-
1
-
-
4043171462
-
Upstream and downstream of mTOR
-
Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004;18:1926-1945
-
(2004)
Genes Dev
, vol.18
, pp. 1926-1945
-
-
Hay, N.1
Sonenberg, N.2
-
2
-
-
2342559981
-
The TOR pathway: A target for cancer therapy
-
Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004;4:335-348 (Pubitemid 38579480)
-
(2004)
Nature Reviews Cancer
, vol.4
, Issue.5
, pp. 335-348
-
-
Bjornsti, M.-A.1
Houghton, P.J.2
-
3
-
-
33745307617
-
Ras, PI(3)K and mTOR signalling controls tumour cell growth
-
DOI 10.1038/nature04869, PII NATURE04869
-
Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 2006;441:424-430 (Pubitemid 44050136)
-
(2006)
Nature
, vol.441
, Issue.7092
, pp. 424-430
-
-
Shaw, R.J.1
Cantley, L.C.2
-
4
-
-
34347220473
-
Defining the role of mTOR in cancer
-
A comprehensive review on the role of mTOR signaling in cancer
-
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007;12:9-22 • A comprehensive review on the role of mTOR signaling in cancer.
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
5
-
-
62849111751
-
Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: Competition with rapamycin
-
Toschi A, Lee E, Xu L, et al. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 2009;29:1411-1420
-
(2009)
Mol Cell Biol
, vol.29
, pp. 1411-1420
-
-
Toschi, A.1
Lee, E.2
Xu, L.3
-
6
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
The first study, to our knowledge, showing that mTORC2 functions as a Ser473 Akt kinase
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098-1101 •• The first study, to our knowledge, showing that mTORC2 functions as a Ser473 Akt kinase.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
7
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim DH, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14:1296-1302
-
(2004)
Curr Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
-
8
-
-
34447330960
-
IL-2 signals through Sgk1 and inhibits proliferation and apoptosis in kidney cancer cells
-
DOI 10.1007/s00109-007-0205-2
-
Amato R, Menniti M, Agosti V, et al. IL-2 signals through Sgk1 and inhibits proliferation and apoptosis in kidney cancer cells. J Mol Med 2007;85:707-721 (Pubitemid 47064383)
-
(2007)
Journal of Molecular Medicine
, vol.85
, Issue.7
, pp. 707-721
-
-
Amato, R.1
Menniti, M.2
Agosti, V.3
Boito, R.4
Costa, N.5
Bond, H.M.6
Barbieri, V.7
Tagliaferri, P.8
Venuta, S.9
Perrotti, N.10
-
9
-
-
12544260256
-
SGK1, a potential regulator of c-fms related breast cancer aggressiveness
-
Tangir J, Bonafe N, Gilmore-Hebert M, et al. SGK1, a potential regulator of c-fms related breast cancer aggressiveness. Clin Exp Metastasis 2004;21:477-483
-
(2004)
Clin Exp Metastasis
, vol.21
, pp. 477-483
-
-
Tangir, J.1
Bonafe, N.2
Gilmore-Hebert, M.3
-
10
-
-
27744608602
-
Coordinate expression of the PI3-kinase downstream effectors serum and glucocorticoid-induced kinase (SGK-1) and Akt-1 in human breast cancer
-
DOI 10.1016/j.ejca.2005.07.018, PII S0959804905007513
-
Sahoo S, Brickley DR, Kocherginsky M, Conzen SD. Coordinate expression of the PI3-kinase downstream effectors serum and glucocorticoid-induced kinase (SGK-1) and Akt-1 in human breast cancer. Eur J Cancer 2005;41:2754-2759 (Pubitemid 41607569)
-
(2005)
European Journal of Cancer
, vol.41
, Issue.17
, pp. 2754-2759
-
-
Sahoo, S.1
Brickley, D.R.2
Kocherginsky, M.3
Conzen, S.D.4
-
11
-
-
50349085286
-
Wnt signaling inhibits Forkhead box O3a-induced transcription and apoptosis through up-regulation of serum- And glucocorticoid-inducible kinase 1
-
Dehner M, Hadjihannas M, Weiske J, et al. Wnt signaling inhibits Forkhead box O3a-induced transcription and apoptosis through up-regulation of serum- and glucocorticoid-inducible kinase 1. J Biol Chem 2008;283:19201-19210
-
(2008)
J Biol Chem
, vol.283
, pp. 19201-19210
-
-
Dehner, M.1
Hadjihannas, M.2
Weiske, J.3
-
12
-
-
36248929974
-
Serum/glucocorticoid-induced protein kinase-1 facilitates androgen receptor-dependent cell survival
-
DOI 10.1038/sj.cdd.4402227, PII 4402227
-
Shanmugam I, Cheng G, Terranova PF, et al. Serum/glucocorticoid-induced protein kinase-1 facilitates androgen receptor-dependent cell survival. Cell Death Differ 2007;14:2085-2094 (Pubitemid 350131158)
-
(2007)
Cell Death and Differentiation
, vol.14
, Issue.12
, pp. 2085-2094
-
-
Shanmugam, I.1
Cheng, G.2
Terranova, P.F.3
Thrasher, J.B.4
Thomas, C.P.5
Li, B.6
-
13
-
-
58649092475
-
MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
-
The first study, to our knowledge, to show that SGK1 is a mTORC2-specific substrate
-
Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 2008;416:375-385 • The first study, to our knowledge, to show that SGK1 is a mTORC2-specific substrate.
