메뉴 건너뛰기




Volumn 23, Issue 14, 2007, Pages 1783-1791

Biological network mapping and source signal deduction

Author keywords

[No Author keywords available]

Indexed keywords

CHLORPHENOTANE; ZINC;

EID: 34547858483     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btm246     Document Type: Article
Times cited : (9)

References (32)
  • 1
    • 33845722419 scopus 로고
    • Factor analysis and AIC
    • Akaike,H. (1987) Factor analysis and AIC. Psychometrika, 52, 317-332.
    • (1987) Psychometrika , vol.52 , pp. 317-332
    • Akaike, H.1
  • 2
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter,O. et al. (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl Acad. Sci. USA, 97, 10101-10106.
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 10101-10106
    • Alter, O.1
  • 3
    • 0037452966 scopus 로고    scopus 로고
    • Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms
    • Alter,O. et al. (2003) Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc. Natl Acad. Sci. USA, 100, 3351-3356.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 3351-3356
    • Alter, O.1
  • 4
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal,M.J. et al. (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21, 349-356.
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.J.1
  • 5
    • 23744491001 scopus 로고    scopus 로고
    • Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach
    • Boulesteix,A.L. and Strimmer,K. (2005) Predicting transcription factor activities from combined analysis of microarray and ChIP data: A partial least squares approach. Theor. Biol. Med. Model., 2, 23.
    • (2005) Theor. Biol. Med. Model , vol.2 , pp. 23
    • Boulesteix, A.L.1    Strimmer, K.2
  • 6
    • 0035590060 scopus 로고    scopus 로고
    • An overview of analytic rotation in exploratory factor analysis
    • Browne,M. (2001) An overview of analytic rotation in exploratory factor analysis. Multivariate Behav. Res., 36, 111-150.
    • (2001) Multivariate Behav. Res , vol.36 , pp. 111-150
    • Browne, M.1
  • 7
    • 33845365903 scopus 로고    scopus 로고
    • A Gibbs sampler for the identification of gene expression and network connectivity consistency
    • Brynildsen,M.P. et al. (2006) A Gibbs sampler for the identification of gene expression and network connectivity consistency. Bioinformatics, 22, 3040-3046.
    • (2006) Bioinformatics , vol.22 , pp. 3040-3046
    • Brynildsen, M.P.1
  • 8
    • 33749517854 scopus 로고    scopus 로고
    • Versatility and connectivity efficiency of bipartite transcription networks
    • Brynildsen,M.P. et al. (2006) Versatility and connectivity efficiency of bipartite transcription networks. Biophys. J., 91 2749-2759.
    • (2006) Biophys. J , vol.91 , pp. 2749-2759
    • Brynildsen, M.P.1
  • 9
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker,H. J. et al. (2001) Regulatory element detection using correlation with expression. Nat. Genet., 27, 167-171.
    • (2001) Nat. Genet , vol.27 , pp. 167-171
    • Bussemaker, H.J.1
  • 10
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman,N. (2004) Inferring cellular networks using probabilistic graphical models. Science, 303, 799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 11
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman,N. et al. (2000) Using Bayesian networks to analyze expression data. J. Comput. Biol., 7, 601-620.
    • (2000) J. Comput. Biol , vol.7 , pp. 601-620
    • Friedman, N.1
  • 12
    • 33747841966 scopus 로고    scopus 로고
    • Transcriptome network component analysis with limited microarray data
    • Galbraith,S.J. et al. (2006) Transcriptome network component analysis with limited microarray data. Bioinformatics, 22, 1886-1894.
    • (2006) Bioinformatics , vol.22 , pp. 1886-1894
    • Galbraith, S.J.1
  • 13
    • 2942582468 scopus 로고    scopus 로고
    • Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data
    • Gao,F. et al. (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics, 5, 31.
    • (2004) BMC Bioinformatics , vol.5 , pp. 31
    • Gao, F.1
  • 14
    • 4544352942 scopus 로고    scopus 로고
    • Transcriptional regulatory code of a eukaryotic genome
    • Harbison,C.T. et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature, 431, 99-104.
    • (2004) Nature , vol.431 , pp. 99-104
    • Harbison, C.T.1
  • 15
    • 0034682504 scopus 로고    scopus 로고
    • Fundamental patterns underlying gene expression profiles: Simplicity from complexity
    • Holter,N.S. et al. (2000) Fundamental patterns underlying gene expression profiles: Simplicity from complexity. Proc. Natl Acad. Sci. USA, 97, 8409-8414.
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 8409-8414
    • Holter, N.S.1
  • 16
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • Lee,S.I. and Batzoglou,S. (2003) Application of independent component analysis to microarrays. Genome Biol., 4, 76.
