메뉴 건너뛰기




Volumn 5050 LNCS, Issue , 2008, Pages 48-78

Bayesian Ying Yang system, best harmony learning, and Gaussian manifold based family

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN YING-YANG; COMPUTATIONAL INTELLIGENCE; COMPUTING COST; GAUSSIAN; GENERAL FRAMEWORK; GENERAL THEORY; LEARNING APPROACHES; LEARNING MODELS; LEARNING TASKS; MODEL SELECTION CRITERIA; MODEL SELECTIONS; PARAMETER LEARNING; PHASE IMPLEMENTATION; PROBABILITY THEORY; RESEARCH FRONTIERS; STATISTICAL LEARNING;

EID: 46049101030     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-68860-0_3     Document Type: Conference Paper
Times cited : (14)

References (66)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H.: A new look at the statistical model identification. IEEE Tr. Automatic Control 19, 714-723 (1974)
    • (1974) IEEE Tr. Automatic Control , vol.19 , pp. 714-723
    • Akaike, H.1
  • 2
    • 21144438166 scopus 로고
    • Likelihood of a model and information criteria
    • Akaike, H.: Likelihood of a model and information criteria. Journal of Econometrics 16, 3-14 (1981)
    • (1981) Journal of Econometrics , vol.16 , pp. 3-14
    • Akaike, H.1
  • 3
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • MIT Press, Cambridge
    • Amari, S., Cichocki, A., Yang, H.: A new learning algorithm for blind signal separation. In: Advances in NIPS, vol. 8, pp. 757-763. MIT Press, Cambridge (1996)
    • (1996) Advances in NIPS , vol.8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.3
  • 4
    • 33748528133 scopus 로고    scopus 로고
    • A Comparative Investigation on Model Selection in Independent Factor Analysis
    • An, Y.J., et al.: A Comparative Investigation on Model Selection in Independent Factor Analysis. J. Mathematical Modelling and Algorithms 5, 447-473 (2006)
    • (2006) J. Mathematical Modelling and Algorithms , vol.5 , pp. 447-473
    • An, Y.J.1
  • 6
    • 0024220237 scopus 로고
    • Auto-association by multilayer Perceptrons and singular value decomposition
    • Bourlard, H., Kamp, Y.: Auto-association by multilayer Perceptrons and singular value decomposition. Biological Cybernetics 59, 291-294 (1988)
    • (1988) Biological Cybernetics , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 7
    • 34250108028 scopus 로고
    • Model Selection and Akaike's Information Criterion: The general theory and its analytical extension
    • Bozdogan, H.: Model Selection and Akaike's Information Criterion: The general theory and its analytical extension. Psychometrika 52, 345-370 (1987)
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 8
    • 2142731041 scopus 로고
    • FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC
    • Bozdogan, H., Ramirez, D.E.: FACAIC: Model selection algorithm for the orthogonal factor model using AIC and FACAIC. Psychometrika 53(3), 407-415 (1988)
    • (1988) Psychometrika , vol.53 , Issue.3 , pp. 407-415
    • Bozdogan, H.1    Ramirez, D.E.2
  • 10
    • 0031591140 scopus 로고    scopus 로고
    • Unifying the derivations for the Akaike and corrected Akaike information criteria
    • Cavanaugh, J.E.: Unifying the derivations for the Akaike and corrected Akaike information criteria. Statistics & Probability Letters 33, 201-208 (1997)
    • (1997) Statistics & Probability Letters , vol.33 , pp. 201-208
    • Cavanaugh, J.E.1
  • 13
    • 0001219859 scopus 로고
    • Regularization theory and neural architectures
    • Girosi, F., et al.: Regularization theory and neural architectures. Neural Computation 7, 219-269 (1995)
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1
  • 14
    • 0017083148 scopus 로고
    • Adaptive patten classification and universal recording: I&II
    • Grossberg, S.: Adaptive patten classification and universal recording: I&II. Biological Cybernetics 23, 187-202 (1976)
    • (1976) Biological Cybernetics , vol.23 , pp. 187-202
    • Grossberg, S.1
  • 15
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and Helmholtz free energy
    • Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Advances in NIPS, vol. 6, pp. 3-10 (1994)
    • (1994) Advances in NIPS , vol.6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 16
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised learning neural networks
    • Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.N.: The wake-sleep algorithm for unsupervised learning neural networks. Science 268, 1158-1160 (1995)
    • (1995) Science , vol.268 , pp. 1158-1160
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.N.4
  • 17
    • 33745905639 scopus 로고    scopus 로고
