메뉴 건너뛰기




Volumn 1214, Issue 1, 2010, Pages 138-155

Clues to immune tolerance: The monogenic autoimmune syndromes

Author keywords

ALPS; APS1; Autoimmunity; Immune tolerance; IPEX; Regulatory T cells

Indexed keywords

TRANSCRIPTION FACTOR FOXP3;

EID: 78650357758     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2010.05818.x     Document Type: Article
Times cited : (18)

References (154)
  • 1
    • 77950355043 scopus 로고    scopus 로고
    • Unraveling the genetics of autoimmunity
    • Zenewicz, L., C. Abraham, R. Flavell & J. Cho 2010. Unraveling the genetics of autoimmunity. Cell. 140: 791-797.
    • (2010) Cell , vol.140 , pp. 791-797
    • Zenewicz, L.1    Abraham, C.2    Flavell, R.3    Cho, J.4
  • 2
    • 67650709487 scopus 로고    scopus 로고
    • Recent advances in the genetics of autoimmune disease
    • Gregersen, P. & L. Olsson 2009. Recent advances in the genetics of autoimmune disease. Annu. Rev. Immunol. 27: 363-391.
    • (2009) Annu. Rev. Immunol , vol.27 , pp. 363-391
    • Gregersen, P.1    Olsson, L.2
  • 3
    • 64249161198 scopus 로고    scopus 로고
    • Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I
    • Husebye, E., J. Perheentupa, R. Rautemaa & O. Kämpe 2009. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J. Intern. Med. 265: 514-529.
    • (2009) J. Intern. Med , vol.265 , pp. 514-529
    • Husebye, E.1    Perheentupa, J.2    Rautemaa, R.3    Kämpe, O.4
  • 4
    • 33747662305 scopus 로고    scopus 로고
    • Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy
    • Perheentupa, J. 2006. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Clin. Endocrinol. Metab. 91: 2843-2850.
    • (2006) J. Clin. Endocrinol. Metab , vol.91 , pp. 2843-2850
    • Perheentupa, J.1
  • 5
    • 34249805682 scopus 로고    scopus 로고
    • Oral and oesophageal squamous cell carcinoma-a complication or component of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I)
    • Rautemaa, R., J. Hietanen, S. Niissalo, et al 2007. Oral and oesophageal squamous cell carcinoma-a complication or component of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I). Oral Oncol. 43: 607-613.
    • (2007) Oral Oncol , vol.43 , pp. 607-613
    • Rautemaa, R.1    Hietanen, J.2    Niissalo, S.3
  • 6
    • 10744230766 scopus 로고    scopus 로고
    • The hypoparathyroidism of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protective effect of male sex
    • Gylling, M. et al 2003. The hypoparathyroidism of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protective effect of male sex. J. Clin. Endocrinol. Metab. 88: 4602-4608.
    • (2003) J. Clin. Endocrinol. Metab , vol.88 , pp. 4602-4608
    • Gylling, M.1
  • 7
    • 0025295238 scopus 로고
    • Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients
    • Ahonen, P., S. Myllarniemi I. Sipila, et al 1990. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl. J. Med. 322: 1829-1836.
    • (1990) N Engl. J. Med , vol.322 , pp. 1829-1836
    • Ahonen, P.1    Myllarniemi, S.2    Sipila, I.3
  • 8
    • 0018191896 scopus 로고
    • Oral findings in the autoimmune polyendocrinopathy-candidosis syndrome (APECS) and other forms of hypoparathyroidism
    • Myllärniemi, S. & J. Perheentupa 1978. Oral findings in the autoimmune polyendocrinopathy-candidosis syndrome (APECS) and other forms of hypoparathyroidism. Oral Surg. Oral Med. Oral Pathol. 45: 721-729.
    • (1978) Oral Surg. Oral Med. Oral Pathol , vol.45 , pp. 721-729
    • Myllärniemi, S.1    Perheentupa, J.2
  • 9
    • 33846990524 scopus 로고    scopus 로고
    • Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene
    • Wolff, A. et al 2007. Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J. Clin. Endocrinol. Metab. 92: 595-603.
    • (2007) J. Clin. Endocrinol. Metab , vol.92 , pp. 595-603
    • Wolff, A.1
  • 10
    • 0031753977 scopus 로고    scopus 로고
    • A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients
    • Rosatelli, M. et al 1998. A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients. Hum. Genet. 103: 428-434.
    • (1998) Hum. Genet , vol.103 , pp. 428-434
    • Rosatelli, M.1
  • 11
    • 0026481974 scopus 로고
    • Polyglandular autoimmune syndrome type I among Iranian Jews
    • Zlotogora, J. & M. Shapiro 1992. Polyglandular autoimmune syndrome type I among Iranian Jews. J. Med. Genet. 29: 824-826.
    • (1992) J. Med. Genet , vol.29 , pp. 824-826
    • Zlotogora, J.1    Shapiro, M.2
  • 12
    • 0346599403 scopus 로고    scopus 로고
    • An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains
    • Consortium, F.-G.A. 1997. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17: 399-403.
    • (1997) Nat. Genet , vol.17 , pp. 399-403
    • Consortium, F.1
  • 13
    • 16944367194 scopus 로고    scopus 로고
    • Positional cloning of the APECED gene
    • Nagamine, K. et al 1997. Positional cloning of the APECED gene. Nat. Genet. 17: 393-398.
    • (1997) Nat. Genet , vol.17 , pp. 393-398
    • Nagamine, K.1
  • 15
    • 0032230236 scopus 로고    scopus 로고
    • Common mutations in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients of different origins
    • Scott, H. et al 1998. Common mutations in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients of different origins. Mol. Endocrinol. 12: 1112-1119.
    • (1998) Mol. Endocrinol , vol.12 , pp. 1112-1119
    • Scott, H.1
  • 16
    • 0034351867 scopus 로고    scopus 로고
    • ss-Cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy
    • Gylling, M. et al 2000. ss-Cell autoantibodies, human leukocyte antigen II alleles, and type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Clin. Endocrinol. Metab. 85: 4434-4440.
    • (2000) J. Clin. Endocrinol. Metab , vol.85 , pp. 4434-4440
    • Gylling, M.1
  • 17
    • 18444378139 scopus 로고    scopus 로고
    • AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype
    • Halonen, M. et al 2002. AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. J. Clin. Endocrinol. Metab. 87: 2568-2574.
