메뉴 건너뛰기




Volumn 30, Issue 2, 2008, Pages 713-730

Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method

Author keywords

Active set method; Karush Kuhn Tucker (KKT) conditions; Lower rank approximation; Nonnegative Matrix factorization; Nonnegativity constrained least squares; Two block coordinate descent method

Indexed keywords

ACTIVE SET METHOD; KARUSH-KUHN-TUCKER (KKT) CONDITIONS; LOWER RANK APPROXIMATION; NONNEGATIVE MATRIX FACTORIZATION; NONNEGATIVITY CONSTRAINED LEAST SQUARES; TWO-BLOCK COORDINATE DESCENT METHOD;

EID: 67349093319     PISSN: 08954798     EISSN: 10957162     Source Type: Journal    
DOI: 10.1137/07069239X     Document Type: Article
Times cited : (512)

References (37)
  • 3
    • 0642334046 scopus 로고    scopus 로고
    • A fast non-negativity-constrained least squares algorithm
    • R. BRO AND S. DE JONG, A fast non-negativity-constrained least squares algorithm, J. Chemometrics, 11 (1997), pp. 393-401.
    • (1997) J. Chemometrics , vol.11 , pp. 393-401
    • BRO, R.1    DE JONG, S.2
  • 4
    • 1642529511 scopus 로고    scopus 로고
    • Metagenes and molecular pattern discovery using matrix factorization
    • J. P. BRUNET, P. TAMAYO, T. R. GOLUB, and J. P. MESIROV, Metagenes and molecular pattern discovery using matrix factorization, Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 4164-4169.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 4164-4169
    • BRUNET, J.P.1    TAMAYO, P.2    GOLUB, T.R.3    MESIROV, J.P.4
  • 5
    • 33847718849 scopus 로고    scopus 로고
    • Optimality, Computation and Interpretation of Nonnegative Matrix Factorization
    • preprint
    • M. CHU, F. DIELE, R. PLEMMONS, and S. RAGNI, Optimality, Computation and Interpretation of Nonnegative Matrix Factorization, preprint, 2004.
    • (2004)
    • CHU, M.1    DIELE, F.2    PLEMMONS, R.3    RAGNI, S.4
  • 7
    • 29144442380 scopus 로고    scopus 로고
    • D. DUECK, Q. D. MORRIS, AND B. J. FREY, Multi-way clustering of microarray data using probabilistic sparse matrix factorization, Bioinform., 21 (2005), pp. il44-il51.
    • D. DUECK, Q. D. MORRIS, AND B. J. FREY, Multi-way clustering of microarray data using probabilistic sparse matrix factorization, Bioinform., 21 (2005), pp. il44-il51.
  • 8
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse nonnegative matrix factorization
    • Y. GAO and G. CHURCH, Improving molecular cancer class discovery through sparse nonnegative matrix factorization, Bioinform., 21 (2005), pp. 3970-3975.
    • (2005) Bioinform , vol.21 , pp. 3970-3975
    • GAO, Y.1    CHURCH, G.2
  • 9
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed, Johns Hopkins University Press, Baltimore, MD
    • G. H. GOLUB and C. F. VAN LOAN, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
    • (1996) Matrix Computations
    • GOLUB, G.H.1    VAN LOAN, C.F.2
  • 11
    • 34547433480 scopus 로고    scopus 로고
    • Accelerating the Lee-Seung Algorithm for Non-negative Matrix Factorization
    • Tech. report, Department of Computational and Applied Mathematics, Rice University, Houston, TX
    • E. F. GONZALES and Y. ZHANG, Accelerating the Lee-Seung Algorithm for Non-negative Matrix Factorization, Tech. report, Department of Computational and Applied Mathematics, Rice University, Houston, TX, 2005.
    • (2005)
    • GONZALES, E.F.1    ZHANG, Y.2
  • 12
    • 0033904057 scopus 로고    scopus 로고
    • On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    • L. GRIPPO AND M. SCIANDRONE, On the convergence of the block nonlinear Gauss-Seidel method under convex constraints, Oper. Res. Lett., 26 (2000), pp. 127-136.
    • (2000) Oper. Res. Lett , vol.26 , pp. 127-136
    • GRIPPO, L.1    SCIANDRONE, M.2
  • 14
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. HOYER, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res., 5 (2004), pp. 1457-1469.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • HOYER, P.O.1
  • 17
    • 34547453725 scopus 로고    scopus 로고
    • Cancer class discovery using non-negative matrix factorization based on alternating non-negativity- constrained least squares
    • Proceedings of the Third International Symposium on Bioinformatics Research and Applications, ISBRA, Springer-Verlag, New York
    • H. KIM and H. PARK, Cancer class discovery using non-negative matrix factorization based on alternating non-negativity- constrained least squares, in Proceedings of the Third International Symposium on Bioinformatics Research and Applications, ISBRA 2007, Lecture Notes in Comput. Sci. 4463, Springer-Verlag, New York, 2007, pp. 477-487.
    • (2007) Lecture Notes in Comput. Sci , vol.4463 , pp. 477-487
    • KIM, H.1    PARK, H.2
  • 18
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativityconstrained least squares for microarray data analysis
    • H. KIM and H. PARK, Sparse non-negative matrix factorizations via alternating non-negativityconstrained least squares for microarray data analysis, Bioinform., 23 (2007), pp. 1495-1502.
    • (2007) Bioinform , vol.23 , pp. 1495-1502
    • KIM, H.1    PARK, H.2
  • 19
    • 0037810449 scopus 로고    scopus 로고
