-
1
-
-
0037131560
-
Nutrient-regulated protein kinases in budding yeast
-
Wilson W.A., and Roach P.J. Nutrient-regulated protein kinases in budding yeast. Cell 111 (2002) 155-158
-
(2002)
Cell
, vol.111
, pp. 155-158
-
-
Wilson, W.A.1
Roach, P.J.2
-
2
-
-
0017158118
-
Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells
-
Mitchener J.S., Shelburne J.D., Bradford W.D., and Hawkins H.K. Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells. Am. J. Pathol. 83 (1976) 485-492
-
(1976)
Am. J. Pathol.
, vol.83
, pp. 485-492
-
-
Mitchener, J.S.1
Shelburne, J.D.2
Bradford, W.D.3
Hawkins, H.K.4
-
3
-
-
0026668042
-
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
-
Takeshige K., Baba M., Tsuboi S., Noda T., and Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119 (1992) 301-311
-
(1992)
J. Cell Biol.
, vol.119
, pp. 301-311
-
-
Takeshige, K.1
Baba, M.2
Tsuboi, S.3
Noda, T.4
Ohsumi, Y.5
-
4
-
-
0029953575
-
Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway
-
Harding T.M., Hefner-Gravink A., Thumm M., and Klionsky D.J. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J. Biol. Chem. 271 (1996) 17621-17624
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 17621-17624
-
-
Harding, T.M.1
Hefner-Gravink, A.2
Thumm, M.3
Klionsky, D.J.4
-
5
-
-
0031417385
-
Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome
-
Baba M., Osumi M., Scott S.V., Klionsky D.J., and Ohsumi Y. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J. Cell Biol. 139 (1997) 1687-1695
-
(1997)
J. Cell Biol.
, vol.139
, pp. 1687-1695
-
-
Baba, M.1
Osumi, M.2
Scott, S.V.3
Klionsky, D.J.4
Ohsumi, Y.5
-
6
-
-
0029913505
-
Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole
-
Scott S.V., Hefner-Gravink A., Morano K.A., Noda T., Ohsumi Y., and Klionsky D.J. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 12304-12308
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 12304-12308
-
-
Scott, S.V.1
Hefner-Gravink, A.2
Morano, K.A.3
Noda, T.4
Ohsumi, Y.5
Klionsky, D.J.6
-
7
-
-
57749121573
-
Mitophagy in yeast occurs through a selective mechanism
-
Kanki T., and Klionsky D.J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283 (2008) 32386-32393
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 32386-32393
-
-
Kanki, T.1
Klionsky, D.J.2
-
8
-
-
33644586142
-
Pexophagy: the selective autophagy of peroxisomes
-
Dunn Jr. W.A., Cregg J.M., Kiel J.A., van der Klei I.J., Oku M., Sakai Y., Sibirny A.A., Stasyk O.V., and Veenhuis M. Pexophagy: the selective autophagy of peroxisomes. Autophagy 1 (2005) 75-83
-
(2005)
Autophagy
, vol.1
, pp. 75-83
-
-
Dunn Jr., W.A.1
Cregg, J.M.2
Kiel, J.A.3
van der Klei, I.J.4
Oku, M.5
Sakai, Y.6
Sibirny, A.A.7
Stasyk, O.V.8
Veenhuis, M.9
-
9
-
-
33645221489
-
Excess peroxisomes are degraded by autophagic machinery in mammals
-
Iwata J., Ezaki J., Komatsu M., Yokota S., Ueno T., Tanida I., Chiba T., Tanaka K., and Kominami E. Excess peroxisomes are degraded by autophagic machinery in mammals. J. Biol. Chem. 281 (2006) 4035-4041
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 4035-4041
-
-
Iwata, J.1
Ezaki, J.2
Komatsu, M.3
Yokota, S.4
Ueno, T.5
Tanida, I.6
Chiba, T.7
Tanaka, K.8
Kominami, E.9
-
11
-
-
2442482810
-
Autophagy as a cell death and tumor suppressor mechanism
-
Gozuacik D., and Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23 (2004) 2891-2906
-
(2004)
Oncogene
, vol.23
, pp. 2891-2906
-
-
Gozuacik, D.1
Kimchi, A.2
-
12
-
-
33745357459
-
Autophagy as an immune defense mechanism
-
Deretic V. Autophagy as an immune defense mechanism. Curr. Opin. Immunol. 18 (2006) 375-382
-
(2006)
Curr. Opin. Immunol.
