메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages

Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA; TRANSCRIPTION FACTOR; DNA; DNA BINDING PROTEIN;

EID: 23744491001     PISSN: 17424682     EISSN: None     Source Type: Journal    
DOI: 10.1186/1742-4682-2-23     Document Type: Article
Times cited : (93)

References (33)
  • 3
    • 0035945567 scopus 로고    scopus 로고
    • Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF
    • Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO: Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001, 409:533-538.
    • (2001) Nature , vol.409 , pp. 533-538
    • Iyer, V.R.1    Horak, C.E.2    Scafe, C.S.3    Botstein, D.4    Snyder, M.5    Brown, P.O.6
  • 4
    • 0037418234 scopus 로고    scopus 로고
    • Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA-binding
    • van Steensel B, Delrow J, Bussemaker HJ: Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA-binding. Proc Natl Acad Sci USA 2003, 100:2580-2585.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 2580-2585
    • Van Steensel, B.1    Delrow, J.2    Bussemaker, H.J.3
  • 6
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifing regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: identifing regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 2003, 34:166-176.
    • (2003) Nature Genetics , vol.34 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6    Friedman, N.7
  • 7
    • 1642403354 scopus 로고    scopus 로고
    • Identification of genetic networks
    • Xiong M, Li J, Fang X: Identification of genetic networks. Genetics 2004, 166:1037-1052.
    • (2004) Genetics , vol.166 , pp. 1037-1052
    • Xiong, M.1    Li, J.2    Fang, X.3
  • 8
    • 3342976059 scopus 로고    scopus 로고
    • Extracting novel information from gene expression data
    • Li Z, Chan C: Extracting novel information from gene expression data. Trends Biotechnol 2004, 22:381-383.
    • (2004) Trends Biotechnol , vol.22 , pp. 381-383
    • Li, Z.1    Chan, C.2
  • 10
    • 0345743695 scopus 로고    scopus 로고
    • Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis
    • Kao KC, Yang YL, Boscolo R, Sabatti C, Roychowdhury V, Liao JC: Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc Natl Acad Sci USA 2004, 101:641-646.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 641-646
    • Kao, K.C.1    Yang, Y.L.2    Boscolo, R.3    Sabatti, C.4    Roychowdhury, V.5    Liao, J.C.6
  • 12
    • 9344230857 scopus 로고    scopus 로고
    • Integrative analysis of genome-scale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription
    • Alter O, Golub GH: Integrative analysis of genome-scale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription. Proc Natl Acad Sci USA 2004, 101:16577-16582.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 16577-16582
    • Alter, O.1    Golub, G.H.2
  • 13
    • 13544254744 scopus 로고    scopus 로고
    • Identifying combinatorial regulation of transcription factors and binding motifs
    • Kato M, Hata N, Banerjee N, Futcher B, Zhang MQ: Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biology 2004, 5:R56.
    • (2004) Genome Biology , vol.5
    • Kato, M.1    Hata, N.2    Banerjee, N.3    Futcher, B.4    Zhang, M.Q.5
  • 14
    • 2942582468 scopus 로고    scopus 로고
    • Defining transcriptional networks through integrative modeling of mRNA expression and trasncription factor binding data
    • Gao F, Foat BC, Bussemaker HJ: Defining transcriptional networks through integrative modeling of mRNA expression and trasncription factor binding data. BMC Bioinformatics 2004, 5:31.
    • (2004) BMC Bioinformatics , vol.5 , pp. 31
    • Gao, F.1    Foat, B.C.2    Bussemaker, H.J.3
  • 15
    • 0002555784 scopus 로고
    • The multivariate calibration method in chemistry solved by the PLS method
    • Proc. Conf. Matrix Pencils, Edited by: Ruhe A, Kagstrom B. Heidelberg: Springer Verlag
    • Wold S, Martens H, Wold H: The multivariate calibration method in chemistry solved by the PLS method. In Proc. Conf. Matrix Pencils, Lecture Notes in Mathematics Edited by: Ruhe A, Kagstrom B. Heidelberg: Springer Verlag; 1983:286-293.
    • (1983) Lecture Notes in Mathematics , pp. 286-293
    • Wold, S.1    Martens, H.2    Wold, H.3
  • 16
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank IE, Friedman JH: A statistical view of some chemometrics regression tools. Technometrics 1993, 35:109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 17
    • 0035965481 scopus 로고    scopus 로고
