메뉴 건너뛰기




Volumn 16, Issue 5-6, 2003, Pages 817-825

Data smoothing regularization, multi-sets-learning, and problem solving strategies

Author keywords

Data smoothing; Gaussian mixture; Multiple objects; Problem solving; Tikhonov regularization

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPETITION; INFORMATION MANAGEMENT; LEARNING SYSTEMS; PROBLEM SOLVING;

EID: 0038355082     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(03)00119-9     Document Type: Conference Paper
Times cited : (38)

References (34)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 19:1974;714-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 714-723
    • Akaike, H.1
  • 2
    • 0019397313 scopus 로고
    • Generalizing the Hough transform to detecting arbitary shapes
    • Ballard D.H. Generalizing the Hough transform to detecting arbitary shapes. Pattern Recognition. 13:(2):1981;111-122.
    • (1981) Pattern Recognition , vol.13 , Issue.2 , pp. 111-122
    • Ballard, D.H.1
  • 3
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop C.M. Training with noise is equivalent to Tikhonov regularization. Neural Computation. 7:1995;108-116.
    • (1995) Neural Computation , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 6
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for modeling fitting with applications to image analysis and automated cartography
    • Fischler M.A., Bolles R.C. Random sample consensus: A paradigm for modeling fitting with applications to image analysis and automated cartography. Communications of ACM. 24:1981;381-395.
    • (1981) Communications of ACM , vol.24 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 7
    • 0001219859 scopus 로고
    • Regularization theory and neural architectures
    • Girosi F., Jones M., Poggio T. Regularization theory and neural architectures. Neural Computation. 7:1995;219-269.
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 10
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • Redner R.A., Walker H.F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review. 26:1984;195-239.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 11
    • 0032614642 scopus 로고    scopus 로고
    • Hypothesis selection and testing by the MDL principle
    • Rissanen J. Hypothesis selection and testing by the MDL principle. Computer Journal. 42:(4):1999;260-269.
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 260-269
    • Rissanen, J.1
  • 12
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics. 6:1978;461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 14
    • 0028731590 scopus 로고
    • Multisets modeling learning: An unified theory for supervised and unsupervised learning
    • Xu L. Multisets modeling learning: An unified theory for supervised and unsupervised learning. Proceedings of IEEE ICNN94, June 26-July 2, 1994, Orlando, FL. I:1994;315-320.
    • (1994) Proceedings of IEEE ICNN94, June 26-July 2, 1994, Orlando, FL , vol.1 , pp. 315-320
    • Xu, L.1
  • 15
    • 0005906827 scopus 로고
    • Bayesian-Kullback coupled Ying-Yang machines: Unified learnings and new results on vector quantization
    • Xu L. Bayesian-Kullback coupled Ying-Yang machines: Unified learnings and new results on vector quantization. Proceedings of ICONIP95, Oct 30-Nov 3, 1995, Beijing, China. 1995;977-988.
    • (1995) Proceedings of ICONIP95, Oct 30-Nov 3, 1995, Beijing, China , pp. 977-988
    • Xu, L.1
  • 17
    • 0037922029 scopus 로고    scopus 로고
    • Bayesian-Kullback Ying-Yang learning scheme: Reviews and new results
    • Xu L. Bayesian-Kullback Ying-Yang learning scheme: Reviews and new results. Proceedings of ICONIP96, Sept 24-27, 1996, Hong Kong. 1:1996;59-67.
    • (1996) Proceedings of ICONIP96, Sept 24-27, 1996, Hong Kong , vol.1 , pp. 59-67
    • Xu, L.1
  • 18
    • 85156254039 scopus 로고    scopus 로고
    • A unified learning scheme: Bayesian-Kullback Ying-Yang machine
    • Xu L. A unified learning scheme: Bayesian-Kullback Ying-Yang machine. Advances in Neural Information Processing Systems. 8:1996;444-450.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 444-450
    • Xu, L.1
  • 19
    • 0006005149 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach: (I) Unsupervised and semi-unsupervised learning
    • S. Amari, & N. Kassabov. Berlin: Springer
    • Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach: (I) Unsupervised and semi-unsupervised learning. Amari S., Kassabov N. Brain-like computing and intelligent information systems. 1997;241-274 Springer, Berlin.
    • (1997) Brain-like computing and intelligent information systems , pp. 241-274
    • Xu, L.1
  • 20
    • 0038259620 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach: (II) From unsupervised learning to supervised learning and temporal modeling
    • D.Y. Leung. Berlin: Springer
    • Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach: (II) From unsupervised learning to supervised learning and temporal modeling. Leung D.Y. Theoretical aspects of neural computation: A multidisciplinary perspective. 1997;25-42 Springer, Berlin.