, vol.18
, pp. 375-382
-
-
Deretic, V.1
-
13
-
-
27644493346
-
The pleiotropic role of autophagy: from protein metabolism to bactericide
-
Mizushima N. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ. 12 Suppl 2 (2005) 1535-1541
-
(2005)
Cell Death Differ.
, vol.12
, Issue.SUPPL. 2
, pp. 1535-1541
-
-
Mizushima, N.1
-
14
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., and Kroemer G. Autophagy in the pathogenesis of disease. Cell 132 (2008) 27-42
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
15
-
-
0028230738
-
Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization
-
Baba M., Takeshige K., Baba N., and Ohsumi Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124 (1994) 903-913
-
(1994)
J. Cell Biol.
, vol.124
, pp. 903-913
-
-
Baba, M.1
Takeshige, K.2
Baba, N.3
Ohsumi, Y.4
-
16
-
-
0035503594
-
The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki K., Kirisako T., Kamada Y., Mizushima N., Noda T., and Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20 (2001) 5971-5981
-
(2001)
EMBO J.
, vol.20
, pp. 5971-5981
-
-
Suzuki, K.1
Kirisako, T.2
Kamada, Y.3
Mizushima, N.4
Noda, T.5
Ohsumi, Y.6
-
17
-
-
0037016752
-
Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation
-
Kim J., Huang W.P., Stromhaug P.E., and Klionsky D.J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol Chem. 277 (2002) 763-773
-
(2002)
J. Biol Chem.
, vol.277
, pp. 763-773
-
-
Kim, J.1
Huang, W.P.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
18
-
-
47549086520
-
Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy
-
Geng J., Baba M., Nair U., and Klionsky D.J. Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J. Cell Biol. 182 (2008) 129-140
-
(2008)
J. Cell Biol.
, vol.182
, pp. 129-140
-
-
Geng, J.1
Baba, M.2
Nair, U.3
Klionsky, D.J.4
-
19
-
-
1842583789
-
Development by self-digestion: molecular mechanisms and biological functions of autophagy
-
Levine B., and Klionsky D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6 (2004) 463-477
-
(2004)
Dev. Cell
, vol.6
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
20
-
-
0036702197
-
Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae
-
Khalfan W.A., and Klionsky D.J. Molecular machinery required for autophagy and the cytoplasm to vacuole targeting (Cvt) pathway in S. cerevisiae. Curr. Opin. Cell Biol. 14 (2002) 468-475
-
(2002)
Curr. Opin. Cell Biol.
, vol.14
, pp. 468-475
-
-
Khalfan, W.A.1
Klionsky, D.J.2
-
21
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada M., and Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333 (1993) 169-174
-
(1993)
FEBS Lett.
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
22
-
-
0027936092
-
Isolation of autophagocytosis mutants of Saccharomyces cerevisiae
-
Thumm M., Egner R., Koch B., Schlumpberger M., Straub M., Veenhuis M., and Wolf D.H. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349 (1994) 275-280
-
(1994)
FEBS Lett.
, vol.349
, pp. 275-280
-
-
Thumm, M.1
Egner, R.2
Koch, B.3
Schlumpberger, M.4
Straub, M.5
Veenhuis, M.6
Wolf, D.H.7
-
23
-
-
0028800171
-
Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
-
Harding T.M., Morano K.A., Scott S.V., and Klionsky D.J. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 131 (1995) 591-602
-
(1995)
J. Cell Biol.
, vol.131
, pp. 591-602
-
-
Harding, T.M.1
Morano, K.A.2
Scott, S.V.3
Klionsky, D.J.4
-
24
-
-
0030983504
-
Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae
-
Matsuura A., Tsukada M., Wada Y., and Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192 (1997) 245-250
-
(1997)
Gene
, vol.192
, pp. 245-250
-
-
Matsuura, A.1
Tsukada, M.2
Wada, Y.3
Ohsumi, Y.4
-
25
-
-
0034683568
-
Tor-mediated induction of autophagy via an Apg1 protein kinase complex
-
Kamada Y., Funakoshi T., Shintani T., Nagano K., Ohsumi M., and Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150 (2000) 1507-1513
-
(2000)