    • Hu, X.L., Xu, L.: A Comparative Study on Selection of Cluster Number and Local Subspace Dimension in the Mixture PCA Models. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, 3971, pp. 1214-1221. Springer, Heidelberg (2006)
    • Hu, X.L., Xu, L.: A Comparative Study on Selection of Cluster Number and Local Subspace Dimension in the Mixture PCA Models. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1214-1221. Springer, Heidelberg (2006)
  • 18
    • 4644228752 scopus 로고    scopus 로고
    • A comparative investigation on subspace dimension determination
    • Hu, X.L., Xu, L.: A comparative investigation on subspace dimension determination. Neural Networks 17, 1051-1059 (2004)
    • (2004) Neural Networks , vol.17 , pp. 1051-1059
    • Hu, X.L.1    Xu, L.2
  • 19
    • 4043084564 scopus 로고    scopus 로고
    • Tutoiral on variational approximation methods
    • Opper, Saad eds, MIT Press, Cambridge
    • Jaakkola, T.S.: Tutoiral on variational approximation methods. In: Opper, Saad (eds.) Advanced Mean Field methods: Theory & Pratice, pp. 129-160. MIT Press, Cambridge (2001)
    • (2001) Advanced Mean Field methods: Theory & Pratice , pp. 129-160
    • Jaakkola, T.S.1
  • 20
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: Introduction to variational methods for graphical models. Machine Learning 37, 183-233 (1999)
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 23
    • 0031084370 scopus 로고    scopus 로고
    • Regression and time series model selection using variants of the Schwarz information criterion
    • Neath, A.A., Cavanaugh, J.E.: Regression and time series model selection using variants of the Schwarz information criterion. Communications in Statistics A 26, 559-580 (1997)
    • (1997) Communications in Statistics A , vol.26 , pp. 559-580
    • Neath, A.A.1    Cavanaugh, J.E.2
  • 24
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • Jordan, M.I, ed, MIT Press, Cambridge
    • Neal, R., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M.I. (ed.) Learning in graphical models, pp. 355-368. MIT Press, Cambridge (1999)
    • (1999) Learning in graphical models , pp. 355-368
    • Neal, R.1    Hinton, G.E.2
  • 26
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. of IEEE 78, 1481-1497 (1990)
    • (1990) Proc. of IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 27
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood, and the EM algorithm
    • Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review 26, 195-239 (1984)
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 28
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen, J.: Stochastic complexity and modeling. Annals of Statistics 14(3), 1080-1100 (1986)
    • (1986) Annals of Statistics , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 30
    • 0033561894 scopus 로고    scopus 로고
    • On Cross Validation for Model Selection
    • Rivals, I., Personnaz, L.: On Cross Validation for Model Selection. Neural Computation 11, 863-870 (1999)
    • (1999) Neural Computation , vol.11 , pp. 863-870
    • Rivals, I.1    Personnaz, L.2
  • 31
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton
    • Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1972)
    • (1972) Convex Analysis
    • Rockafellar, R.1
  • 34
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461-464 (1978)
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 35
    • 51749109145 scopus 로고    scopus 로고
    • Bayesian Ying-Yang harmony learning for local factor analysis: A comparative investigation
    • Tizhoosh, Ventresca eds, Springer, Heidelberg
    • Shi, L.: Bayesian Ying-Yang harmony learning for local factor analysis: a comparative investigation. In: Tizhoosh, Ventresca (eds.) Oppositional Concepts in Computational Intelligence (Studies in CI). Springer, Heidelberg (2008)
    • (2008) Oppositional Concepts in Computational Intelligence (Studies in CI)
    • Shi, L.1
  • 36
    • 33749857863 scopus 로고    scopus 로고
    • Local Factor Analysis with Automatic Model Selection: A Comparative Study and Digits Recognition Application
    • Kollias, S, Stafylopatis, A, Duch, W, Oja, E, eds, ICANN 2006, Springer, Heidelberg
    • Shi, L., Xu, L.: Local Factor Analysis with Automatic Model Selection: A Comparative Study and Digits Recognition Application. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 260-269. Springer, Heidelberg (2006)
    • (2006) LNCS , vol.4132 , pp. 260-269
    • Shi, L.1    Xu, L.2
  • 37
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical prediction