-
(2008)
Biochem J
, vol.416
, pp. 375-385
-
-
Garcia-Martinez, J.M.1
Alessi, D.R.2
-
14
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov dos D, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006;22:159-168
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov Dos, D.1
Ali, S.M.2
Sengupta, S.3
-
15
-
-
54749095517
-
Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/ rictor-independent Akt activation
-
Wang X, Yue P, Kim YA, et al. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/ rictor-independent Akt activation. Cancer Res 2008;68:7409-7418
-
(2008)
Cancer Res
, vol.68
, pp. 7409-7418
-
-
Wang, X.1
Yue, P.2
Kim, Y.A.3
-
16
-
-
62449266454
-
TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): Phospho-Ser2481 is a marker for intact mTOR signaling complex 2
-
Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res 2009;69:1821-1827
-
(2009)
Cancer Res
, vol.69
, pp. 1821-1827
-
-
Copp, J.1
Manning, G.2
Hunter, T.3
-
17
-
-
32044445067
-
TORgeting oncogene addiction for cancer therapy
-
DOI 10.1016/j.ccr.2006.01.021, PII S1535610806000316
-
Choo AY, Blenis J. TORgeting oncogene addiction for cancer therapy. Cancer Cell 2006;9:77-79 (Pubitemid 43202658)
-
(2006)
Cancer Cell
, vol.9
, Issue.2
, pp. 77-79
-
-
Choo, A.Y.1
Blenis, J.2
-
18
-
-
68149096799
-
The pharmacology of mTOR inhibition
-
Published online 21 April 1009, DOI: 10.1126/scisignal.267pe24 An important review on development of mTOR inhibitors
-
Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal 2009;2:pe24. Published online 21 April 1009, DOI: 10.1126/scisignal.267pe24 •• An important review on development of mTOR inhibitors.
-
(2009)
Sci Signal
, vol.2
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
19
-
-
34249779568
-
Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma
-
DOI 10.1056/NEJMoa066838
-
Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007;356:2271-2281 (Pubitemid 46849157)
-
(2007)
New England Journal of Medicine
, vol.356
, Issue.22
, pp. 2271-2281
-
-
Hudes, G.1
Carducci, M.2
Tomczak, P.3
Dutcher, J.4
Figlin, R.5
Kapoor, A.6
Staroslawska, E.7
Sosman, J.8
McDermott, D.9
Bodrogi, I.10
Kovacevic, Z.11
Lesovoy, V.12
Schmidt-Wolf, I.G.H.13
Barbarash, O.14
Gokmen, E.15
O'Toole, T.16
Lustgarten, S.17
Moore, L.18
Motzer, R.J.19
-
20
-
-
66649133114
-
A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer
-
Amato RJ, Jac J, Giessinger S, et al. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer 2009;115:2438-2446
-
(2009)
Cancer
, vol.115
, pp. 2438-2446
-
-
Amato, R.J.1
Jac, J.2
Giessinger, S.3
-
21
-
-
48649107474
-
Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial
-
Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008;372:449-456
-
(2008)
Lancet
, vol.372
, pp. 449-456
-
-
Motzer, R.J.1
Escudier, B.2
Oudard, S.3
-
23
-
-
35348820823
-
Targeting the mTOR signaling network in cancer
-
DOI 10.1016/j.molmed.2007.08.001, PII S1471491407001633
-
Chiang GG, Abraham RT. Targeting the mTOR signaling network in cancer. Trends Mol Med 2007;13:433-442 (Pubitemid 47570021)
-
(2007)
Trends in Molecular Medicine
, vol.13
, Issue.10
, pp. 433-442
-
-
Chiang, G.G.1
Abraham, R.T.2
-
24
-
-
34250619165
-
The mammalian target of rapamycin signaling pathway: Twists and turns in the road to cancer therapy
-
Abraham RT, Gibbons JJ. The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res 2007;13:3109-3114
-
(2007)
Clin Cancer Res
, vol.13
, pp. 3109-3114
-
-
Abraham, R.T.1
Gibbons, J.J.2
-
25
-
-
70349239101
-
New insights into mTOR signaling: MTORC2 and beyond
-
Published online 21 April 2009, DOI: 10.1126/scisignal.267pe27 A detailed review on mTOR complexes and their potential substrates
-
Alessi DR, Pearce LR, Garcia-Martinez JM. New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2009;2:pe27. Published online 21 April 2009, DOI: 10.1126/scisignal.267pe27 •• A detailed review on mTOR complexes and their potential substrates.