    • (2002) J. Clin. Endocrinol. Metab , vol.87 , pp. 2568-2574
    • Halonen, M.1
  • 18
    • 0034749749 scopus 로고    scopus 로고
    • A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis
    • Cetani, F. et al 2001. A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis. J. Clin. Endocrinol. Metab. 86: 4747-4752.
    • (2001) J. Clin. Endocrinol. Metab , vol.86 , pp. 4747-4752
    • Cetani, F.1
  • 19
    • 60349085274 scopus 로고    scopus 로고
    • Evaluation of the AIRE gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives
    • Cervato, S. et al 2009. Evaluation of the AIRE gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives. Clin. Endocrinol. 70: 421-428.
    • (2009) Clin. Endocrinol , vol.70 , pp. 421-428
    • Cervato, S.1
  • 20
    • 0037112047 scopus 로고    scopus 로고
    • Projection of an immunological self shadow within the thymus by the aire protein
    • Anderson, M.S. et al 2002. Projection of an immunological self shadow within the thymus by the aire protein. Science 298: 1395-1401.
    • (2002) Science , vol.298 , pp. 1395-1401
    • Anderson, M.S.1
  • 21
    • 0037084784 scopus 로고    scopus 로고
    • Aire deficient mice develop multiple features of APECED phenotype and show altered immune response
    • Ramsey, C. et al 2002. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11: 397-409.
    • (2002) Hum. Mol. Genet , vol.11 , pp. 397-409
    • Ramsey, C.1
  • 22
    • 0035171545 scopus 로고    scopus 로고
    • Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self
    • Derbinski, J., A. Schulte, B. Kyewski & L. Klein 2001. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2: 1032-1039.
    • (2001) Nat. Immunol , vol.2 , pp. 1032-1039
    • Derbinski, J.1    Schulte, A.2    Kyewski, B.3    Klein, L.4
  • 23
    • 0031054632 scopus 로고    scopus 로고
    • Negative selection in the thymus includes semimature T cells
    • Kishimoto, H. & J. Sprent 1997. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185: 263-271.
    • (1997) J. Exp. Med , vol.185 , pp. 263-271
    • Kishimoto, H.1    Sprent, J.2
  • 24
    • 24744448656 scopus 로고    scopus 로고
    • Linking signalling pathways, thymic stroma integrity and autoimmunity
    • Derbinski, J. & B. Kyewski 2005. Linking signalling pathways, thymic stroma integrity and autoimmunity. Trends Immunol. 26: 503-506.
    • (2005) Trends Immunol , vol.26 , pp. 503-506
    • Derbinski, J.1    Kyewski, B.2
  • 25
    • 33751513054 scopus 로고    scopus 로고
    • Spontaneous autoimmunity prevented by thymic expression of a single self-antigen
    • DeVoss, J. et al 2006. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J. Exp. Med. 203: 2727-2735.
    • (2006) J. Exp. Med , vol.203 , pp. 2727-2735
    • DeVoss, J.1
  • 26
    • 34248372524 scopus 로고    scopus 로고
    • Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity
    • Gavanescu, I., B. Kessler H. Ploegh, et al 2007. Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity. Proc. Natl. Acad. Sci. USA 104: 4583-4587.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 4583-4587
    • Gavanescu, I.1    Kessler, B.2    Ploegh, H.3
  • 27
    • 72949093686 scopus 로고    scopus 로고
    • Identification of an autoantigen demonstrates a link between interstitial lung disease and a defect in central tolerance
    • Shum, A.K. et al 2009. Identification of an autoantigen demonstrates a link between interstitial lung disease and a defect in central tolerance. Sci. Transl. Med. 1: 9ra20-29ra20.
    • (2009) Sci. Transl. Med , vol.1
    • Shum, A.K.1
  • 28
    • 0037383758 scopus 로고    scopus 로고
    • Aire regulates negative selection of organ-specific T cells
    • Liston, A., S. Lesage J. Wilson, et al 2003. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4: 350-354.
    • (2003) Nat. Immunol , vol.4 , pp. 350-354
    • Liston, A.1    Lesage, S.2    Wilson, J.3
  • 29
    • 0036498116 scopus 로고    scopus 로고
    • Expression of AIRE gene in peripheral monocyte/dendritic cell lineage
    • Kogawa, K. 2002. Expression of AIRE gene in peripheral monocyte/dendritic cell lineage. Immunol. Lett. 80: 195-198.
    • (2002) Immunol. Lett , vol.80 , pp. 195-198
    • Kogawa, K.1
  • 30
    • 49449093723 scopus 로고    scopus 로고
    • Deletional tolerance mediated by extrathymic Aire-expressing cells
    • Gardner, J.M. et al 2008. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321: 843-847.
    • (2008) Science , vol.321 , pp. 843-847
    • Gardner, J.M.1
  • 31
    • 33846546257 scopus 로고    scopus 로고
    • Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self
    • Lee, J.W. et al 2007. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8: 181-190.
    • (2007) Nat. Immunol. , vol.8 , pp. 181-190
    • Lee, J.W.1
  • 32
    • 77749279470 scopus 로고    scopus 로고
    • Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells
    • Poliani, P.L. et al 2010. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. Am. J. Pathol. 176: 1104-1112.
    • (2010) Am. J. Pathol , vol.176 , pp. 1104-1112
    • Poliani, P.L.1
  • 33
    • 0038486459 scopus 로고    scopus 로고
    • Localization of the APECED protein in distinct nuclear structures
    • Bjorses, P. et al 1999. Localization of the APECED protein in distinct nuclear structures. Hum. Mol. Genet. 8: 259-266.
    • (1999) Hum. Mol. Genet , vol.8 , pp. 259-266
    • Bjorses, P.1
  • 34
    • 56749174388 scopus 로고    scopus 로고
    • Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity
    • Koh, A.S. et al 2008. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc. Natl. Acad. Sci. USA 105: 15878-15883.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 15878-15883
    • Koh, A.S.1
  • 35
    • 0035798665 scopus 로고    scopus 로고
    • The autoimmune regulator (AIRE) is a DNA-binding protein
    • Kumar, P.G. et al 2001. The autoimmune regulator (AIRE) is a DNA-binding protein. J. Biol. Chem. 276: 41357-41364.
    • (2001) J. Biol. Chem , vol.276 , pp. 41357-41364
    • Kumar, P.G.1
  • 36
    • 45849137524 scopus 로고    scopus 로고
    • The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression
    • Org, T. et al 2008. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep. 9: 370-376.
    • (2008) EMBO Rep , vol.9 , pp. 370-376
    • Org, T.1
  • 37
    • 0034957535 scopus 로고    scopus 로고
    • The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation
    • Bottomley, M.J. et al 2001. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat. Struct. Biol. 8: 626-633.
