메뉴 건너뛰기




Volumn 26, Issue 8, 2010, Pages 1073-1081

Inferring cluster-based networks from differently stimulated multiple time-course gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; DNA MICROARRAY; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; GENETIC DATABASE; GENETICS; HUMAN; METHODOLOGY; TUMOR CELL LINE;

EID: 77951942705     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq094     Document Type: Article
Times cited : (15)

References (43)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike,H. (1974) A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19, 716-723.
    • (1974) IEEE Trans. Automat. Contr. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 34047174559 scopus 로고    scopus 로고
    • A module of negative feedback regulators defines growth factor signaling
    • Amit,I. et al. (2007) A module of negative feedback regulators defines growth factor signaling. Nat. Genet., 39, 503-512.
    • (2007) Nat. Genet. , vol.39 , pp. 503-512
    • Amit, I.1
  • 3
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal,M.J. et al. (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21, 349-356.
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.J.1
  • 4
    • 3142665525 scopus 로고    scopus 로고
    • GOstat: find statistically overrepresented Gene Ontologies within a group of genes
    • Beissbarth,T. and Speed,T.P. (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics, 20, 1464-1465.
    • (2004) Bioinformatics , vol.20 , pp. 1464-1465
    • Beissbarth, T.1    Speed, T.P.2
  • 5
    • 37548999369 scopus 로고    scopus 로고
    • Computational epigenetics
    • Bock,C. and Lengauer,T. (2008) Computational epigenetics. Bioinformatics, 24, 1-10.
    • (2008) Bioinformatics , vol.24 , pp. 1-10
    • Bock, C.1    Lengauer, T.2
  • 6
    • 44249113841 scopus 로고    scopus 로고
    • Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth
    • Bromberg,K.D. et al. (2008) Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science, 320, 903-909.
    • (2008) Science , vol.320 , pp. 903-909
    • Bromberg, K.D.1
  • 7
    • 28444499694 scopus 로고    scopus 로고
    • Random walk models for Bayesian clustering of gene expression profiles
    • Ferrazzi,F. et al. (2005) Random walk models for Bayesian clustering of gene expression profiles. Appl. Bioinformatics, 4, 263-276.
    • (2005) Appl. Bioinformatics , vol.4 , pp. 263-276
    • Ferrazzi, F.1
  • 8
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley,C. and Raftery,A.E. (2002) Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc., 97, 611-631.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 9
    • 0003423085 scopus 로고    scopus 로고
    • Parameter estimation for linear dynamical systems
    • Department of Computer Science, University of Toronto
    • Ghahramani,Z. and Hinton,G.E. (1996) Parameter estimation for linear dynamical systems. Technical report CRG-TR-96-2, Department of Computer Science, University of Toronto.
    • (1996) Technical report CRG-TR-96-2
    • Ghahramani, Z.1    Hinton, G.E.2
  • 11
    • 41349101972 scopus 로고    scopus 로고
    • Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models
    • Hirose,O. et al. (2008) Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics, 24, 932-942.
    • (2008) Bioinformatics , vol.24 , pp. 932-942
    • Hirose, O.1
  • 12
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • Imoto,S. et al. (2002) Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In Pacific Symposium on Biocomputing, pp. 175-186.
    • (2002) Pacific Symposium on Biocomputing , pp. 175-186
    • Imoto, S.1
  • 13
    • 34648840585 scopus 로고    scopus 로고
    • Cluster-based network model for time-course gene expression data
    • Inoue,L.Y. et al. (2007) Cluster-based network model for time-course gene expression data. Biostatistics, 8, 507-525.
    • (2007) Biostatistics , vol.8 , pp. 507-525
    • Inoue, L.Y.1
  • 14
    • 0142121516 scopus 로고    scopus 로고
    • Exploration, normalization, and summaries of high density oligonucleotide array probe level data
    • Irizarry,R.A. et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, 249-264.
    • (2003) Biostatistics , vol.4 , pp. 249-264
    • Irizarry, R.A.1
  • 15
    • 0035947724 scopus 로고    scopus 로고
    • Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells
    • Kao,S. et al. (2001) Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. J. Biol. Chem., 276, 18169-18177.
    • (2001) J. Biol. Chem. , vol.276 , pp. 18169-18177
    • Kao, S.1
  • 16
    • 0037461033 scopus 로고    scopus 로고
    • Dynamic modeling of genetic networks using genetic algorithm and S-system
    • Kikuchi,S. et al. (2003) Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics, 19, 643-650.
    • (2003) Bioinformatics , vol.19 , pp. 643-650
    • Kikuchi, S.1
  • 17
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim,S. et al. (2003) Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief. Bioinform., 4, 228-235.
    • (2003) Brief. Bioinform. , vol.4 , pp. 228-235
    • Kim, S.1
  • 18
    • 20144387371 scopus 로고    scopus 로고
    • Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm
    • Kimura,S. et al. (2005) Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics, 21, 1154-1163.
    • (2005) Bioinformatics , vol.21 , pp. 1154-1163
    • Kimura, S.1
  • 19
    • 63549084899 scopus 로고    scopus 로고
    • Genetic network inference as a series of discrimination tasks
    • Kimura,S. et al. (2009) Genetic network inference as a series of discrimination tasks. Bioinformatics, 25, 918-925.
    • (2009) Bioinformatics , vol.25 , pp. 918-925
    • Kimura, S.1
  • 20
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a data set using sum-of-squares clustering
    • Krzanowski,W.J. and Lai,Y.T. (1988) A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics, 44, 23-34.
    • (1988) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.J.1    Lai, Y.T.2
  • 21
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixedeffects model with B-splines
    • Luan,Y. and Li,H. (2003) Clustering of time-course gene expression data using a mixedeffects model with B-splines. Bioinformatics, 19, 474-482.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 22