    • Stone, M.: Cross-validatory choice and assessment of statistical prediction. J. Royal Statistical Society B 36, 111-147 (1974)
    • (1974) J. Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 38
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
    • Stone, M.: An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. Royal Statistical Society B 39(1), 44-47 (1977)
    • (1977) J. Royal Statistical Society B , vol.39 , Issue.1 , pp. 44-47
    • Stone, M.1
  • 39
    • 0000319198 scopus 로고
    • Cross-validation: A review
    • Stone, M.: Cross-validation: A review. Math. Operat. Statist. 9, 127-140 (1978)
    • (1978) Math. Operat. Statist , vol.9 , pp. 127-140
    • Stone, M.1
  • 42
    • 0000107517 scopus 로고
    • An information measure for classification
    • Wallace, C.S., Boulton, D.M.: An information measure for classification. Computer Journal 11, 185-194 (1968)
    • (1968) Computer Journal , vol.11 , pp. 185-194
    • Wallace, C.S.1    Boulton, D.M.2
  • 44
    • 28444443032 scopus 로고    scopus 로고
    • Learning Gaussian mixture models by structural risk minimization
    • August 19-21, Guangzhou, China, pp
    • Wang, L., Feng, J.: Learning Gaussian mixture models by structural risk minimization. In: Proc. ICMLC 2005, August 19-21, Guangzhou, China, pp. 4858-4863 (2005)
    • (2005) Proc. ICMLC , pp. 4858-4863
    • Wang, L.1    Feng, J.2
  • 45
    • 67149106122 scopus 로고    scopus 로고
    • Machine learning problems from optimization perspective
    • to appear
    • Xu, L.: Machine learning problems from optimization perspective. Journal of Global Optimization (to appear, 2008)
    • (2008) Journal of Global Optimization
    • Xu, L.1
  • 46
    • 34247105235 scopus 로고    scopus 로고
    • A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
    • Xu, L.: A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition 40, 2129-2153 (2007)
    • (2007) Pattern Recognition , vol.40 , pp. 2129-2153
    • Xu, L.1
  • 47
    • 46049106446 scopus 로고    scopus 로고
    • Bayesian Ying Yang learning
    • Xu, L.: Bayesian Ying Yang learning. Scholarpedia 2(3), 1809 (2007), http://scholarpedia.org/article/BayesianYingYangLearning
    • (2007) Scholarpedia , vol.2 , Issue.3 , pp. 1809
    • Xu, L.1
  • 48
    • 46049083679 scopus 로고    scopus 로고
    • Rival penalized competitive learning
    • Xu, L.: Rival penalized competitive learning. Scholarpedia 2(8), 1810 (2007), http://scholarpedia.org/article/RivalPenalizedCompetitiveLearning
    • (2007) Scholarpedia , vol.2 , Issue.8 , pp. 1810
    • Xu, L.1
  • 49
    • 34249982553 scopus 로고    scopus 로고
    • A trend on regularization and model selection in statistical learning: A Bayesian Ying Yang learning perspective
    • Duch, W, Mandziuk, J, eds, Springer, Heidelberg
    • Xu, L.: A trend on regularization and model selection in statistical learning: a Bayesian Ying Yang learning perspective. In: Duch, W., Mandziuk, J. (eds.) Challenges for Computational Intelligence, pp. 365-406. Springer, Heidelberg (2007)
    • (2007) Challenges for Computational Intelligence , pp. 365-406
    • Xu, L.1
  • 50
    • 3843066216 scopus 로고    scopus 로고
    • Temporal BYY encoding, Markovian state spaces, and space dimension determination
    • Xu, L.: Temporal BYY encoding, Markovian state spaces, and space dimension determination. IEEE Tr. Neural Networks 15, 1276-1295 (2004)
    • (2004) IEEE Tr. Neural Networks , vol.15 , pp. 1276-1295
    • Xu, L.1
  • 51
    • 3843136240 scopus 로고    scopus 로고
    • Advances on BYY harmony learning: Information theoretic perspective, generalized projection geometry, and independent factor auto-determination
    • Xu, L.: Advances on BYY harmony learning: information theoretic perspective, generalized projection geometry, and independent factor auto-determination. IEEE Tr. Neural Networks 15, 885-902 (2004)
    • (2004) IEEE Tr. Neural Networks , vol.15 , pp. 885-902
    • Xu, L.1
  • 52
    • 3843056324 scopus 로고    scopus 로고
    • Bayesian Ying Yang learning (I) & (II)
    • Zhong, Liu eds, Springer, Heidelberg
    • Xu, L.: Bayesian Ying Yang learning (I) & (II). In: Zhong, Liu (eds.) Intelligent Technologies for Information Analysis, pp. 615-706. Springer, Heidelberg (2004)
    • (2004) Intelligent Technologies for Information Analysis , pp. 615-706
    • Xu, L.1
  • 54
    • 0037380850 scopus 로고    scopus 로고
    • BYY learning, regularized implementation, and model selection on modular networks with One hidden layer of binary units
    • Xu, L.: BYY learning, regularized implementation, and model selection on modular networks with One hidden layer of binary units. Neurocomputing 51, 227-301 (2003)