    • (2001) Nat. Struct. Biol , vol.8 , pp. 626-633
    • Bottomley, M.J.1
  • 38
    • 22344449972 scopus 로고    scopus 로고
    • Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels
    • Derbinski, J. et al 2005. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202: 33-45.
    • (2005) J. Exp. Med , vol.202 , pp. 33-45
    • Derbinski, J.1
  • 39
    • 18844362882 scopus 로고    scopus 로고
    • Chromosomal clustering of genes controlled by the aire transcription factor
    • Johnnidis, J.B. et al 2005. Chromosomal clustering of genes controlled by the aire transcription factor. Proc. Natl. Acad. Sci. USA 102: 7233-7238.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 7233-7238
    • Johnnidis, J.B.1
  • 40
    • 38649131259 scopus 로고    scopus 로고
    • Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism
    • Derbinski, J., S. Pinto S. Rosch, et al 2008. Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc. Natl. Acad. Sci. USA 105: 657-662.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 657-662
    • Derbinski, J.1    Pinto, S.2    Rosch, S.3
  • 41
    • 56749184864 scopus 로고    scopus 로고
    • Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated
    • Villasenor, J., W. Besse C. Benoist, et al 2008. Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. Proc. Natl. Acad. Sci. USA 105: 15854-15859.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 15854-15859
    • Villasenor, J.1    Besse, W.2    Benoist, C.3
  • 42
    • 73149115486 scopus 로고    scopus 로고
    • Aire's partners in the molecular control of immunological tolerance
    • Abramson, J., M. Giraud C. Benoist, et al 2010. Aire's partners in the molecular control of immunological tolerance. Cell. 140: 123-135.
    • (2010) Cell , vol.140 , pp. 123-135
    • Abramson, J.1    Giraud, M.2    Benoist, C.3
  • 43
    • 67650711140 scopus 로고    scopus 로고
    • Genome-wide views of chromatin structure
    • Rando, O. & H. Chang 2009. Genome-wide views of chromatin structure. Annu. Rev. Biochem. 78: 245-271.
    • (2009) Annu. Rev. Biochem , vol.78 , pp. 245-271
    • Rando, O.1    Chang, H.2
  • 44
    • 70450192681 scopus 로고    scopus 로고
    • AIRE activated tissue specific genes have histone modifications associated with inactive chromatin
    • Org, T. et al 2009. AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum. Mol. Genet. 18: 4699-4710.
    • (2009) Hum. Mol. Genet , vol.18 , pp. 4699-4710
    • Org, T.1
  • 45
    • 38049026826 scopus 로고    scopus 로고
    • DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity
    • Liiv, I. et al. 2008. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. Biochim. Biophys. Acta. 1783: 74-83.
    • (2008) Biochim. Biophys. Acta , vol.1783 , pp. 74-83
    • Liiv, I.1
  • 46
    • 37549060329 scopus 로고    scopus 로고
    • AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells
    • Oven, I. et al 2007. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol. Cell Biol. 27: 8815-8823.
    • (2007) Mol. Cell Biol , vol.27 , pp. 8815-8823
    • Oven, I.1
  • 47
    • 20744433548 scopus 로고    scopus 로고
    • Cooperative activation of transcription by autoimmune regulator AIRE and CBP
    • Pitkanen, J. et al 2005. Cooperative activation of transcription by autoimmune regulator AIRE and CBP. Biochem. Biophys. Res. Commun. 333: 944-953.
    • (2005) Biochem. Biophys. Res. Commun , vol.333 , pp. 944-953
    • Pitkanen, J.1
  • 48
    • 64649105115 scopus 로고    scopus 로고
    • DNA topoisomerase II and its growing repertoire of biological functions
    • Nitiss, J. 2009. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer. 9: 327-337.
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 327-337
    • Nitiss, J.1
  • 49
    • 57349083325 scopus 로고    scopus 로고
    • Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I
    • Meloni, A. et al. 2008. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab. 93: 4389-4397.
    • (2008) J. Clin. Endocrinol. Metab , vol.93 , pp. 4389-4397
    • Meloni, A.1
  • 50
    • 35248858705 scopus 로고    scopus 로고
    • A robust immunoassay for anti-interferon autoantibodies that is highly specific for patients with autoimmune polyglandular syndrome type 1
    • Zhang, L. et al 2007. A robust immunoassay for anti-interferon autoantibodies that is highly specific for patients with autoimmune polyglandular syndrome type 1. Clin. Immunol. 125: 131-137.
    • (2007) Clin. Immunol , vol.125 , pp. 131-137
    • Zhang, L.1
  • 51
    • 77149147477 scopus 로고    scopus 로고
    • Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines
    • Kisand, K. et al 2010. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207: 299-308.
    • (2010) J. Exp. Med , vol.207 , pp. 299-308
    • Kisand, K.1
  • 52
    • 77149124612 scopus 로고    scopus 로고
    • Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I
    • Puel, A. et al 2010. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207: 291-297.
    • (2010) J. Exp. Med , vol.207 , pp. 291-297
    • Puel, A.1
  • 53
    • 40449109084 scopus 로고    scopus 로고
    • Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen
    • Alimohammadi, M. et al 2008. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N. Engl. J. Med. 358: 1018-1028.
    • (2008) N. Engl. J. Med. , vol.358 , pp. 1018-1028
    • Alimohammadi, M.1
  • 54
    • 0031033052 scopus 로고    scopus 로고
    • Autoantibodies against aromatic L-amino acid decarboxylase in autoimmune polyendocrine syndrome type I
    • Husebye, E. et al 1997. Autoantibodies against aromatic L-amino acid decarboxylase in autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab. 82: 147-150.
    • (1997) J. Clin. Endocrinol. Metab , vol.82 , pp. 147-150
    • Husebye, E.1
  • 55
    • 10744233772 scopus 로고    scopus 로고
    • Prevalence and clinical associations of 10 defined autoantibodies in autoimmune polyendocrine syndrome type I
    • Soderbergh, A. et al 2004. Prevalence and clinical associations of 10 defined autoantibodies in autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab. 89: 544-547.
    • (2004) J. Clin. Endocrinol. Metab , vol.89 , pp. 544-547
    • Soderbergh, A.1
  • 56
    • 18244421874 scopus 로고    scopus 로고
    • The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes
    • Pugliese, A. et al 1997. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15: 293-297.