    • (2003) Genome Biol , vol.4 , pp. 76
    • Lee, S.I.1    Batzoglou, S.2
  • 17
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in Saccharomyces cerevisiae
    • Lee,T.I. et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298, 799-804.
    • (2002) Science , vol.298 , pp. 799-804
    • Lee, T.I.1
  • 18
    • 33645108505 scopus 로고    scopus 로고
    • Using a state-space model with hidden variables to infer transcription factor activities
    • Li,Z. et al. (2006) Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics 22, 747-754.
    • (2006) Bioinformatics , vol.22 , pp. 747-754
    • Li, Z.1
  • 19
    • 0345824737 scopus 로고    scopus 로고
    • Network component analysis: Reconstruction of regulatory signals in biological system
    • Liao,J.C. et al. (2003) Network component analysis: Reconstruction of regulatory signals in biological system. Proc. Natl Acad. Sci. USA 100, 15522-15527.
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 15522-15527
    • Liao, J.C.1
  • 20
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister,W. (2002) Linear modes of gene expression determined by independent component analysis. Bioinformatics, 18, 51-60.
    • (2002) Bioinformatics , vol.18 , pp. 51-60
    • Liebermeister, W.1
  • 21
    • 14844342814 scopus 로고    scopus 로고
    • Genome-wide analysis of the context-dependence of regulatory networks
    • Papp,B. and Oliver,S. (2005) Genome-wide analysis of the context-dependence of regulatory networks. Genome Biol., 6, 206.
    • (2005) Genome Biol , vol.6 , pp. 206
    • Papp, B.1    Oliver, S.2
  • 22
    • 11244318119 scopus 로고    scopus 로고
    • Minreg: Inferring an active regulator set
    • Pe'er,D. et al. (2002) Minreg: Inferring an active regulator set. Bioinformatics, 18 (Suppl. 1), S258-S267.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Pe'er, D.1
  • 23
    • 0142179209 scopus 로고    scopus 로고
    • Prediction of regulatory networks: Genome-wide identification of transcription factor targets from gene expression data
    • Qian,J. et al. (2003) Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics, 19, 1917-1926.
    • (2003) Bioinformatics , vol.19 , pp. 1917-1926
    • Qian, J.1
  • 24
    • 33645107349 scopus 로고    scopus 로고
    • Bayesian sparse hidden components analysis for transcription regulation networks
    • Sabatti,C. and James,G.M. (2006) Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics, 22, 739-746.
    • (2006) Bioinformatics , vol.22 , pp. 739-746
    • Sabatti, C.1    James, G.M.2
  • 25
    • 33751008680 scopus 로고    scopus 로고
    • Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities
    • Sanguinetti,G. et al. (2006) Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics, 22, 2775-2781.
    • (2006) Bioinformatics , vol.22 , pp. 2775-2781
    • Sanguinetti, G.1
  • 26
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal,E. et al. (2003) Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166-176.
    • (2003) Nat. Genet , vol.34 , pp. 166-176
    • Segal, E.1
  • 28
    • 15244338624 scopus 로고    scopus 로고
    • gNCA: A framework for determining transcription factor activity based on transcriptome: Identifiability and numerical unplementation
    • Tran,L. M. et al. (2005) gNCA: A framework for determining transcription factor activity based on transcriptome: Identifiability and numerical unplementation. Metab. Eng., 7, 128-141.
    • (2005) Metab. Eng , vol.7 , pp. 128-141
    • Tran, L.M.1
  • 29
    • 2442691914 scopus 로고    scopus 로고
    • Wu,F. X. et al. (2004) Modeling gene expression from microarray expression data with state-space equations. Pac. Symp. Biocomput., 007, 581-592.
    • Wu,F. X. et al. (2004) Modeling gene expression from microarray expression data with state-space equations. Pac. Symp. Biocomput., 007, 581-592.
  • 30
    • 24044458903 scopus 로고    scopus 로고
    • Determination of functional interactions among signalling pathways in Escherichia coli K-12
    • Yang,Y.L. and Liao,J.C. (2005) Determination of functional interactions among signalling pathways in Escherichia coli K-12. Metab. Eng., 7, 280-290.
    • (2005) Metab. Eng , vol.7 , pp. 280-290
    • Yang, Y.L.1    Liao, J.C.2
  • 31
    • 23744502897 scopus 로고    scopus 로고
    • Inferring yeah cell cycle regulators and interactions using transcription factor activities
    • Yang,Y.L. et al. (2005) Inferring yeah cell cycle regulators and interactions using transcription factor activities. BMC Genomics., 6, 90.
    • (2005) BMC Genomics , vol.6 , pp. 90
    • Yang, Y.L.1
  • 32
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung,M.K. et al. (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl Acad. Sci. USA, 99, 6163-6168.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 6163-6168
    • Yeung, M.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.