    • Reliable and relevant modelling of real world data: A personal account of the development of PLS regression
    • Martens H: Reliable and relevant modelling of real world data: a personal account of the development of PLS regression. Chemom Intell Lab Syst 2001, 58:85-95.
    • (2001) Chemom Intell Lab Syst , vol.58 , pp. 85-95
    • Martens, H.1
  • 18
    • 0027530250 scopus 로고
    • SIMPLS: An alternative approach to partial least squares regression
    • de Jong S: SIMPLS: An alternative approach to partial least squares regression. Chemom Intell Lab Syst 1993, 18:251-253.
    • (1993) Chemom Intell Lab Syst , vol.18 , pp. 251-253
    • De Jong, S.1
  • 19
    • 0005913793 scopus 로고    scopus 로고
    • The objective function of partial least squares regression
    • Braak CJFT, de Jong S: The objective function of partial least squares regression. J Chemometrics 1998, 12:41-54.
    • (1998) J Chemometrics , vol.12 , pp. 41-54
    • Braak, C.J.F.T.1    De Jong, S.2
  • 20
    • 0035109973 scopus 로고    scopus 로고
    • Canonical partial least squares and continuum power regression
    • de Jong S, Wise BM, Ricker NL: Canonical partial least squares and continuum power regression. J Chemometrics 2001, 15:85-100.
    • (2001) J Chemometrics , vol.15 , pp. 85-100
    • De Jong, S.1    Wise, B.M.2    Ricker, N.L.3
  • 21
    • 0035184506 scopus 로고    scopus 로고
    • Exploring relationships in gene expressions: A partial least squares approach
    • Datta S: Exploring relationships in gene expressions: a partial least squares approach. Gene Expression 2001, 9:249-255.
    • (2001) Gene Expression , vol.9 , pp. 249-255
    • Datta, S.1
  • 22
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen D, Rocke DM: Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002, 18:39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.1    Rocke, D.M.2
  • 23
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • Nguyen D, Rocke DM: Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics 2002, 18:1625-1632.
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.1    Rocke, D.M.2
  • 24
    • 20444448822 scopus 로고    scopus 로고
    • PLS dimension reduction for classification with microarray data
    • Boulesteix AL: PLS dimension reduction for classification with microarray data. SAGMB 2004, 3:33.
    • (2004) SAGMB , vol.3 , pp. 33
    • Boulesteix, A.L.1
  • 25
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP: Comparison of discrimination methods for the classification of tumors using gene expression data. J Amer Statist Assoc 2002, 97:77-87.
    • (2002) J Amer Statist Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 26
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • Braga-Neto U, Dougherty ER: Is cross-validation valid for small-sample microarray classification? Bioinformatics 2004, 20:374-380.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.1    Dougherty, E.R.2
  • 29
    • 0347093600 scopus 로고    scopus 로고
    • Indentifying periodically expressed transcripts in microarray time series data
    • Wichert S, Fokianos K, Strimmer K: Indentifying periodically expressed transcripts in microarray time series data. Bioinformatics 2004, 20:5-20.
    • (2004) Bioinformatics , vol.20 , pp. 5-20
    • Wichert, S.1    Fokianos, K.2    Strimmer, K.3
  • 30
    • 0037965981 scopus 로고    scopus 로고
    • On schemes of combinatorial transcription logic
    • Buchler NE, Gerland U, Hwa T: On schemes of combinatorial transcription logic. Proc Natl Acad Sci USA 2003, 100:5136-5141.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 5136-5141
    • Buchler, N.E.1    Gerland, U.2    Hwa, T.3
  • 32
    • 23744502897 scopus 로고    scopus 로고
    • Inferring yeast cell cycle regulators and interactions using transcription factor activities
    • Yang YL, Suen J, Brynildsen M, Galbraith S, Liao JC: Inferring yeast cell cycle regulators and interactions using transcription factor activities. BMC Genomics 2005, 6:90.
    • (2005) BMC Genomics , vol.6 , pp. 90
    • Yang, Y.L.1    Suen, J.2    Brynildsen, M.3    Galbraith, S.4    Liao, J.C.5
  • 33
    • 1842607847 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria [ISBN 3-900051-07-0]
    • R Development Core Team: R: A language and environment for statistical computing. 2004 [http://www.R-project.org]. R Foundation for Statistical Computing, Vienna, Austria [ISBN 3-900051-07-0].
    • (2004) R: A Language and Environment for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.