    • (1997) Nat. Genet , vol.15 , pp. 293-297
    • Pugliese, A.1
  • 57
    • 0031018819 scopus 로고    scopus 로고
    • Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus
    • Vafiadis, P. et al 1997. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet. 15: 289-292.
    • (1997) Nat. Genet , vol.15 , pp. 289-292
    • Vafiadis, P.1
  • 58
    • 34548151158 scopus 로고    scopus 로고
    • An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus
    • Giraud, M. et al 2007. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 448: 934-937.
    • (2007) Nature , vol.448 , pp. 934-937
    • Giraud, M.1
  • 59
    • 77349099732 scopus 로고    scopus 로고
    • Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect
    • Cheng, M. et al 2010. Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect. N. Engl. J. Med. 362: 764-766.
    • (2010) N. Engl. J. Med , vol.362 , pp. 764-766
    • Cheng, M.1
  • 60
    • 35348876040 scopus 로고    scopus 로고
    • IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity
    • Ochs, H., E. Gambineri & T. Torgerson 2007. IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunol. Res. 38: 112-121.
    • (2007) Immunol. Res , vol.38 , pp. 112-121
    • Ochs, H.1    Gambineri, E.2    Torgerson, T.3
  • 61
    • 34948875308 scopus 로고    scopus 로고
    • Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells
    • Torgerson, T. & H. Ochs 2007. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J. Allergy Clin. Immunol. 120: 744-750.
    • (2007) J. Allergy Clin. Immunol , vol.120 , pp. 744-750
    • Torgerson, T.1    Ochs, H.2
  • 62
    • 0020038580 scopus 로고
    • An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy
    • Powell, B., N. Buist & P. Stenzel 1982. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100: 731-737.
    • (1982) J. Pediatr , vol.100 , pp. 731-737
    • Powell, B.1    Buist, N.2    Stenzel, P.3
  • 63
    • 33845379986 scopus 로고    scopus 로고
    • Rapamycin promotes expansion of functional CD4+ CD25+ FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients
    • Battaglia, M. et al 2006. Rapamycin promotes expansion of functional CD4+ CD25+ FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 177: 8338-8847.
    • (2006) J. Immunol , vol.177 , pp. 8338-8847
    • Battaglia, M.1
  • 64
    • 33845983223 scopus 로고    scopus 로고
    • Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning
    • Rao, A. et al 2007. Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood 109: 383-385.
    • (2007) Blood , vol.109 , pp. 383-385
    • Rao, A.1
  • 65
    • 0035162560 scopus 로고    scopus 로고
    • Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse
    • Brunkow, M. et al. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27: 68-73.
    • (2001) Nat. Genet , vol.27 , pp. 68-73
    • Brunkow, M.1
  • 66
    • 0035167967 scopus 로고    scopus 로고
    • The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3
    • Bennett, C. et al 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27: 20-21.
    • (2001) Nat. Genet , vol.27 , pp. 20-21
    • Bennett, C.1
  • 67
    • 0035163909 scopus 로고    scopus 로고
    • X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy
    • Wildin, R. et al 2001. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27: 18-20.
    • (2001) Nat. Genet , vol.27 , pp. 18-20
    • Wildin, R.1
  • 68
    • 66149190937 scopus 로고    scopus 로고
    • Molecular orchestration of differentiation and function of regulatory T cells
    • Lu, L. & A. Rudensky 2009. Molecular orchestration of differentiation and function of regulatory T cells. Genes Dev. 23: 1270-1282.
    • (2009) Genes Dev , vol.23 , pp. 1270-1282
    • Lu, L.1    Rudensky, A.2
  • 69
    • 74049164847 scopus 로고    scopus 로고
    • Regulatory T cells exert checks and balances on self tolerance and autoimmunity
    • Wing, K. & S. Sakaguchi 2009. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11: 7-13.
    • (2009) Nat. Immunol , vol.11 , pp. 7-13
    • Wing, K.1    Sakaguchi, S.2
  • 70
    • 0029150110 scopus 로고
    • Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases
    • Sakaguchi, S., N. Sakaguchi & M. Asano 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155: 1151.
    • (1995) J. Immunol , vol.155 , pp. 1151
    • Sakaguchi, S.1    Sakaguchi, N.2    Asano, M.3
  • 71
    • 0037385330 scopus 로고    scopus 로고
    • Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells
    • Fontenot, J., M. Gavin & A. Rudensky 2003. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat. Immunol. 4: 330-336.
    • (2003) Nat. Immunol , vol.4 , pp. 330-336
    • Fontenot, J.1    Gavin, M.2    Rudensky, A.3
  • 72
    • 0347785480 scopus 로고    scopus 로고
    • Control of regulatory T cell development by the transcription factor Foxp3
    • Hori, S., T. Nomura & S. Sakaguchi 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057-1061.
    • (2003) Science , vol.299 , pp. 1057-1061
    • Hori, S.1    Nomura, T.2    Sakaguchi, S.3
  • 73
    • 15244354286 scopus 로고    scopus 로고
    • Regulatory T cell lineage specification by the forkhead transcription factor foxp3
    • Fontenot, J. et al 2005. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329-341.
    • (2005) Immunity , vol.22 , pp. 329-341
    • Fontenot, J.1
  • 74
    • 33846485153 scopus 로고    scopus 로고
    • Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice
    • Kim, J.M., J.P. Rasmussen & A.Y. Rudensky 2007. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8: 191-197.
    • (2007) Nat. Immunol , vol.8 , pp. 191-197
    • Kim, J.M.1    Rasmussen, J.P.2    Rudensky, A.Y.3
  • 75
    • 34247271308 scopus 로고    scopus 로고
    • Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3
    • Williams, L. & A. Rudensky 2007. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8: 277-284.
    • (2007) Nat. Immunol , vol.8 , pp. 277-284
    • Williams, L.1    Rudensky, A.2
  • 76
    • 33847153417 scopus 로고    scopus 로고
    • Foxp3-dependent programme of regulatory T-cell differentiation
    • Gavin, M. et al 2007. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445: 771-775.
    • (2007) Nature , vol.445 , pp. 771-775
    • Gavin, M.1
  • 77
    • 41549159660 scopus 로고    scopus 로고
    • Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces
    • Rubtsov, Y. et al 2008. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28: 546-558.
    • (2008) Immunity , vol.28 , pp. 546-558
    • Rubtsov, Y.1
  • 78
    • 53749094183 scopus 로고    scopus 로고
    • CTLA-4 control over Foxp3+ regulatory T cell function
    • Wing, K. et al 2008. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322: 271-275.