J. Cell Biol.
, vol.150
, pp. 1507-1513
-
-
Kamada, Y.1
Funakoshi, T.2
Shintani, T.3
Nagano, K.4
Ohsumi, M.5
Ohsumi, Y.6
-
26
-
-
0037329201
-
Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy
-
Abeliovich H., Zhang C., Dunn Jr. W.A., Shokat K.M., and Klionsky D.J. Chemical genetic analysis of Apg1 reveals a non-kinase role in the induction of autophagy. Mol. Biol. Cell 14 (2003) 477-490
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 477-490
-
-
Abeliovich, H.1
Zhang, C.2
Dunn Jr., W.A.3
Shokat, K.M.4
Klionsky, D.J.5
-
28
-
-
18244394277
-
Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy
-
Kabeya Y., Kamada Y., Baba M., Takikawa H., Sasaki M., and Ohsumi Y. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell 16 (2005) 2544-2553
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 2544-2553
-
-
Kabeya, Y.1
Kamada, Y.2
Baba, M.3
Takikawa, H.4
Sasaki, M.5
Ohsumi, Y.6
-
30
-
-
39449108917
-
The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae
-
Cheong H., Nair U., Geng J., and Klionsky D.J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 19 (2008) 668-681
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 668-681
-
-
Cheong, H.1
Nair, U.2
Geng, J.3
Klionsky, D.J.4
-
31
-
-
0030919092
-
Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae
-
Funakoshi T., Matsuura A., Noda T., and Ohsumi Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192 (1997) 207-213
-
(1997)
Gene
, vol.192
, pp. 207-213
-
-
Funakoshi, T.1
Matsuura, A.2
Noda, T.3
Ohsumi, Y.4
-
32
-
-
21844470747
-
Atg17 regulates the magnitude of the autophagic response
-
Cheong H., Yorimitsu T., Reggiori F., Legakis J.E., Wang C.W., and Klionsky D.J. Atg17 regulates the magnitude of the autophagic response. Mol. Biol. Cell 16 (2005) 3438-3453
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 3438-3453
-
-
Cheong, H.1
Yorimitsu, T.2
Reggiori, F.3
Legakis, J.E.4
Wang, C.W.5
Klionsky, D.J.6
-
33
-
-
0035897414
-
Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole
-
Kim J., Kamada Y., Stromhaug P.E., Guan J., Hefner-Gravink A., Baba M., Scott S.V., Ohsumi Y., Dunn Jr. W.A., and Klionsky D.J. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153 (2001) 381-396
-
(2001)
J. Cell Biol.
, vol.153
, pp. 381-396
-
-
Kim, J.1
Kamada, Y.2
Stromhaug, P.E.3
Guan, J.4
Hefner-Gravink, A.5
Baba, M.6
Scott, S.V.7
Ohsumi, Y.8
Dunn Jr., W.A.9
Klionsky, D.J.10
-
34
-
-
0034682772
-
Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting
-
Scott S.V., Nice 3rd D.C., Nau J.J., Weisman L.S., Kamada Y., Keizer-Gunnink I., Funakoshi T., Veenhuis M., Ohsumi Y., and Klionsky D.J. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J. Biol. Chem. 275 (2000) 25840-25849
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 25840-25849
-
-
Scott, S.V.1
Nice 3rd, D.C.2
Nau, J.J.3
Weisman, L.S.4
Kamada, Y.5
Keizer-Gunnink, I.6
Funakoshi, T.7
Veenhuis, M.8
Ohsumi, Y.9
Klionsky, D.J.10
-
35
-
-
0037119448
-
Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy
-
Nice D.C., Sato T.K., Stromhaug P.E., Emr S.D., and Klionsky D.J. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J. Biol. Chem. 277 (2002) 30198-30207
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 30198-30207
-
-
Nice, D.C.1
Sato, T.K.2
Stromhaug, P.E.3
Emr, S.D.4
Klionsky, D.J.5
-
36
-
-
27844461994
-
Characterization of a novel autophagy-specific gene, ATG29
-
Kawamata T., Kamada Y., Suzuki K., Kuboshima N., Akimatsu H., Ota S., Ohsumi M., and Ohsumi Y. Characterization of a novel autophagy-specific gene, ATG29. Biochem. Biophys. Res. Commun. 338 (2005) 1884-1889