-
(2009)
Sci Signal
, vol.2
-
-
Alessi, D.R.1
Pearce, L.R.2
Garcia-Martinez, J.M.3
-
26
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
A comprehensive review on mTOR signaling and translational control
-
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009;10:307-318 • A comprehensive review on mTOR signaling and translational control.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
27
-
-
59749091850
-
A complex interplay between Akt, TSC2 and the two mTOR complexes
-
Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 2009;37:217-222
-
(2009)
Biochem Soc Trans
, vol.37
, pp. 217-222
-
-
Huang, J.1
Manning, B.D.2
-
28
-
-
68949103681
-
Phosphatidic acid signaling to mTOR: Signals for the survival of human cancer cells
-
published online 2 March 2009, doi:10.1016/j.bbalip.2009.02.009
-
Foster DA. Phosphatidic acid signaling to mTOR: Signals for the survival of human cancer cells. Biochim Biophys Acta 2009, published online 2 March 2009, doi:10.1016/j.bbalip.2009.02.009
-
(2009)
Biochim Biophys Acta
-
-
Foster, D.A.1
-
30
-
-
2342489456
-
EIF-4E expression and its role in malignancies and metastases
-
DOI 10.1038/sj.onc.1207545
-
De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene 2004;23:3189-3199 (Pubitemid 38638830)
-
(2004)
Oncogene
, vol.23
, Issue.18
, pp. 3189-3199
-
-
De Benedetti, A.1
Graff, J.R.2
-
31
-
-
2342641580
-
Targets and mechanisms for the regulation of translation in malignant transformation
-
DOI 10.1038/sj.onc.1207544
-
Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 2004;23:3180-3188 (Pubitemid 38638829)
-
(2004)
Oncogene
, vol.23
, Issue.18
, pp. 3180-3188
-
-
Clemens, M.J.1
-
32
-
-
38849180436
-
Targeting the eukaryotic translation initiation factor 4E for cancer therapy
-
Graff JR, Konicek BW, Carter JH, Marcusson EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008;68:631-634
-
(2008)
Cancer Res
, vol.68
, pp. 631-634
-
-
Graff, J.R.1
Konicek, B.W.2
Carter, J.H.3
Marcusson, E.G.4
-
33
-
-
0035976615
-
Phosphatidic acid-mediated mitogenic activation of mTOR signaling
-
DOI 10.1126/science.1066015
-
Fang Y, Vilella-Bach M, Bachmann R, et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 2001;294:1942-1945 • The first study, to our knowledge, that links phosphatidic acid to mTOR signaling. (Pubitemid 33101594)
-
(2001)
Science
, vol.294
, Issue.5548
, pp. 1942-1945
-
-
Fang, Y.1
Vilella-Bach, M.2
Bachmann, R.3
Flanigan, A.4
Chen, J.5
-
34
-
-
46149098447
-
Phospholipase D1 is an effector of Rheb in the mTOR pathway
-
DOI 10.1073/pnas.0712268105
-
Sun Y, Fang Y, Yoon MS, et al. Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci USA 2008;105:8286-8291 (Pubitemid 351904748)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.24
, pp. 8286-8291
-
-
Sun, Y.1
Fang, Y.2
Yoon, M.-S.3
Zhang, C.4
Roccio, M.5
Zwartkruis, F.J.6
Armstrong, M.7
Brown, H.A.8
Chen, J.9
-
35
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
DOI 10.1038/ncb1547, PII NCB1547
-
Vander Haar E, Lee SI, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007;9:316-323 (Pubitemid 46344611)
-
(2007)
Nature Cell Biology
, vol.9
, Issue.3
, pp. 316-323
-
-
Haar, E.V.1
Lee, S.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.-H.5
-
36
-
-
33947264077
-
PRAS40 Is an Insulin-Regulated Inhibitor of the mTORC1 Protein Kinase
-
DOI 10.1016/j.molcel.2007.03.003, PII S1097276507001487
-
Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007;25:903-915 (Pubitemid 46436534)
-
(2007)
Molecular Cell
, vol.25
, Issue.6
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
37
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
DOI 10.1074/jbc.M702376200
-
Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007;282:20036-20044 (Pubitemid 47100127)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.27
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence Jr., J.C.4
-
38
-
-
47049127002
-
Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation
-
Wang L, Harris TE, Lawrence JC Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 2008;283:15619-15627
-
(2008)
J Biol Chem
, vol.283
, pp. 15619-15627
-
-
Wang, L.1
Harris, T.E.2
Lawrence Jr., J.C.3
-
39
-
-
34548359244
-
PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
-
DOI 10.1074/jbc.M704406200
-
Fonseca BD, Smith EM, Lee VH, et al. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 2007;282:24514-24524 (Pubitemid 47347551)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.34