    • (2008) Science , vol.322 , pp. 271-275
    • Wing, K.1
  • 79
    • 4143066714 scopus 로고    scopus 로고
    • Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors
    • Hsieh, C. et al 2004. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21: 267-277.
    • (2004) Immunity , vol.21 , pp. 267-277
    • Hsieh, C.1
  • 80
    • 20144381908 scopus 로고    scopus 로고
    • Definition of target antigens for naturally occurring CD4+ CD25+ regulatory T cells
    • Nishikawa, H. et al 2005. Definition of target antigens for naturally occurring CD4+ CD25+ regulatory T cells. J. Exp. Med. 201: 681-686.
    • (2005) J. Exp. Med , vol.201 , pp. 681-686
    • Nishikawa, H.1
  • 81
    • 34447265236 scopus 로고    scopus 로고
    • CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation
    • Kim, H. & W. Leonard 2007. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204: 1543-1551.
    • (2007) J. Exp. Med , vol.204 , pp. 1543-1551
    • Kim, H.1    Leonard, W.2
  • 82
    • 33644844341 scopus 로고    scopus 로고
    • Molecular mechanisms underlying FOXP3 induction in human T cells
    • Mantel, P. et al. 2006. Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 176: 3593-3602.
    • (2006) J. Immunol , vol.176 , pp. 3593-3602
    • Mantel, P.1
  • 83
    • 1842480966 scopus 로고    scopus 로고
    • Differential dependence of CD4+ CD25+ regulatory and natural killer-like T cells on signals leading to NF-κB activation
    • Schmidt-Supprian, M. 2004. Differential dependence of CD4+ CD25+ regulatory and natural killer-like T cells on signals leading to NF-κB activation. Proc. Natl. Acad. Sci. USA 101: 4566-4571.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 4566-4571
    • Schmidt-Supprian, M.1
  • 84
    • 76749133610 scopus 로고    scopus 로고
    • Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate
    • Zheng, Y. et al 2010. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463: 808-812.
    • (2010) Nature , vol.463 , pp. 808-812
    • Zheng, Y.1
  • 85
    • 27544481941 scopus 로고    scopus 로고
    • A function for interleukin 2 in Foxp3-expressing regulatory T cells
    • Fontenot, J., J. Rasmussen, M. Gavin & A. Rudensky 2005. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6: 1142-1151.
    • (2005) Nat. Immunol , vol.6 , pp. 1142-1151
    • Fontenot, J.1    Rasmussen, J.2    Gavin, M.3    Rudensky, A.4
  • 86
    • 0028784289 scopus 로고
    • Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment
    • Willerford, D. et al 1995. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3: 521-530.
    • (1995) Immunity , vol.3 , pp. 521-530
    • Willerford, D.1
  • 87
    • 33846805925 scopus 로고    scopus 로고
    • CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes
    • Caudy, A., S. Reddy T. Chatila, et al 2007. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 119: 482-487.
    • (2007) J. Allergy Clin. Immunol , vol.119 , pp. 482-487
    • Caudy, A.1    Reddy, S.2    Chatila, T.3
  • 88
    • 0030903027 scopus 로고    scopus 로고
    • Human immune disorder arising from mutation of the chain of the interleukin-2 receptor
    • Sharfe, N., H. Dadi, M. Shahar & C. Roifman 1997. Human immune disorder arising from mutation of the chain of the interleukin-2 receptor. Proc. Natl. Acad. Sci. USA 94: 3168-3171.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 3168-3171
    • Sharfe, N.1    Dadi, H.2    Shahar, M.3    Roifman, C.4
  • 89
    • 44049087148 scopus 로고    scopus 로고
    • A critical function for TGF- signaling in the development of natural CD4+ CD25 +Foxp3+ regulatory T cells
    • Liu, Y. et al 2008. A critical function for TGF- signaling in the development of natural CD4+ CD25 +Foxp3+ regulatory T cells. Nat. Immunol. 9: 632-640.
    • (2008) Nat. Immunol , vol.9 , pp. 632-640
    • Liu, Y.1
  • 90
    • 0033682056 scopus 로고    scopus 로고
    • B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25 +immunoregulatory T cells that control autoimmune diabetes
    • Salomon, B. et al 2000. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25 +immunoregulatory T cells that control autoimmune diabetes. Immunity 12: 431-440.
    • (2000) Immunity , vol.12 , pp. 431-440
    • Salomon, B.1
  • 91
    • 65549123867 scopus 로고    scopus 로고
    • Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor
    • Curotto de Lafaille, M. & J. Lafaille 2009. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor. Immunity 30: 626-635.
    • (2009) Immunity , vol.30 , pp. 626-635
    • Curotto de Lafaille, M.1    Lafaille, J.2
  • 92
    • 2542420993 scopus 로고    scopus 로고
    • In vivo instruction of suppressor commitment in naive T cells
    • Apostolou, I. & H. von Boehmer 2004. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199: 1401-1408.
    • (2004) J. Exp. Med , vol.199 , pp. 1401-1408
    • Apostolou, I.1    von Boehmer, H.2
  • 93
    • 10344220512 scopus 로고    scopus 로고
    • CD25-T cells generate CD25+ Foxp3+ regulatory T cells by peripheral expansion
    • Curotto de Lafaille, M. 2004. CD25-T cells generate CD25+ Foxp3+ regulatory T cells by peripheral expansion. J. Immunol. 173: 7259-7268.
    • (2004) J. Immunol , vol.173 , pp. 7259-7268
    • Curotto de Lafaille, M.1
  • 94
    • 34547788180 scopus 로고    scopus 로고
    • A functionally specialized population of mucosal CD103 +DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism
    • Coombes, J. et al 2007. A functionally specialized population of mucosal CD103 +DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204: 1757-1764.
    • (2007) J. Exp. Med , vol.204 , pp. 1757-1764
    • Coombes, J.1
  • 95
    • 34547757390 scopus 로고    scopus 로고
    • Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
    • Sun, C. et al 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204: 1775-1785.
    • (2007) J. Exp. Med , vol.204 , pp. 1775-1785
    • Sun, C.1
  • 96
    • 33746228122 scopus 로고    scopus 로고
    • FOXP3 controls regulatory T cell function through cooperation with NFAT
    • Wu, Y. et al 2006. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 126: 375-387.
    • (2006) Cell , vol.126 , pp. 375-387
    • Wu, Y.1
  • 97
    • 70049113279 scopus 로고    scopus 로고
    • CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner
    • Chaudhry, A. et al 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326: 986-991.