    • Subsystem identification through dimensionality reduction of largescale gene expression data
    • P. M. KIM and B. TIDOR, Subsystem identification through dimensionality reduction of largescale gene expression data, Genome Res., 13 (2003), pp. 1706-1718.
    • (2003) Genome Res , vol.13 , pp. 1706-1718
    • KIM, P.M.1    TIDOR, B.2
  • 21
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. LEE and H. S. SEUNG, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), pp. 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • LEE, D.D.1    SEUNG, H.S.2
  • 22
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • MIT Press, Cambridge, MA
    • D. D. LEE and H. S. SEUNG, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing 13, MIT Press, Cambridge, MA, 2001, pp. 556-562.
    • (2001) Advances in Neural Information Processing , vol.13 , pp. 556-562
    • LEE, D.D.1    SEUNG, H.S.2
  • 24
    • 33748654502 scopus 로고    scopus 로고
    • Projected Gradient Methods for Non-negative Matrix Factorization
    • ISSTECH-95-013, Department of Computer Science, National Taiwan University
    • C. J. LIN, Projected Gradient Methods for Non-negative Matrix Factorization, Tech. Report Information and Support Service ISSTECH-95-013, Department of Computer Science, National Taiwan University, 2005.
    • (2005) Tech. Report Information and Support Service
    • LIN, C.J.1
  • 25
    • 25844467355 scopus 로고    scopus 로고
    • Existing and New Algorithms for Nonnegative Matrix Factorization
    • Tech. report, University of Texas, Austin
    • W. LIU and J. YI, Existing and New Algorithms for Nonnegative Matrix Factorization, Tech. report, University of Texas, Austin, 2003.
    • (2003)
    • LIU, W.1    YI, J.2
  • 26
    • 0003554146 scopus 로고
    • The MathWorks, Natick, MA
    • MATLAB User's Guide, The MathWorks, Natick, MA, 1992.
    • (1992) MATLAB User's Guide
  • 27
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. PAATERO and U. TAPPER, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • PAATERO, P.1    TAPPER, U.2
  • 28
    • 47649126726 scopus 로고    scopus 로고
    • One-sided non-negative matrix factorization and non-negative centroid dimension reduction for text classification
    • M. Castellanos and M. W. Berry, eds, SIAM, Philadelphia
    • H. PARK and H. KIM, One-sided non-negative matrix factorization and non-negative centroid dimension reduction for text classification, in Proceedings of the Workshop on Text Mining at the Sixth SIAM International Conference on Data Mining, M. Castellanos and M. W. Berry, eds., SIAM, Philadelphia, 2006.
    • (2006) Proceedings of the Workshop on Text Mining at the Sixth SIAM International Conference on Data Mining
    • PARK, H.1    KIM, H.2
  • 30
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • V. P. PAUCA, J. PIPER, and R. J. PLEMMONS, Nonnegative matrix factorization for spectral data analysis, Linear Algebra Appl., 416 (2006), pp. 29-47.
    • (2006) Linear Algebra Appl , vol.416 , pp. 29-47
    • PAUCA, V.P.1    PIPER, J.2    PLEMMONS, R.J.3
  • 33
    • 0037165140 scopus 로고    scopus 로고
    • S. L. POMEROY, P. TAMAYO, M. GAASENBEEK. L. M. STURLA, M. ANGELO. M. E. MCLAUGHLIN, J. Y. KIM, L. C. GOUMNEROVA, P. M. BLACK, C. LAU, J. C. ALLEN. D. ZAGZAG. J. M. OLSON, T. CURRAN, C. WETMORE, J. A. BIEGEL. T. POGGIO. S. MUKHERJEE. R. RIFKIN. A. CALIFANO, G. STOLOVITZKY. D. N. LOUIS, J. P. MESIROV. E. S. LANDER, and T. R. GOLUB, Prediction of central nervous system embryonal tumour outcome based on gene expression, Nature, 415 (2002), pp. 436-442.
    • S. L. POMEROY, P. TAMAYO, M. GAASENBEEK. L. M. STURLA, M. ANGELO. M. E. MCLAUGHLIN, J. Y. KIM, L. C. GOUMNEROVA, P. M. BLACK, C. LAU, J. C. ALLEN. D. ZAGZAG. J. M. OLSON, T. CURRAN, C. WETMORE, J. A. BIEGEL. T. POGGIO. S. MUKHERJEE. R. RIFKIN. A. CALIFANO, G. STOLOVITZKY. D. N. LOUIS, J. P. MESIROV. E. S. LANDER, and T. R. GOLUB, Prediction of central nervous system embryonal tumour outcome based on gene expression, Nature, 415 (2002), pp. 436-442.
  • 34
    • 38549127892 scopus 로고    scopus 로고
    • Nonnegative Matrix Approximation: Algorithms and Applications
    • Tech. Report 06-27, University of Texas, Austin
    • S. SRA and I. S. DHILLON, Nonnegative Matrix Approximation: Algorithms and Applications, Tech. Report 06-27, University of Texas, Austin, 2006.
    • (2006)
    • SRA, S.1    DHILLON, I.S.2
  • 35
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via LASSO
    • R. TIBSHIRANI, Regression shrinkage and selection via LASSO, J. Roy. Statist. Soc. B, 58 (1996), pp. 267-288.
    • (1996) J. Roy. Statist. Soc. B , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 36
    • 24944500827 scopus 로고    scopus 로고
    • Fast algorithm for the solution of large-scale nonnegativity-constrained least squares problems
    • M. H. VAN BENTHEM and M. R. KEENAN, Fast algorithm for the solution of large-scale nonnegativity-constrained least squares problems, J. Chemometrics, 18 (2004), pp. 441-450.
    • (2004) J. Chemometrics , vol.18 , pp. 441-450
    • VAN BENTHEM, M.H.1    KEENAN, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.