    • 38849136740 scopus 로고    scopus 로고
    • TimeClust: a clustering tool for gene expression time series
    • Magni,P. et al. (2008) TimeClust: a clustering tool for gene expression time series. Bioinformatics, 24, 430-432.
    • (2008) Bioinformatics , vol.24 , pp. 430-432
    • Magni, P.1
  • 23
    • 34248572623 scopus 로고    scopus 로고
    • Boolean dynamics of genetic regulatory networks inferred from microarray time series data
    • Martin,S. et al. (2007) Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics, 23, 866-874.
    • (2007) Bioinformatics , vol.23 , pp. 866-874
    • Martin, S.1
  • 24
    • 33847632469 scopus 로고    scopus 로고
    • Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation
    • Miller,B.H. et al. (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl Acad. Sci. USA, 104, 3342-3347.
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 3342-3347
    • Miller, B.H.1
  • 25
    • 34547623194 scopus 로고    scopus 로고
    • Common effector processing mediates cell-specific responses to stimuli
    • Miller-Jensen,K. et al. (2007) Common effector processing mediates cell-specific responses to stimuli. Nature, 448, 604-608.
    • (2007) Nature , vol.448 , pp. 604-608
    • Miller-Jensen, K.1
  • 26
    • 33947547741 scopus 로고    scopus 로고
    • Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation
    • Nagashima,T. et al. (2007) Quantitative transcriptional control of ErbB receptor signaling undergoes graded to biphasic response for cell differentiation. J. Biol. Chem., 282, 4045-4056.
    • (2007) J. Biol. Chem. , vol.282 , pp. 4045-4056
    • Nagashima, T.1
  • 27
    • 4143058645 scopus 로고    scopus 로고
    • Gene networks inference using dynamic Bayesian networks
    • Perrin,B.E. et al. (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics, 19, 138-148.
    • (2003) Bioinformatics , vol.19 , pp. 138-148
    • Perrin, B.E.1
  • 28
    • 0037047161 scopus 로고    scopus 로고
    • Cluster analysis of gene expression dynamics
    • Ramoni,M.F. et al. (2002) Cluster analysis of gene expression dynamics. Proc. Natl Acad. Sci. USA, 99, 9121-9126.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 9121-9126
    • Ramoni, M.F.1
  • 29
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell activation using gene expression profiling and state-space models
    • Rangel,C. et al. (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics, 20, 1361-1372.
    • (2004) Bioinformatics , vol.20 , pp. 1361-1372
    • Rangel, C.1
  • 30
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis,S. and Ghahramani,Z. (1999) A unifying review of linear Gaussian models. Neural Comput., 11, 305-345.
    • (1999) Neural Comput. , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 31
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs,K. et al. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz,G. (1978) Estimating the dimension of a model. Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 21844455527 scopus 로고    scopus 로고
    • Learning module networks
    • Segal,E. et al. (2005) Learning module networks. J. Mach. Learn. Res., 6, 557-588.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 557-588
    • Segal, E.1
  • 34
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a dataset: an information-theoretic approach
    • Sugar,C.A. and James,G.M. (2003) Finding the number of clusters in a dataset: an information-theoretic approach. J. Am. Stat. Assoc., 98, 750-763.
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 750-763
    • Sugar, C.A.1    James, G.M.2
  • 35
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • Tibshirani,R. et al. (2001) Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B, 63, 411-423.
    • (2001) J. R. Stat. Soc. Ser. B , vol.63 , pp. 411-423
    • Tibshirani, R.1
  • 36
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling
    • Toh,H. and Horimoto,K. (2002) Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics, 18, 287-297.
    • (2002) Bioinformatics , vol.18 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 37
    • 0034264299 scopus 로고    scopus 로고
    • SMEM algorithm for mixture models
    • Ueda,N. et al. (2000) SMEM algorithm for mixture models. Neural Comput., 12, 2109-2128.
    • (2000) Neural Comput. , vol.12 , pp. 2109-2128
    • Ueda, N.1
  • 38
    • 0033976586 scopus 로고    scopus 로고
    • TRANSFAC: an integrated system for gene expression regulation
    • Wingender,E. et al. (2000) TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res., 28, 316-319.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 316-319
    • Wingender, E.1
  • 39
    • 22544444517 scopus 로고    scopus 로고
    • Dynamic model-based clustering for time-course gene expression data
    • Wu,F.X. et al. (2005) Dynamic model-based clustering for time-course gene expression data. J. Bioinform. Comput. Biol., 3, 821-836.
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , pp. 821-836
    • Wu, F.X.1
  • 40
    • 85032779470 scopus 로고    scopus 로고
    • Finding module-based gene networks with state-space models - mining high-dimensional and short time-course gene expression data
    • Yamaguchi,R. et al. (2007) Finding module-based gene networks with state-space models - mining high-dimensional and short time-course gene expression data. IEEE Signal Process. Mag., 24, 37-46.
    • (2007) IEEE Signal Process. Mag. , vol.24 , pp. 37-46
    • Yamaguchi, R.1
  • 41
    • 0033776498 scopus 로고    scopus 로고
    • Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1
    • York,R.D. et al. (2000) Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol. Cell. Biol., 20, 8069-8083.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 8069-8083
    • York, R.D.1
  • 42
    • 2142687208 scopus 로고    scopus 로고
    • Aunified framework for model-based clustering
    • Zhong,S. and Ghosh,J. (2003)Aunified framework for model-based clustering. J.Mach. Learn. Res., 4, 1001-1037.
    • (2003) J.Mach. Learn. Res. , vol.4 , pp. 1001-1037
    • Zhong, S.1    Ghosh, J.2
  • 43
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou,M. and Conzen,S.D. (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71-79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.