, pp. 24514-24524
-
-
Fonseca, B.D.1
Smith, E.M.2
Lee, V.H.-Y.3
MacKintosh, C.4
Proud, C.G.5
-
40
-
-
34547133519
-
The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
-
DOI 10.1074/jbc.M702636200
-
Oshiro N, Takahashi R, Yoshino K, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007;282:20329-20339 (Pubitemid 47100038)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.28
, pp. 20329-20339
-
-
Oshiro, N.1
Takahashi, R.2
Yoshino, K.-I.3
Tanimura, K.4
Nakashima, A.5
Eguchi, S.6
Miyamoto, T.7
Hara, K.8
Takehana, K.9
Avruch, J.10
Kikkawa, U.11
Yonezawa, K.12
-
41
-
-
34547645033
-
Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase-mediated mTOR activation in tuberous sclerosis and human cancer
-
DOI 10.1158/0008-5472.CAN-06-4798
-
Ma L, Teruya-Feldstein J, Bonner P, et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 2007;67:7106-7112 (Pubitemid 47206537)
-
(2007)
Cancer Research
, vol.67
, Issue.15
, pp. 7106-7112
-
-
Ma, L.1
Teruya-Feldstein, J.2
Bonner, P.3
Bernardi, R.4
Franz, D.N.5
Witte, D.6
Cordon-Cardo, C.7
Pandolfi, P.P.8
-
42
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk: Implications for tuberous sclerosis and cancer pathogenesis
-
DOI 10.1016/j.cell.2005.02.031
-
Ma L, Chen Z, Erdjument-Bromage H, et al. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005;121:179-193 • The first study, to our knowledge, to show that ERK activates mTORC1 signaling. (Pubitemid 40546387)
-
(2005)
Cell
, vol.121
, Issue.2
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
43
-
-
4544384577
-
Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
-
DOI 10.1073/pnas.0405659101
-
Roux PP, Ballif BA, Anjum R, et al. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004;101:13489-13494 (Pubitemid 39238430)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.37
, pp. 13489-13494
-
-
Roux, P.P.1
Ballif, B.A.2
Anjum, R.3
Gygi, S.P.4
Blenis, J.5
-
44
-
-
51049083138
-
Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation
-
Carriere A, Cargnello M, Julien LA, et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol 2008;18:1269-1277
-
(2008)
Curr Biol
, vol.18
, pp. 1269-1277
-
-
Carriere, A.1
Cargnello, M.2
Julien, L.A.3
-
45
-
-
0036636173
-
LKB1 - A master tumour suppressor of the small intestine and beyond
-
Yoo LI, Chung DC, Yuan J. LKB1-a master tumour suppressor of the small intestine and beyond. Nat Rev Cancer 2002;2:529-535 (Pubitemid 37328934)
-
(2002)
Nature Reviews Cancer
, vol.2
, Issue.7
, pp. 529-535
-
-
Yoo, L.I.1
Chung, D.C.2
Yuan, J.3
-
46
-
-
3142594193
-
The LKB1 tumor suppressor negatively regulates mTOR signaling
-
DOI 10.1016/j.ccr.2004.06.007, PII S1535610804001771
-
Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004;6:91-99 (Pubitemid 38903165)
-
(2004)
Cancer Cell
, vol.6
, Issue.1
, pp. 91-99
-
-
Shaw, R.J.1
Bardeesy, N.2
Manning, B.D.3
Lopez, L.4
Kosmatka, M.5
Depinho, R.A.6
Cantley, L.C.7
-
47
-
-
0347318052
-
The AMP-activated protein kinase cascade - A unifying system for energy control
-
DOI 10.1016/j.tibs.2003.11.005
-
Carling D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem Sci 2004;29:18-24 (Pubitemid 38068476)
-
(2004)
Trends in Biochemical Sciences
, vol.29
, Issue.1
, pp. 18-24
-
-
Carling, D.1
-
48
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
DOI 10.1038/ncb839
-
Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648-657 (Pubitemid 34993700)
-
(2002)
Nature Cell Biology
, vol.4
, Issue.9
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.-L.5
-
49
-
-
37149042642
-
A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome
-
DOI 10.1038/sj.onc.1210594, PII 1210594
-
Sanchez-Cespedes M. A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 2007;26:7825-7832 (Pubitemid 350261789)
-
(2007)
Oncogene
, vol.26
, Issue.57
, pp. 7825-7832
-
-
Sanchez-Cespedes, M.1
-
50
-
-
0036645286
-
Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung
-
Sanchez-Cespedes M, Parrella P, Esteller M, et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 2002;62:3659-3662 (Pubitemid 34728843)
-
(2002)
Cancer Research
, vol.62
, Issue.13
, pp. 3659-3662
-
-
Sanchez-Cespedes, M.1
Parrella, P.2
Esteller, M.3
Nomoto, S.4
Trink, B.5
Engles, J.M.6
Westra, W.H.7
Herman, J.G.8
Sidransky, D.9
-
51
-
-
2542590883
-
Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene