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.338
, pp. 1884-1889
-
-
Kawamata, T.1
Kamada, Y.2
Suzuki, K.3
Kuboshima, N.4
Akimatsu, H.5
Ota, S.6
Ohsumi, M.7
Ohsumi, Y.8
-
37
-
-
33947378818
-
Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae
-
Kabeya Y., Kawamata T., Suzuki K., and Ohsumi Y. Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 356 (2007) 405-410
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.356
, pp. 405-410
-
-
Kabeya, Y.1
Kawamata, T.2
Suzuki, K.3
Ohsumi, Y.4
-
38
-
-
33846514235
-
Hierarchy of Atg proteins in pre-autophagosomal structure organization
-
Suzuki K., Kubota Y., Sekito T., and Ohsumi Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12 (2007) 209-218
-
(2007)
Genes Cells
, vol.12
, pp. 209-218
-
-
Suzuki, K.1
Kubota, Y.2
Sekito, T.3
Ohsumi, Y.4
-
39
-
-
43149125546
-
Organization of the pre-autophagosomal structure responsible for autophagosome formation
-
Kawamata T., Kamada Y., Kabeya Y., Sekito T., and Ohsumi Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell 19 (2008) 2039-2050
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2039-2050
-
-
Kawamata, T.1
Kamada, Y.2
Kabeya, Y.3
Sekito, T.4
Ohsumi, Y.5
-
40
-
-
50249154070
-
In vivo reconstitution of autophagy in Saccharomyces cerevisiae
-
Cao Y., Cheong H., Song H., and Klionsky D.J. In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J. Cell Biol. 182 (2008) 703-713
-
(2008)
J. Cell Biol.
, vol.182
, pp. 703-713
-
-
Cao, Y.1
Cheong, H.2
Song, H.3
Klionsky, D.J.4
-
41
-
-
0034722378
-
Dissection of autophagosome biogenesis into distinct nucleation and expansion steps
-
Abeliovich H., Dunn Jr. W.A., Kim J., and Klionsky D.J. Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J. Cell Biol. 151 (2000) 1025-1034
-
(2000)
J. Cell Biol.
, vol.151
, pp. 1025-1034
-
-
Abeliovich, H.1
Dunn Jr., W.A.2
Kim, J.3
Klionsky, D.J.4
-
42
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
-
Nakatogawa H., Ichimura Y., and Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130 (2007) 165-178
-
(2007)
Cell
, vol.130
, pp. 165-178
-
-
Nakatogawa, H.1
Ichimura, Y.2
Ohsumi, Y.3
-
43
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., Mizushima N., Tanida I., Kominami E., Ohsumi M., Noda T., and Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature 408 (2000) 488-492
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
Mizushima, N.7
Tanida, I.8
Kominami, E.9
Ohsumi, M.10
Noda, T.11
Ohsumi, Y.12
-
44
-
-
0032701984
-
Formation process of autophagosome is traced with Apg8/Aut7p in yeast
-
Kirisako T., Baba M., Ishihara N., Miyazawa K., Ohsumi M., Yoshimori T., Noda T., and Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147 (1999) 435-446
-
(1999)
J. Cell Biol.
, vol.147
, pp. 435-446
-
-
Kirisako, T.1
Baba, M.2
Ishihara, N.3
Miyazawa, K.4
Ohsumi, M.5
Yoshimori, T.6
Noda, T.7
Ohsumi, Y.8
-
45
-
-
0034050457
-
The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways
-
Huang W.P., Scott S.V., Kim J., and Klionsky D.J. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J. Biol. Chem. 275 (2000) 5845-5851
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 5845-5851
-
-
Huang, W.P.1
Scott, S.V.2
Kim, J.3
Klionsky, D.J.4
-
46
-
-
0032126632
-
Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole
-
Lang T., Schaeffeler E., Bernreuther D., Bredschneider M., Wolf D.H., and Thumm M. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J. 17 (1998) 3597-3607
-
(1998)
EMBO J.