    • (2009) Science , vol.326 , pp. 986-991
    • Chaudhry, A.1
  • 98
    • 34247215187 scopus 로고    scopus 로고
    • Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1
    • Ono, M. et al. 2007. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446: 685-689.
    • (2007) Nature , vol.446 , pp. 685-689
    • Ono, M.1
  • 99
    • 62649165369 scopus 로고    scopus 로고
    • Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses
    • Zheng, Y., A. Chaudhry & A. Kas 2009. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458: 351-356.
    • (2009) Nature , vol.458 , pp. 351-356
    • Zheng, Y.1    Chaudhry, A.2    Kas, A.3
  • 100
    • 43449135305 scopus 로고    scopus 로고
    • TGF-beta-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORgammat function
    • Zhou, L. et al 2008. TGF-beta-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORgammat function. Nature 453: 236-240.
    • (2008) Nature , vol.453 , pp. 236-240
    • Zhou, L.1
  • 101
    • 33847242598 scopus 로고    scopus 로고
    • Foxp3 occupancy and regulation of key target genes during T-cell stimulation
    • Marson, A. et al 2007. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445: 931-935.
    • (2007) Nature , vol.445 , pp. 931-935
    • Marson, A.1
  • 102
    • 33847220736 scopus 로고    scopus 로고
    • Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells
    • Zheng, Y. et al 2007. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936-940.
    • (2007) Nature , vol.445 , pp. 936-940
    • Zheng, Y.1
  • 103
    • 0036144888 scopus 로고    scopus 로고
    • Homeostasis and anergy of CD4+ CD25+ suppressor T cells in vivo
    • Gavin, M., S. Clarke & E. Negrou 2001. Homeostasis and anergy of CD4+ CD25+ suppressor T cells in vivo. Nat. Immunol. 3: 33-41.
    • (2001) Nat. Immunol , vol.3 , pp. 33-41
    • Gavin, M.1    Clarke, S.2    Negrou, E.3
  • 104
    • 0036195161 scopus 로고    scopus 로고
    • CD4+ CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor
    • McHugh, R. et al 2002. CD4+ CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16: 311-323.
    • (2002) Immunity , vol.16 , pp. 311-323
    • McHugh, R.1
  • 105
    • 33646240855 scopus 로고    scopus 로고
    • Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development
    • Gavin, M. et al 2006. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA 103: 6659-6664.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 6659-6664
    • Gavin, M.1
  • 106
    • 0346969978 scopus 로고    scopus 로고
    • Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4 CD25-T cells
    • Walker, M. et al 2003. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4 CD25-T cells. J. Clin. Invest. 112: 1437-1443.
    • (2003) J. Clin. Invest , vol.112 , pp. 1437-1443
    • Walker, M.1
  • 107
    • 35448930435 scopus 로고    scopus 로고
    • Induction of FOXP3 expression in naive human CD4+ FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype
    • Tran, D., H. Ramsey & E. Shevach 2007. Induction of FOXP3 expression in naive human CD4+ FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood 110: 2983-2990.
    • (2007) Blood , vol.110 , pp. 2983-2990
    • Tran, D.1    Ramsey, H.2    Shevach, E.3
  • 108
    • 15244354491 scopus 로고    scopus 로고
    • De novo generation of antigen-specific CD4+ CD25 +regulatory T cells from human CD4+ CD25-cells
    • Walker, M., Carson B. Nepom, et al 2005. De novo generation of antigen-specific CD4+ CD25 +regulatory T cells from human CD4+ CD25-cells. Proc. Natl. Acad. Sci. USA 102: 4103-4108.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 4103-4108
    • Walker, M.1    Carson, B.N.2
  • 109
    • 66949171924 scopus 로고    scopus 로고
    • Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor
    • Miyara, M. et al 2009. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30: 899-911.
    • (2009) Immunity , vol.30 , pp. 899-911
    • Miyara, M.1
  • 111
    • 59749103715 scopus 로고    scopus 로고
    • Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3
    • Allan, S., Song-Zhao G. Abraham, et al 2008. Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3. Eur. J. Immunol. 38: 3282-3289.
    • (2008) Eur. J. Immunol , vol.38 , pp. 3282-3289
    • Allan, S.1    Song-Zhao, G.A.2
  • 112
    • 65449141433 scopus 로고    scopus 로고
    • Loss of FOXP3 expression in natural human CD4+ CD25 +regulatory T cells upon repetitive in vitro stimulation
    • Hoffmann, P. et al 2009. Loss of FOXP3 expression in natural human CD4+ CD25 +regulatory T cells upon repetitive in vitro stimulation. Eur. J. Immunol. 39: 1088-1097.
    • (2009) Eur. J. Immunol , vol.39 , pp. 1088-1097
    • Hoffmann, P.1
  • 113
    • 59649091305 scopus 로고    scopus 로고
    • CD49d provides access to" untouched" human Foxp3+ Treg free of contaminating effector cells
    • Kleinewietfeld, M. et al 2009. CD49d provides access to" untouched" human Foxp3+ Treg free of contaminating effector cells. Blood 113: 827-836.
    • (2009) Blood , vol.113 , pp. 827-836
    • Kleinewietfeld, M.1
  • 114
    • 33745817085 scopus 로고    scopus 로고
    • CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells
    • Liu, W. et al 2006. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203: 1701-1711.
    • (2006) J. Exp. Med , vol.203 , pp. 1701-1711
    • Liu, W.1
  • 115
    • 77954539326 scopus 로고    scopus 로고
    • In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells
    • Nadig, S. et al 2010. In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nat. Med. 16: 809-813.
    • (2010) Nat. Med , vol.16 , pp. 809-813
    • Nadig, S.1
  • 116
    • 3543140687 scopus 로고    scopus 로고
    • Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF alpha therapy
    • Ehrenstein, M. et al 2004. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNF alpha therapy. J. Exp. Med. 200: 277-285.
    • (2004) J. Exp. Med , vol.200 , pp. 277-285
    • Ehrenstein, M.1
  • 117
    • 70349969840 scopus 로고    scopus 로고
    • Regulatory T cells as therapeutic targets in rheumatoid arthritis
    • Esensten, J., D. Wofsy & J. Bluestone 2009. Regulatory T cells as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 5: 560-565.
    • (2009) Nat. Rev. Rheumatol , vol.5 , pp. 560-565
    • Esensten, J.1    Wofsy, D.2    Bluestone, J.3
  • 118
    • 33646370647 scopus 로고    scopus 로고
    • TNF downmodulates the function of human CD4+ CD25hi T-regulatory cells
    • Valencia, X. et al 2006. TNF downmodulates the function of human CD4+ CD25hi T-regulatory cells. Blood 108: 253-261.