-
DOI 10.1038/sj.onc.1207502
-
Carretero J, Medina PP, Pio R, et al. Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene 2004;23:4037-4040 (Pubitemid 38747933)
-
(2004)
Oncogene
, vol.23
, Issue.22
, pp. 4037-4040
-
-
Carretero, J.1
Medina, P.P.2
Pio, R.3
Montuenga, L.M.4
Sanchez-Cespedes, M.5
-
52
-
-
50249143902
-
Role of LKB1 in lung cancer development
-
Makowski L, Hayes DN. Role of LKB1 in lung cancer development. Br J Cancer 2008;99:683-688
-
(2008)
Br J Cancer
, vol.99
, pp. 683-688
-
-
Makowski, L.1
Hayes, D.N.2
-
53
-
-
23844438209
-
Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition
-
DOI 10.1158/0008-5472.CAN-05-0917
-
Sun SY, Rosenberg LM, Wang X, et al. Activation of Akt and eIF4E Survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005;65:7052-7058 •• The first report, to our knowledge, on Akt and eIF4E phosphorylation by rapalogs in cancer cells. (Pubitemid 41161231)
-
(2005)
Cancer Research
, vol.65
, Issue.16
, pp. 7052-7058
-
-
Sun, S.-Y.1
Rosenberg, L.M.2
Wang, X.3
Zhou, Z.4
Yue, P.5
Fu, H.6
Khuri, F.R.7
-
54
-
-
32944457518
-
MTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt
-
DOI 10.1158/0008-5472.CAN-05-2925
-
O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006;66:1500-1508 (Pubitemid 43259931)
-
(2006)
Cancer Research
, vol.66
, Issue.3
, pp. 1500-1508
-
-
O'Reilly, K.E.1
Rojo, F.2
She, Q.-B.3
Solit, D.4
Mills, G.B.5
Smith, D.6
Lane, H.7
Hofmann, F.8
Hicklin, D.J.9
Ludwig, D.L.10
Baselga, J.11
Rosen, N.12
-
55
-
-
27644534999
-
Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade
-
DOI 10.1158/1535-7163.MCT-05-0068
-
Shi Y, Yan H, Frost P, et al. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/ phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005;4:1533-1540 (Pubitemid 41556435)
-
(2005)
Molecular Cancer Therapeutics
, vol.4
, Issue.10
, pp. 1533-1540
-
-
Shi, Y.1
Yan, H.2
Frost, P.3
Gera, J.4
Lichtenstein, A.5
-
56
-
-
33947538050
-
Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism
-
DOI 10.1038/sj.onc.1209990, PII 1209990
-
Wan X, Harkavy B, Shen N, et al. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2007;26:1932-1940 (Pubitemid 46474636)
-
(2007)
Oncogene
, vol.26
, Issue.13
, pp. 1932-1940
-
-
Wan, X.1
Harkavy, B.2
Shen, N.3
Grohar, P.4
Helman, L.J.5
-
57
-
-
33750510023
-
A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas
-
DOI 10.1038/sj.bjc.6603419, PII 6603419
-
Duran I, Kortmansky J, Singh D, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 2006;95:1148-1154 (Pubitemid 44660065)
-
(2006)
British Journal of Cancer
, vol.95
, Issue.9
, pp. 1148-1154
-
-
Duran, I.1
Kortmansky, J.2
Singh, D.3
Hirte, H.4
Kocha, W.5
Goss, G.6
Le, L.7
Oza, A.8
Nicklee, T.9
Ho, J.10
Birle, D.11
Pond, G.R.12
Arboine, D.13
Dancey, J.14
Aviel-Ronen, S.15
Tsao, M.-S.16
Hedley, D.17
Siu, L.L.18
-
58
-
-
43249131245
-
Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: A Phase I tumor pharmacodynamic study in patients with advanced solid tumors
-
Tabernero J, Rojo F, Calvo E, et al. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a Phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 2008;26:1603-1610
-
(2008)
J Clin Oncol
, vol.26
, pp. 1603-1610
-
-
Tabernero, J.1
Rojo, F.2
Calvo, E.3
-
59
-
-
34147146014
-
Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML
-
Zeng Z, Sarbassov dos D, Samudio IJ, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007;109:3509-3512
-
(2007)
Blood
, vol.109
, pp. 3509-3512
-
-
Zeng, Z.1
Sarbassov Dos, D.2
Samudio, I.J.3
-
61
-
-
8444224619
-
Balancing Akt with S6K: Implications for both metabolic diseases and tumorigenesis
-
Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 2004;167:399-403
-
(2004)
J Cell Biol
, vol.167
, pp. 399-403
-
-
Manning, B.D.1
-
63
-
-
67349241955
-
DEPTOR is an mTOR Inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson TR, Laplante M, Thoreen CC, et al. DEPTOR is an mTOR Inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009;137:873-886
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
-
64
-
-
51349164790
-
Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer
-
The first study, to our knowledge, to show that mTORC1 inhibition activates ERK signaling
-
Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008;118:3065-3074 • The first study, to our knowledge, to show that mTORC1 inhibition activates ERK signaling.