, vol.17
, pp. 3597-3607
-
-
Lang, T.1
Schaeffeler, E.2
Bernreuther, D.3
Bredschneider, M.4
Wolf, D.H.5
Thumm, M.6
-
47
-
-
0035794172
-
Regulation of APG14 expression by the GATA-type transcription factor Gln3p
-
Chan T.F., Bertram P.G., Ai W., and Zheng X.F. Regulation of APG14 expression by the GATA-type transcription factor Gln3p. J. Biol. Chem. 276 (2001) 6463-6467
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 6463-6467
-
-
Chan, T.F.1
Bertram, P.G.2
Ai, W.3
Zheng, X.F.4
-
48
-
-
0032575551
-
Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae
-
Kametaka S., Okano T., Ohsumi M., and Ohsumi Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273 (1998) 22284-22291
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 22284-22291
-
-
Kametaka, S.1
Okano, T.2
Ohsumi, M.3
Ohsumi, Y.4
-
49
-
-
0035809160
-
Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae
-
Kihara A., Noda T., Ishihara N., and Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152 (2001) 519-530
-
(2001)
J. Cell Biol.
, vol.152
, pp. 519-530
-
-
Kihara, A.1
Noda, T.2
Ishihara, N.3
Ohsumi, Y.4
-
50
-
-
0034973590
-
Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast
-
Natarajan K., Meyer M.R., Jackson B.M., Slade D., Roberts C., Hinnebusch A.G., and Marton M.J. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol. Cell Biol. 21 (2001) 4347-4368
-
(2001)
Mol. Cell Biol.
, vol.21
, pp. 4347-4368
-
-
Natarajan, K.1
Meyer, M.R.2
Jackson, B.M.3
Slade, D.4
Roberts, C.5
Hinnebusch, A.G.6
Marton, M.J.7
-
51
-
-
0033592983
-
Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins
-
Hardwick J.S., Kuruvilla F.G., Tong J.K., Shamji A.F., and Schreiber S.L. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 14866-14870
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 14866-14870
-
-
Hardwick, J.S.1
Kuruvilla, F.G.2
Tong, J.K.3
Shamji, A.F.4
Schreiber, S.L.5
-
52
-
-
0034644525
-
TOR, a central controller of cell growth
-
Schmelzle T., and Hall M.N. TOR, a central controller of cell growth. Cell 103 (2000) 253-262
-
(2000)
Cell
, vol.103
, pp. 253-262
-
-
Schmelzle, T.1
Hall, M.N.2
-
53
-
-
33750042303
-
Cell growth control: little eukaryotes make big contributions
-
De Virgilio C., and Loewith R. Cell growth control: little eukaryotes make big contributions. Oncogene 25 (2006) 6392-6415
-
(2006)
Oncogene
, vol.25
, pp. 6392-6415
-
-
De Virgilio, C.1
Loewith, R.2
-
54
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R., Jacinto E., Wullschleger S., Lorberg A., Crespo J.L., Bonenfant D., Oppliger W., Jenoe P., and Hall M.N. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10 (2002) 457-468
-
(2002)
Mol. Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
Oppliger, W.7
Jenoe, P.8
Hall, M.N.9
-
55
-
-
2442605728
-
TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae
-
Reinke A., Anderson S., McCaffery J.M., Yates 3rd J., Aronova S., Chu S., Fairclough S., Iverson C., Wedaman K.P., and Powers T. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279 (2004) 14752-14762
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 14752-14762
-
-
Reinke, A.1
Anderson, S.2
McCaffery, J.M.3
Yates 3rd, J.4
Aronova, S.5
Chu, S.6
Fairclough, S.7
Iverson, C.8
Wedaman, K.P.9
Powers, T.10
-
56
-
-
0037345059
-
Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae
-
Wedaman K.P., Reinke A., Anderson S., Yates 3rd J., McCaffery J.M., and Powers T. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14 (2003) 1204-1220
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1204-1220
-
-
Wedaman, K.P.1
Reinke, A.2
Anderson, S.3
Yates 3rd, J.4
McCaffery, J.M.5
Powers, T.6
-
57
-
-
0030479340
-
TOR2 is required for organization of the actin cytoskeleton in yeast
-
Schmidt A., Kunz J., and Hall M.N. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 13780-13785
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 13780-13785
-
-
Schmidt, A.1
Kunz, J.2
Hall, M.N.3
-
58
-
-
0037076314
-
The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
-
Crespo J.L., Powers T., Fowler B., and Hall M.N. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 6784-6789
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 6784-6789
-
-
Crespo, J.L.1
Powers, T.2
Fowler, B.3
Hall, M.N.4
-
59
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast
-
Dubouloz F., Deloche O., Wanke V., Cameroni E., and De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19 (2005) 15-26
-
(2005)
Mol. Cell
, vol.19
, pp. 15-26
-
-
Dubouloz, F.1
Deloche, O.2
Wanke, V.3
Cameroni, E.4
De Virgilio, C.5
-
60
-
-
0035252894
-
Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling
-
Janssens V., and Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353 (2001) 417-439
-
(2001)
Biochem. J.