    • (2006) Blood , vol.108 , pp. 253-261
    • Valencia, X.1
  • 119
    • 33847373481 scopus 로고    scopus 로고
    • No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes
    • Brusko, T. et al 2007. No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 56: 604-612.
    • (2007) Diabetes , vol.56 , pp. 604-612
    • Brusko, T.1
  • 120
    • 0036141438 scopus 로고    scopus 로고
    • Multiple immuno-regulatory defects in type-1 diabetes
    • Kukreja, A. et al 2002. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109: 131-140.
    • (2002) J. Clin. Invest , vol.109 , pp. 131-140
    • Kukreja, A.1
  • 121
    • 12144249838 scopus 로고    scopus 로고
    • Defective suppressor function in CD4+ CD25+ T-cells from patients with type 1 diabetes
    • Lindley, S. 2005. Defective suppressor function in CD4+ CD25+ T-cells from patients with type 1 diabetes. Diabetes 54: 92-99.
    • (2005) Diabetes , vol.54 , pp. 92-99
    • Lindley, S.1
  • 122
    • 13944270218 scopus 로고    scopus 로고
    • CD4+ CD25high regulatory T cells in human autoimmune diabetes
    • Putnam, A., F. Vendrame, F. Dotta & P. Gottlieb 2005. CD4+ CD25high regulatory T cells in human autoimmune diabetes. J. Autoimmun. 24: 55-62.
    • (2005) J. Autoimmun , vol.24 , pp. 55-62
    • Putnam, A.1    Vendrame, F.2    Dotta, F.3    Gottlieb, P.4
  • 123
    • 0026758658 scopus 로고
    • A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease
    • Sneller, M. 1992. A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease. J. Clin. Invest. 90: 334-341.
    • (1992) J. Clin. Invest , vol.90 , pp. 334-341
    • Sneller, M.1
  • 124
    • 72649096618 scopus 로고    scopus 로고
    • Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS)
    • Teachey, D., A. Seif & S. Grupp 2009. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br. J. Haematol. 148: 205-216.
    • (2009) Br. J. Haematol , vol.148 , pp. 205-216
    • Teachey, D.1    Seif, A.2    Grupp, S.3
  • 125
    • 33645067636 scopus 로고    scopus 로고
    • Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype
    • Worth, A., A. Thrasher & H. Gaspar 2006. Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype. Br. J. Haematol. 133: 124-140.
    • (2006) Br. J. Haematol , vol.133 , pp. 124-140
    • Worth, A.1    Thrasher, A.2    Gaspar, H.3
  • 126
    • 0035412359 scopus 로고    scopus 로고
    • The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis
    • Straus, S. et al 2001. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 98: 194-200.
    • (2001) Blood , vol.98 , pp. 194-200
    • Straus, S.1
  • 127
    • 34548532952 scopus 로고    scopus 로고
    • Successful treatment of autoimmune lymphoproliferative syndrome and refractory autoimmune thrombocytopenic purpura with a reduced intensity conditioning stem cell transplantation followed by donor lymphocyte infusion
    • Dimopoulou, M. et al 2007. Successful treatment of autoimmune lymphoproliferative syndrome and refractory autoimmune thrombocytopenic purpura with a reduced intensity conditioning stem cell transplantation followed by donor lymphocyte infusion. Bone Marrow Transplant. 40: 605-606.
    • (2007) Bone Marrow Transplant. , vol.40 , pp. 605-606
    • Dimopoulou, M.1
  • 128
    • 0028223847 scopus 로고
    • Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand
    • Takahashi, T. et al 1994. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell. 76: 969-976.
    • (1994) Cell , vol.76 , pp. 969-976
    • Takahashi, T.1
  • 129
    • 0026568919 scopus 로고
    • Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis
    • Watanabe-Fukunaga, R. et al. 1992. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314-317.
    • (1992) Nature , vol.356 , pp. 314-317
    • Watanabe-Fukunaga, R.1
  • 130
    • 0029025441 scopus 로고
    • Dominant Interfering Fas Gene Mutations Impair Apoptosis in a Human Autoimmune Lymphoproliferative Syndrome
    • Fisher, G. et al 1995. Dominant Interfering Fas Gene Mutations Impair Apoptosis in a Human Autoimmune Lymphoproliferative Syndrome. Cell. 81: 935-946.
    • (1995) Cell , vol.81 , pp. 935-946
    • Fisher, G.1
  • 131
    • 0029006893 scopus 로고
    • Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity
    • Rieux-Laucat, F. et al 1995. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268: 1347-1349.
    • (1995) Science , vol.268 , pp. 1347-1349
    • Rieux-Laucat, F.1
  • 132
    • 0029737324 scopus 로고    scopus 로고
    • Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease
    • Wu, J. et al 1996. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest. 98: 1107-1113.
    • (1996) J. Clin. Invest , vol.98 , pp. 1107-1113
    • Wu, J.1
  • 133
    • 0033361766 scopus 로고    scopus 로고
    • Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance
    • Jackson, C. et al 1999. Autoimmune lymphoproliferative syndrome with defective Fas: genotype influences penetrance. Am. J. Hum. Genet. 64: 1002-1014.
    • (1999) Am. J. Hum. Genet , vol.64 , pp. 1002-1014
    • Jackson, C.1
  • 134
    • 6844240196 scopus 로고    scopus 로고
    • Novel Fas (CD95/APO-1) mutations in infants with a lymphoproliferative disorder
    • Kasahara, Y. 1998. Novel Fas (CD95/APO-1) mutations in infants with a lymphoproliferative disorder. Int. Immunol. 10: 195-202.
    • (1998) Int. Immunol , vol.10 , pp. 195-202
    • Kasahara, Y.1
  • 135
    • 0030583369 scopus 로고    scopus 로고
    • Clinical, immunological, and pathological consequences of Fas-deficient conditions
    • Le Deist, F. et al 1996. Clinical, immunological, and pathological consequences of Fas-deficient conditions. Lancet 348: 719-723.
    • (1996) Lancet , vol.348 , pp. 719-723
    • Le Deist, F.1
  • 136
    • 0030952229 scopus 로고    scopus 로고
    • Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis
    • Bettinardi, A. et al 1997. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. Blood 89: 902-909.