-
(2008)
J Clin Invest
, vol.118
, pp. 3065-3074
-
-
Carracedo, A.1
Ma, L.2
Teruya-Feldstein, J.3
-
65
-
-
58149136153
-
Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors' anticancer efficacy
-
Wang X, Hawk N, Yue P, et al. Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors' anticancer efficacy. Cancer Biol Ther 2008;7:1952-1958
-
(2008)
Cancer Biol Ther
, vol.7
, pp. 1952-1958
-
-
Wang, X.1
Hawk, N.2
Yue, P.3
-
66
-
-
2342584183
-
EIF4E-from translation to transformation
-
Mamane Y, Petroulakis E, Rong L, et al. eIF4E-from translation to transformation. Oncogene 2004;23:3172-3179
-
(2004)
Oncogene
, vol.23
, pp. 3172-3179
-
-
Mamane, Y.1
Petroulakis, E.2
Rong, L.3
-
68
-
-
2942518250
-
Lost in translation: Dysregulation of cap-dependent translation and cancer
-
Bjornsti MA, Houghton PJ. Lost in translation: dysregulation of cap-dependent translation and cancer. Cancer Cell 2004;5:519-523
-
(2004)
Cancer Cell
, vol.5
, pp. 519-523
-
-
Bjornsti, M.A.1
Houghton, P.J.2
-
69
-
-
0035224873
-
Phosphorylation of mammalian eIF4E by Mnk1 and Mnk2: Tantalizing prospects for a role in translation
-
Mahalingam M, Cooper JA. Phosphorylation of mammalian eIF4E by Mnk1 and Mnk2: tantalizing prospects for a role in translation. Prog Mol Subcell Biol 2001;27:132-142
-
(2001)
Prog Mol Subcell Biol
, vol.27
, pp. 132-142
-
-
Mahalingam, M.1
Cooper, J.A.2
-
70
-
-
0034668203
-
Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1
-
Pyronnet S. Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem Pharmacol 2000;60:1237-1243
-
(2000)
Biochem Pharmacol
, vol.60
, pp. 1237-1243
-
-
Pyronnet, S.1
-
71
-
-
0036178103
-
Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth
-
DOI 10.1128/MCB.22.6.1656-1663.2002
-
Lachance PE, Miron M, Raught B, et al. Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth. Mol Cell Biol 2002;22:1656-1663 (Pubitemid 34174983)
-
(2002)
Molecular and Cellular Biology
, vol.22
, Issue.6
, pp. 1656-1663
-
-
Lachance, P.E.D.1
Miron, M.2
Raught, B.3
Sonenberg, N.4
Lasko, P.5
-
72
-
-
9244228003
-
Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities
-
DOI 10.1158/0008-5472.CAN-04-2677
-
Topisirovic I, Ruiz-Gutierrez M, Borden KL. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 2004;64:8639-8642 (Pubitemid 39552077)
-
(2004)
Cancer Research
, vol.64
, Issue.23
, pp. 8639-8642
-
-
Topisirovic, I.1
Ruiz-Gutierrez, M.2
Borden, K.L.B.3
-
73
-
-
37249042829
-
Dissecting eIF4E action in tumorigenesis
-
The first mouse genetic study, to our knowledge, on the critical role of eIF4E phosphorylation in oncogenesis
-
Wendel HG, Silva RL, Malina A, et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007;21:3232-3237 • The first mouse genetic study, to our knowledge, on the critical role of eIF4E phosphorylation in oncogenesis.
-
(2007)
Genes Dev
, vol.21
, pp. 3232-3237
-
-
Wendel, H.G.1
Silva, R.L.2
Malina, A.3
-
74
-
-
35648962915
-
Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3 kinase-dependent and Mnk-mediated eIF4E phosphorylation
-
The first study, to our knowledge, showing that rapalogs induces PI3K-dependent, Mnk-mediated eIF4E phosphorylation
-
Wang X, Yue P, Chan CB, et al. Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3 kinase-dependent and Mnk-mediated eIF4E phosphorylation. Mol Cell Biol 2007;27:7405-7413 • The first study, to our knowledge, showing that rapalogs induces PI3K-dependent, Mnk-mediated eIF4E phosphorylation.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 7405-7413
-
-
Wang, X.1
Yue, P.2
Chan, C.B.3
-
75
-
-
34147124095
-
Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells
-
DOI 10.1016/j.leukres.2006.08.001, PII S0145212606003043
-
Ikezoe T, Nishioka C, Bandobashi K, et al. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leukemia Res 2007;31:673-682 (Pubitemid 46560001)
-
(2007)
Leukemia Research
, vol.31
, Issue.5
, pp. 673-682
-
-
Ikezoe, T.1
Nishioka, C.2
Bandobashi, K.3
Yang, Y.4
Kuwayama, Y.5
Adachi, Y.6
Takeuchi, T.7
Koeffler, H.P.8
Taguchi, H.9
-
76
-
-
37049010979
-
Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression
-
Legrier ME, Yang CP, Yan HG, et al. Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 2007;67:11300-11308
-
(2007)
Cancer Res
, vol.67
, pp. 11300-11308
-
-
Legrier, M.E.1
Yang, C.P.2
Yan, H.G.3
-
77
-
-
65449116467
-
Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models
-
published online April 15 2009, doi:10.1186/1471-2210-9-8
-
Lee N, Woodrum CL, Nobil AM, et al. Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models. BMC Pharmacol 2009;9:8. published online April 15 2009, doi:10.1186/1471-2210-9-8
-
(2009)
BMC Pharmacol
, vol.9
, pp. 8
-
-
Lee, N.1
Woodrum, C.L.2
Nobil, A.M.3
-
78
-
-
63449109698
-