    • (2003) Neurocomputing , vol.51 , pp. 227-301
    • Xu, L.1
  • 55
    • 0038355082 scopus 로고    scopus 로고
    • Data smoothing regularization, multi-sets-learning, and problem solving strategies
    • Xu, L.: Data smoothing regularization, multi-sets-learning, and problem solving strategies. Neural Networks 15(5-6), 817-825 (2003)
    • (2003) Neural Networks , vol.15 , Issue.5-6 , pp. 817-825
    • Xu, L.1
  • 56
    • 3843095548 scopus 로고    scopus 로고
    • Independent component analysis and extensions with noise and time: A Bayesian Ying-Yang learning perspective
    • Xu, L.: Independent component analysis and extensions with noise and time: a Bayesian Ying-Yang learning perspective. Neural Information Processing Letters and Reviews 1, 1-52 (2003)
    • (2003) Neural Information Processing Letters and Reviews , vol.1 , pp. 1-52
    • Xu, L.1
  • 57
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models
    • Xu, L.: BYY harmony learning, structural RPCL, and topological self-organizing on unsupervised and supervised mixture models. Neural Networks 15, 1125-1151 (2002)
    • (2002) Neural Networks , vol.15 , pp. 1125-1151
    • Xu, L.1
  • 58
    • 0242474188 scopus 로고    scopus 로고
    • Bayesian Ying Yang harmony learning
    • Arbib, M.A, ed, The MIT Press, Cambridge
    • Xu, L.: Bayesian Ying Yang harmony learning. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 1231-1237. The MIT Press, Cambridge (2002)
    • (2002) The Handbook of Brain Theory and Neural Networks , pp. 1231-1237
    • Xu, L.1
  • 59
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space and generalized APT financial analyses
    • Xu, L.: BYY harmony learning, independent state space and generalized APT financial analyses. IEEE Tr. Neural Networks 12, 822-849 (2001)
    • (2001) IEEE Tr. Neural Networks , vol.12 , pp. 822-849
    • Xu, L.1
  • 60
    • 0035259214 scopus 로고    scopus 로고
    • Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets
    • Xu, L.: Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, ME-RBF models and three-layer nets. Intl J. Neural Systems 11, 3-69 (2001)
    • (2001) Intl J. Neural Systems , vol.11 , pp. 3-69
    • Xu, L.1
  • 61
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model and blind source separation
    • Xu, L.: Temporal BYY learning for state space approach, hidden Markov model and blind source separation. IEEE Tr. on Signal Processing 48, 2132-2144 (2000)
    • (2000) IEEE Tr. on Signal Processing , vol.48 , pp. 2132-2144
    • Xu, L.1
  • 62
    • 0344073962 scopus 로고    scopus 로고
    • RBF nets, mixture experts, and Bayesian Ying-Yang learning
    • Xu, L.: RBF nets, mixture experts, and Bayesian Ying-Yang learning. Neurocomputing 19(1-3), 223-257 (1998)
    • (1998) Neurocomputing , vol.19 , Issue.1-3 , pp. 223-257
    • Xu, L.1
  • 63
    • 0031270958 scopus 로고    scopus 로고
    • Bayesian Ying-Yang machine, clustering and number of clusters
    • Xu, L.: Bayesian Ying-Yang machine, clustering and number of clusters. Pattern Recognition Letters 18(11-13), 1167-1178 (1997)
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 1167-1178
    • Xu, L.1
  • 64
    • 0005906827 scopus 로고
    • Bayesian-Kullback coupled YING-YANG machines: Unified learnings and new results on vector quantization
    • Beijing, October 30-November 3, pp
    • Xu, L.: Bayesian-Kullback coupled YING-YANG machines: unified learnings and new results on vector quantization. In: Proc. ICONIP 1995, Beijing, October 30-November 3, pp. 977-988 (1995)
    • (1995) Proc. ICONIP , pp. 977-988
    • Xu, L.1
  • 65
    • 0027629412 scopus 로고    scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Tr. on Neural Networks 4
    • &
    • Xu, L., Krzyzak, A., Oja, E.: Rival penalized competitive learning for clustering analysis, RBF net and curve detection. IEEE Tr. on Neural Networks 4, 636-649 ( Its early version on In: Proc. of 11th ICPR92. vol.I, pp. 672-675 (1992& 1993))
    • 636-649 ( Its early version on In: Proc. of 11th ICPR92 , vol.1
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 66
    • 0027206958 scopus 로고
    • Least mean square error reconstruction for self-organizing neural-nets. Neural Networks 6
    • Singapore. pp, &
    • Xu, L.: Least mean square error reconstruction for self-organizing neural-nets. Neural Networks 6, 627-648 (1993) (Its early version on Proc. IJCNN 1991 Singapore. pp. 2363-2373 (1991& 1993))
    • (1991) 627-648 (1993) (Its early version on Proc. IJCNN
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.