    • (1997) Blood , vol.89 , pp. 902-909
    • Bettinardi, A.1
  • 137
    • 34547461299 scopus 로고    scopus 로고
    • NRAS mutation causes a human autoimmune lymphoproliferative syndrome
    • Oliveira, J. et al 2007. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc. Natl. Acad. Sci. USA 104: 8953-8958.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 8953-8958
    • Oliveira, J.1
  • 138
    • 0033538475 scopus 로고    scopus 로고
    • Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II
    • Wang, J. et al 1999. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell. 98: 47-58.
    • (1999) Cell , vol.98 , pp. 47-58
    • Wang, J.1
  • 139
    • 33645015401 scopus 로고    scopus 로고
    • Genetic alterations in caspase-10 may be causative or protective in autoimmune lymphoproliferative syndrome
    • Zhu, S. et al 2006. Genetic alterations in caspase-10 may be causative or protective in autoimmune lymphoproliferative syndrome. Hum. Genet. 119: 284-294.
    • (2006) Hum. Genet , vol.119 , pp. 284-294
    • Zhu, S.1
  • 140
    • 18544383460 scopus 로고    scopus 로고
    • Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency
    • Chun, H. et al. 2002. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419: 395-399.
    • (2002) Nature , vol.419 , pp. 395-399
    • Chun, H.1
  • 141
    • 77957746866 scopus 로고    scopus 로고
    • Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome: report from the 2009 NIH International Workshop
    • epub ahead of print June 10
    • Oliveira, J. et al. 2010. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome: report from the 2009 NIH International Workshop. Blood epub ahead of print June 10
    • (2010) Blood
    • Oliveira, J.1
  • 142
    • 77949922436 scopus 로고    scopus 로고
    • ALPS-ten lessons from an International Workshop on a Genetic Disease of Apoptosis
    • Lenardo, M., J. Oliveira, L. Zheng & V. Rao 2010. ALPS-ten lessons from an International Workshop on a Genetic Disease of Apoptosis. Immunity 32: 291-295.
    • (2010) Immunity , vol.32 , pp. 291-295
    • Lenardo, M.1    Oliveira, J.2    Zheng, L.3    Rao, V.4
  • 143
    • 4644240701 scopus 로고    scopus 로고
    • Autoimmune lymphoproliferative syndrome with somatic Fas mutations
    • Holzelova, E. et al. 2004. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N. Engl. J. Med. 351: 1409.
    • (2004) N. Engl. J. Med , vol.351 , pp. 1409
    • Holzelova, E.1
  • 144
    • 77954661589 scopus 로고    scopus 로고
    • Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome (ALPS)
    • Dowdell, K. et al 2010. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome (ALPS). Blood 115: 5164-5169.
    • (2010) Blood , vol.115 , pp. 5164-5169
    • Dowdell, K.1
  • 145
    • 0034536284 scopus 로고    scopus 로고
    • Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival
    • Bleesing, J., S. Straus & T. Fleisher 2000. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr. Clin. North Am. 47: 1291-1310.
    • (2000) Pediatr. Clin. North Am , vol.47 , pp. 1291-1310
    • Bleesing, J.1    Straus, S.2    Fleisher, T.3
  • 146
    • 72649087350 scopus 로고    scopus 로고
    • Testing patients with Evans syndrome for the Autoimmune Lymphoproliferative Syndrome(ALPS): results of a large multinational clinical trial (ASPHO supplement)
    • Seif, A., C. Manno, S. Grupp & D. Teachey 2008. Testing patients with Evans syndrome for the Autoimmune Lymphoproliferative Syndrome(ALPS): results of a large multinational clinical trial (ASPHO supplement). Pediatr. Blood Cancer 50: S22-S23.
    • (2008) Pediatr. Blood Cancer , vol.50
    • Seif, A.1    Manno, C.2    Grupp, S.3    Teachey, D.4
  • 147
    • 17144433746 scopus 로고    scopus 로고
    • Deficiency of the Fas apoptosis pathway without Fas gene mutations in pediatric patients with autoimmunity/lymphoproliferation
    • Dianzani, U. 1997. Deficiency of the Fas apoptosis pathway without Fas gene mutations in pediatric patients with autoimmunity/lymphoproliferation. Blood 89: 2871-2879.
    • (1997) Blood , vol.89 , pp. 2871-2879
    • Dianzani, U.1
  • 148
    • 70349678683 scopus 로고    scopus 로고
    • Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency
    • Snow, A. et al 2009. Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J. Clin. Invest. 119: 2976-2989.
    • (2009) J. Clin. Invest , vol.119 , pp. 2976-2989
    • Snow, A.1
  • 149
    • 60149085396 scopus 로고    scopus 로고
    • The many roles of FAS receptor signaling in the immune system
    • Strasser, A., P. Jost & S. Nagata 2009. The many roles of FAS receptor signaling in the immune system. Immunity 30: 180-192.
    • (2009) Immunity , vol.30 , pp. 180-192
    • Strasser, A.1    Jost, P.2    Nagata, S.3
  • 150
    • 34447098797 scopus 로고    scopus 로고
    • Multistep pathogenesis of autoimmune disease
    • Goodnow, C. 2007. Multistep pathogenesis of autoimmune disease. Cell. 130: 25-35.
    • (2007) Cell , vol.130 , pp. 25-35
    • Goodnow, C.1
  • 151
    • 2942642383 scopus 로고    scopus 로고
    • In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes
    • Tang, Q. et al 2004. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199: 1455-1465.
    • (2004) J. Exp. Med , vol.199 , pp. 1455-1465
    • Tang, Q.1
  • 152
    • 47249124078 scopus 로고    scopus 로고
    • Human regulatory T cells: role in autoimmune disease and therapeutic opportunities
    • Brusko, T., A. Putnam & J. Bluestone 2008. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol. Rev. 223: 371-390.
    • (2008) Immunol. Rev , vol.223 , pp. 371-390
    • Brusko, T.1    Putnam, A.2    Bluestone, J.3
  • 153
    • 62749201002 scopus 로고    scopus 로고
    • Expansion of human regulatory T-cells from patients with type 1 diabetes
    • Putnam, A. et al 2009. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 58: 652-662.
    • (2009) Diabetes , vol.58 , pp. 652-662
    • Putnam, A.1
  • 154
    • 70249122695 scopus 로고    scopus 로고
    • First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127-T regulatory cells
    • Trzonkowski, P. et al 2009. First-in-man clinical results of the treatment of patients with graft versus host disease with human ex vivo expanded CD4+ CD25+ CD127-T regulatory cells. Clin. Immunol. 133: 22-26.
    • (2009) Clin. Immunol , vol.133 , pp. 22-26
    • Trzonkowski, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.