Myeloma cell growth inhibition is augmented by synchronous inhibition of the insulin-like growth factor-1 receptor by NVP-AEW541 and inhibition of mammalian target of rapamycin by Rad001
-
Baumann P, Hagemeier H, Mandl-Weber S, et al. Myeloma cell growth inhibition is augmented by synchronous inhibition of the insulin-like growth factor-1 receptor by NVP-AEW541 and inhibition of mammalian target of rapamycin by Rad001. Anticancer Drugs 2009;20:259-266
-
(2009)
Anticancer Drugs
, vol.20
, pp. 259-266
-
-
Baumann, P.1
Hagemeier, H.2
Mandl-Weber, S.3
-
79
-
-
33847394119
-
PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR
-
DOI 10.1172/JCI28984
-
Zhang H, Bajraszewski N, Wu E, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 2007;117:730-738 (Pubitemid 46348531)
-
(2007)
Journal of Clinical Investigation
, vol.117
, Issue.3
, pp. 730-738
-
-
Zhang, H.1
Bajraszewski, N.2
Wu, E.3
Wang, H.4
Moseman, A.P.5
Dabora, S.L.6
Griffin, J.D.7
Kwiatkowski, D.J.8
-
80
-
-
67649780941
-
Combining the receptor tyrosine kinase inhibitor AEE788 and the mammalian target of rapamycin (mTOR) inhibitor RAD001 strongly inhibits adhesion and growth of renal cell carcinoma cells
-
Published online May 27 2009, doi:10.1186/1471-2407-9-161
-
Juengel E, Engler J, Natsheh I, et al. Combining the receptor tyrosine kinase inhibitor AEE788 and the mammalian target of rapamycin (mTOR) inhibitor RAD001 strongly inhibits adhesion and growth of renal cell carcinoma cells. BMC Cancer 2009;9:161. Published online May 27 2009, doi:10.1186/1471-2407-9-161
-
(2009)
BMC Cancer
, vol.9
, pp. 161
-
-
Juengel, E.1
Engler, J.2
Natsheh, I.3
-
81
-
-
13944269599
-
Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition
-
Goudar RK, Shi Q, Hjelmeland MD, et al. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 2005;4:101-112 (Pubitemid 40268071)
-
(2005)
Molecular Cancer Therapeutics
, vol.4
, Issue.1
, pp. 101-112
-
-
Goudar, R.K.1
Shi, Q.2
Hjelmeland, M.D.3
Keir, S.T.4
McLendon, R.E.5
Wikstrand, C.J.6
Reese, E.D.7
Conrad, C.A.8
Traxler, P.9
Lane, H.A.10
Reardon, D.A.11
Cavenee, W.K.12
Wang, X.-F.13
Bigner, D.D.14
Friedman, H.S.15
Rich, J.N.16
-
82
-
-
55549129243
-
ABT-869, a multi-targeted tyrosine kinase inhibitor, in combination with rapamycin is effective for subcutaneous hepatocellular carcinoma xenograft
-
Jasinghe VJ, Xie Z, Zhou J, et al. ABT-869, a multi-targeted tyrosine kinase inhibitor, in combination with rapamycin is effective for subcutaneous hepatocellular carcinoma xenograft. J Hepatol 2008;49:985-997
-
(2008)
J Hepatol
, vol.49
, pp. 985-997
-
-
Jasinghe, V.J.1
Xie, Z.2
Zhou, J.3
-
83
-
-
34247370642
-
Combining an mTOR antagonist and receptor tyrosine kinase inhibitors for the treatment of prostate cancer
-
Masiello D, Mohi MG, McKnight NC, et al. Combining an mTOR antagonist and receptor tyrosine kinase inhibitors for the treatment of prostate cancer. Cancer Biol Ther 2007;6:195-201 (Pubitemid 46641623)
-
(2007)
Cancer Biology and Therapy
, vol.6
, Issue.2
, pp. 195-201
-
-
Masiello, D.1
Mohi, M.G.2
McKnight, N.C.3
Smith, B.4
Neel, B.G.5
Balk, S.P.6
Bubley, G.J.7
-
84
-
-
33644877965
-
Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells
-
Rao RD, Mladek AC, Lamont JD, et al. Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. Neoplasia 2005;7:921-929
-
(2005)
Neoplasia
, vol.7
, pp. 921-929
-
-
Rao, R.D.1
Mladek, A.C.2
Lamont, J.D.3
-
85
-
-
40349108627
-
Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs
-
DOI 10.1038/sj.bjc.6604269, PII 6604269
-
Bianco R, Garofalo S, Rosa R, et al. Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. Br J Cancer 2008;98:923-930 (Pubitemid 351341618)
-
(2008)
British Journal of Cancer
, vol.98
, Issue.5
, pp. 923-930
-
-
Bianco, R.1
Garofalo, S.2
Rosa, R.3
Damiano, V.4
Gelardi, T.5
Daniele, G.6
Marciano, R.7
Ciardiello, F.8
Tortora, G.9
-
86
-
-
33845227643
-
Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors
-
DOI 10.1158/1535-7163.MCT-06-0166
-
Buck E, Eyzaguirre A, Brown E, et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 2006;5:2676-2684 (Pubitemid 44848994)
-
(2006)
Molecular Cancer Therapeutics
, vol.5
, Issue.11
, pp. 2676-2684
-
-
Buck, E.1
Eyzaguirre, A.2
Brown, E.3
Petti, F.4
McCormack, S.5
Haley, J.D.6
Iwata, K.K.7
Gibson, N.W.8
Griffin, G.9
-
87
-
-
33750452256
-
Signaling interactions of rapamycin combined with erlotinib in cervical carcinoma xenografts
-
Birle DC, Hedley DW. Signaling interactions of rapamycin combined with erlotinib in cervical carcinoma xenografts. Mol Cancer Ther 2006;5:2494-2502
-
(2006)
Mol Cancer Ther
, vol.5
, pp. 2494-2502
-
-
Birle, D.C.1
Hedley, D.W.2
-
88
-
-
38949141134
-
Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells
-
Azzariti A, Porcelli L, Gatti G, et al. Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem Pharmacol 2008;75:1035-1044
-
(2008)