    • (1997) Theoretical aspects of neural computation: A multidisciplinary perspective , pp. 25-42
    • Xu, L.1
  • 21
    • 0012671071 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach: (II): Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning
    • D.Y. Leung. Berlin: Springer
    • Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach: (II): Models and algorithms for dependence reduction, data dimension reduction, ICA and supervised learning. Leung D.Y. Theoretical aspects of neural computation: A multidisciplinary perspective. 1997;Springer, Berlin.
    • (1997) Theoretical aspects of neural computation: A multidisciplinary perspective
    • Xu, L.1
  • 22
    • 0031270958 scopus 로고    scopus 로고
    • Bayesian Ying-Yang machine, clustering and number of clusters
    • Xu L. Bayesian Ying-Yang machine, clustering and number of clusters. Pattern Recognition Letters. 18:(11):1997;1167-1178.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11 , pp. 1167-1178
    • Xu, L.1
  • 23
    • 0000274977 scopus 로고    scopus 로고
    • Bayesian Ying-Yang system and theory as a unified statistical learning approach (VII): Data smoothing
    • Xu L. Bayesian Ying-Yang system and theory as a unified statistical learning approach (VII): Data smoothing. Proceedings of ICONIP'98, Oct 21-23, 1998, Kitakyushu, Japan. 1:1998;243-248.
    • (1998) Proceedings of ICONIP'98, Oct 21-23, 1998, Kitakyushu, Japan , vol.1 , pp. 243-248
    • Xu, L.1
  • 24
    • 0037584086 scopus 로고    scopus 로고
    • BKYY three layer net learning, EM-like al-gorithm, and selection criterion for hidden unit number
    • Xu L. BKYY three layer net learning, EM-like al-gorithm, and selection criterion for hidden unit number. Proceedings of ICONIP'98, Oct 21-23, 1998, Kitakyushu, Japan. 2:1998;631-634.
    • (1998) Proceedings of ICONIP'98, Oct 21-23, 1998, Kitakyushu, Japan , vol.2 , pp. 631-634
    • Xu, L.1
  • 25
    • 0031628777 scopus 로고    scopus 로고
    • Rival penalized competitive learning, finite mixture, and multisets clustering
    • Xu L. Rival penalized competitive learning, finite mixture, and multisets clustering. Proceedings of IJCNN98, May 5-9, 1998, Anchorage, Alaska. II:1998;2525-2530.
    • (1998) Proceedings of IJCNN98, May 5-9, 1998, Anchorage, Alaska , vol.2 , pp. 2525-2530
    • Xu, L.1
  • 26
    • 0033325429 scopus 로고    scopus 로고
    • BYY data smoothing based learning on a small size of samples
    • Xu L. BYY data smoothing based learning on a small size of samples. Proceedings of IJCNN'99, Washington, DC, USA, July 10-16. 1:(6):1999;546-551.
    • (1999) Proceedings of IJCNN'99, Washington, DC, USA, July 10-16 , vol.1 , Issue.6 , pp. 546-551
    • Xu, L.1
  • 27
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model and blind source separation
    • Xu L. Temporal BYY learning for state space approach, hidden Markov model and blind source separation. IEEE Transactions on Signal Processing. 48:2000;2132-2144.
    • (2000) IEEE Transactions on Signal Processing , vol.48 , pp. 2132-2144
    • Xu, L.1
  • 28
    • 0004404090 scopus 로고    scopus 로고
    • BYY learning system and theory for parameter estimation, data smoothing based regularization and model selection
    • Xu L. BYY learning system and theory for parameter estimation, data smoothing based regularization and model selection. Neural, Parallel and Scientific Computations. 8:2000;55-82.
    • (2000) Neural, Parallel and Scientific Computations , vol.8 , pp. 55-82
    • Xu, L.1
  • 29
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space and generalized APT financial analyses
    • Xu L. BYY harmony learning, independent state space and generalized APT financial analyses. IEEE Transactions on Neural Networks. 12:(4):2001;822-849.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1
  • 30
    • 0035259214 scopus 로고    scopus 로고
    • Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets
    • Xu L. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets. International Journal of Neural Systems. 11:(1):2001;3-69.
    • (2001) International Journal of Neural Systems , vol.11 , Issue.1 , pp. 3-69
    • Xu, L.1
  • 31
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on mixture models
    • Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on mixture models. Neural Networks. 15:2002;1125-1151.
    • (2002) Neural Networks , vol.15 , pp. 1125-1151
    • Xu, L.1
  • 32
    • 0037380850 scopus 로고    scopus 로고
    • BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units
    • Xu L. BYY learning, regularized implementation, and model selection on modular networks with one hidden layer of binary units. Neurocomputing. 51:2003;277-301.
    • (2003) Neurocomputing , vol.51 , pp. 277-301
    • Xu, L.1
  • 33
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net and curve detection
    • Xu L., Krzyzak A., Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Transactions on Neural Networks. 4:1993;636-649.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.