346-353.
  • 87
    • 0024182121 scopus 로고
    • Science and medicine in imperial China - The state of the field
    • Nathan S. Science and medicine in imperial China - The state of the field. The Journal of Asian Studies, 1988, 47(1): 41-90.
    • (1988) The Journal of Asian Studies , vol.47 , Issue.1 , pp. 41-90
    • Nathan, S.1
  • 88
    • 0003473169 scopus 로고
    • The I Ching or Book of Changes, with Foreword by Carl Jung
    • 3rd ed.th edn., Princeton: Princeton University Press
    • Wilhelm R, Baynes C. The I Ching or Book of Changes, with Foreword by Carl Jung. 3rd ed. Bollingen Series XIX. Princeton: Princeton University Press, 1967.
    • (1967) Bollingen Series XIX
    • Wilhelm, R.1    Baynes, C.2
  • 91
    • 0001199215 scopus 로고
    • A general class of coefficients of divergence of one distribution from another
    • Ali S M, Silvey S D. A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society: Series B, 1966, 28(1): 131-140.
    • (1966) Journal of the Royal Statistical Society: Series B , vol.28 , Issue.1 , pp. 131-140
    • Ali, S.M.1    Silvey, S.D.2
  • 95
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes E T. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620-630.
    • (1957) Physical Review , vol.106 , Issue.4 , pp. 620-630
    • Jaynes, E.T.1
  • 96
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model and blind source separation
    • Xu L. Temporal BYY learning for state space approach, hidden Markov model and blind source separation. IEEE Transactions on Signal Processing, 2000, 48(7): 2132-2144.
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.7 , pp. 2132-2144
    • Xu, L.1
  • 98
    • 0004404090 scopus 로고    scopus 로고
    • BYY learning system and theory for parameter estimation, data smoothing based regularization and model selection
    • Xu L. BYY learning system and theory for parameter estimation, data smoothing based regularization and model selection. Neural, Parallel and Scientific Computations, 2000, 8(1): 55-82.
    • (2000) Neural, Parallel and Scientific Computations , vol.8 , Issue.1 , pp. 55-82
    • Xu, L.1
  • 100
    • 3843056324 scopus 로고    scopus 로고
    • Bayesian Ying Yang learning
    • N. Zhong and J. Liu (Eds.), Berlin: Springer
    • Xu L. Bayesian Ying Yang learning. In: Zhong N, Liu J, eds. Intelligent Technologies for Information Analysis. Berlin: Springer, 2004, 615-706.
    • (2004) Intelligent Technologies for Information Analysis , pp. 615-706
    • Xu, L.1
  • 101
    • 0032183995 scopus 로고    scopus 로고
    • The minimum description length principle in coding and modeling
    • Barron A, Rissanen J, Yu B. The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory, 1998, 44(6): 2743-2760.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.6 , pp. 2743-2760
    • Barron, A.1    Rissanen, J.2    Yu, B.3
  • 102
    • 77956465653 scopus 로고    scopus 로고
    • Combining classifiers and learning mixtureof-experts
    • J. Ramón, R. Dopico, J. Dorado, and A. Pazos (Eds.), Hershey(PA): IGI Global
    • Xu L, Amari S. Combining classifiers and learning mixtureof-experts. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence. Hershey(PA): IGI Global, 2008, 318-326.
    • (2008) Encyclopedia of Artificial Intelligence , pp. 318-326
    • Xu, L.1    Amari, S.2
  • 103
    • 0037380850 scopus 로고    scopus 로고
    • BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
    • Xu L. BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units. Neurocomputing, 2003, 51: 277-301 (Errata on Neurocomputing, 2003, 55(1-2): 405-406).
    • (2003) Neurocomputing , vol.51 , pp. 277-301
    • Xu, L.1
  • 104
    • 70349227947 scopus 로고    scopus 로고
    • The application of hidden Markov models in speech recognition
    • Gales M J F, Young S. The application of hidden Markov models in speech recognition. Foundations and Trends in Signal Processing, 2008, 1(3): 195-304.
    • (2008) Foundations and Trends in Signal Processing , vol.1 , Issue.3 , pp. 195-304
    • Gales, M.J.F.1    Young, S.2
  • 105
    • 85143571676 scopus 로고    scopus 로고
    • Su D, Wu X H, Xu L. GMM-HMM acoustic model training by a two level procedure with Gaussian components determined by automatic model selection. In: Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. 2010, 4890-4893.
  • 106
    • 1642377925 scopus 로고    scopus 로고
    • Factor analysed hidden Markov models for speech recognition
    • Rosti A V, Gales M. Factor analysed hidden Markov models for speech recognition. Computer Speech and Language, 2004, 18(2): 181-200.
    • (2004) Computer Speech and Language , vol.18 , Issue.2 , pp. 181-200
    • Rosti, A.V.1    Gales, M.2
  • 107
    • 48049097464 scopus 로고    scopus 로고
    • Gales M J F. Discriminative models for speech recognition. In: Proceedings of Information Theory and Applications Workshop. 2007, 170-176.
  • 108
    • 0036461035 scopus 로고    scopus 로고
    • Large scale discriminative training of hidden Markov models for speech recognition
    • Woodland P C, Povey D. Large scale discriminative training of hidden Markov models for speech recognition. Computer Speech and Language, 2002, 16(1): 25-47.
    • (2002) Computer Speech and Language , vol.16 , Issue.1 , pp. 25-47
    • Woodland, P.C.1    Povey, D.2
  • 109
    • 77956462098 scopus 로고    scopus 로고
    • Csiszár I, Tusnády G. Information geometry and alternating minimization procedures. Statistics and Decisions, 1984, (Suppl. 1): 205-237.
  • 110
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • Xu L, Oja E, Suen C Y. Modified Hebbian learning for curve and surface fitting. Neural Networks, 1992, 5(3): 441-457.
    • (1992) Neural Networks , vol.5 , Issue.3 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 111
    • 0000280443 scopus 로고
    • A neural net for dual subspace pattern recognition methods
    • Xu L, Krzyzak A, Oja E. A neural net for dual subspace pattern recognition methods. International Journal of Neural Systems, 1991, 2(3): 169-184.
    • (1991) International Journal of Neural Systems , vol.2 , Issue.3 , pp. 169-184
    • Xu, L.1    Krzyzak, A.2    Oja, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.