Biochem Pharmacol
, vol.75
, pp. 1035-1044
-
-
Azzariti, A.1
Porcelli, L.2
Gatti, G.3
-
89
-
-
33646382364
-
A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma
-
Fan QW, Knight ZA, Goldenberg DD, et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006;9:341-349
-
(2006)
Cancer Cell
, vol.9
, pp. 341-349
-
-
Fan, Q.W.1
Knight, Z.A.2
Goldenberg, D.D.3
-
90
-
-
51049109033
-
Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity
-
Maira SM, Stauffer F, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008;7:1851-1863
-
(2008)
Mol Cancer Ther
, vol.7
, pp. 1851-1863
-
-
Maira, S.M.1
Stauffer, F.2
Brueggen, J.3
-
91
-
-
34250788809
-
AKT/PKB signaling: Navigating downstream
-
Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007;129:1261-1274
-
(2007)
Cell
, vol.129
, pp. 1261-1274
-
-
Manning, B.D.1
Cantley, L.C.2
-
92
-
-
58649114084
-
MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin DA, Stevens DM, Saitoh M, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009;15:148-159
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
Stevens, D.M.2
Saitoh, M.3
-
93
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009;284:8023-8032
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
-
94
-
-
68049137608
-
Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
-
Yu K, Toral-Barza L, Shi C, et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009;69:6232-6240
-
(2009)
Cancer Res
, vol.69
, pp. 6232-6240
-
-
Yu, K.1
Toral-Barza, L.2
Shi, C.3
-
95
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Published online 10 February 2009, doi:10.1371/journal.pbio.1000038
-
Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009;7:e38. Published online 10 February 2009, doi:10.1371/journal.pbio.1000038
-
(2009)
PLoS Biol
, vol.7
-
-
Feldman, M.E.1
Apsel, B.2
Uotila, A.3
-
96
-
-
44949215822
-
The TSC1-TSC2 complex is required for proper activation of mTOR complex 2
-
DOI 10.1128/MCB.00289-08
-
Huang J, Dibble CC, Matsuzaki M, Manning BD. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008;28:4104-4115 (Pubitemid 351812994)
-
(2008)
Molecular and Cellular Biology
, vol.28
, Issue.12
, pp. 4104-4115
-
-
Huang, J.1
Dibble, C.C.2
Matsuzaki, M.3
Manning, B.D.4
-
97
-
-
47949104258
-
Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
-
Ikenoue T, Inoki K, Yang Q, et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008;27:1919-1931
-
(2008)
EMBO J
, vol.27
, pp. 1919-1931
-
-
Ikenoue, T.1
Inoki, K.2
Yang, Q.3
-
98
-
-
47949125486
-
The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C
-
Facchinetti V, Ouyang W, Wei H, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008;27:1932-1943
-
(2008)
EMBO J
, vol.27
, pp. 1932-1943
-
-
Facchinetti, V.1
Ouyang, W.2
Wei, H.3
-
99
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
-
Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev Cell 2006;11:859-871
-
(2006)
Dev Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
-
100
-
-
17944377486
-
Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR
-
DOI 10.1073/pnas.171076798
-
Neshat MS, Mellinghoff IK, Tran C, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 2001;98:10314-10319 (Pubitemid 32803017)
-
(2001)
Proceedings of the National Academy of Sciences of the United States of America
, vol.98
, Issue.18
, pp. 10314-10319
-
-
Neshat, M.S.1
Mellinghoff, I.K.2
Tran, C.3
Stiles, B.4
Thomas, G.5
Petersen, R.6
Frost, P.7
Gibbons, J.J.8
Wu, H.9
Sawyers, C.L.10
-
101
-
-
52449131427
-
PTEN loss does not predict for response to RAD001 (Everolimus) in a glioblastoma orthotopic xenograft test panel
-
Yang L, Clarke MJ, Carlson BL, et al. PTEN loss does not predict for response to RAD001 (Everolimus) in a glioblastoma orthotopic xenograft test panel. Clin Cancer Res 2008;14:3993-4001
-
(2008)
Clin Cancer Res
, vol.14
, pp. 3993-4001
-
-
Yang, L.1
Clarke, M.J.2
Carlson, B.L.3
-
102
-
-
51749095471
-
FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression
-
Mao JH, Kim IJ, Wu D, et al. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 2008;321:1499-1502
-
(2008)
Science
, vol.321
, pp. 1499-1502
-
-
Mao, J.H.1
Kim, I.J.2
Wu, D.3
-
103
-
-
35148842479
-
FBXW7/hCDC4 is a general tumor suppressor in human cancer
-
DOI 10.1158/0008-5472.CAN-07-1320
-
Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res 2007;67:9006-9012 (Pubitemid 47535882)
-
(2007)
Cancer Research
, vol.67
, Issue.19
, pp. 9006-9012
-
-
Akhoondi, S.1
Sun, D.2
Von Der Lehr, N.3
Apostolidou, S.4
Klotz, K.5
Maljukova, A.6
Cepeda, D.7
Fiegl, H.8
Dofou, D.9
Marth, C.10
Mueller-Holzner, E.11
Corcoran, M.12
Dagnell, M.13
Nejad, S.Z.14
Nayer, B.N.15
Zali, M.R.16
Hansson, J.17
Egyhazi, S.18
Petersson, F.19
Sangfelt, P.20
Nordgren, H.21
Grander, D.22
Reed, S.I.23
Widschwendter, M.24
Sangfelt, O.25
Spruck, C.26
more..
|