, vol.353
, pp. 417-439
-
-
Janssens, V.1
Goris, J.2
-
61
-
-
0041320898
-
The role of phosphatases in TOR signaling in yeast
-
Duvel K., and Broach J.R. The role of phosphatases in TOR signaling in yeast. Curr. Top Microbiol. Immunol. 279 (2004) 19-38
-
(2004)
Curr. Top Microbiol. Immunol.
, vol.279
, pp. 19-38
-
-
Duvel, K.1
Broach, J.R.2
-
62
-
-
0029808294
-
Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases
-
Di Como C.J., and Arndt K.T. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10 (1996) 1904-1916
-
(1996)
Genes Dev.
, vol.10
, pp. 1904-1916
-
-
Di Como, C.J.1
Arndt, K.T.2
-
63
-
-
0037382865
-
Translational control by TOR and TAP42 through dephosphorylation of eIF2a kinase GCN2
-
Cherkasova V.A., and Hinnebusch A.G. Translational control by TOR and TAP42 through dephosphorylation of eIF2a kinase GCN2. Genes Dev. 17 (2003) 859-872
-
(2003)
Genes Dev.
, vol.17
, pp. 859-872
-
-
Cherkasova, V.A.1
Hinnebusch, A.G.2
-
64
-
-
0033540030
-
The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
-
Beck T., and Hall M.N. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402 (1999) 689-692
-
(1999)
Nature
, vol.402
, pp. 689-692
-
-
Beck, T.1
Hall, M.N.2
-
65
-
-
0033573016
-
The TOR signaling cascade regulates gene expression in response to nutrients
-
Cardenas M.E., Cutler N.S., Lorenz M.C., Di Como C.J., and Heitman J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 13 (1999) 3271-3279
-
(1999)
Genes Dev.
, vol.13
, pp. 3271-3279
-
-
Cardenas, M.E.1
Cutler, N.S.2
Lorenz, M.C.3
Di Como, C.J.4
Heitman, J.5
-
66
-
-
0032403058
-
The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease
-
Schmidt A., Beck T., Koller A., Kunz J., and Hall M.N. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J. 17 (1998) 6924-6931
-
(1998)
EMBO J.
, vol.17
, pp. 6924-6931
-
-
Schmidt, A.1
Beck, T.2
Koller, A.3
Kunz, J.4
Hall, M.N.5
-
67
-
-
56649097212
-
An essential role of Tap42-associated PP2A and 2A-like phosphatases in Ty1 transcriptional silencing of S. cerevisiae
-
Jiang Y.W. An essential role of Tap42-associated PP2A and 2A-like phosphatases in Ty1 transcriptional silencing of S. cerevisiae. Yeast 25 (2008) 755-764
-
(2008)
Yeast
, vol.25
, pp. 755-764
-
-
Jiang, Y.W.1
-
68
-
-
0032512636
-
Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
-
Noda T., and Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273 (1998) 3963-3966
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 3963-3966
-
-
Noda, T.1
Ohsumi, Y.2
-
69
-
-
54249110478
-
TOR1 and TOR2 have distinct locations in live cells
-
Sturgill T.W., Cohen A., Diefenbacher M., Trautwein M., Martin D.E., and Hall M.N. TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell 7 (2008) 1819-1830
-
(2008)
Eukaryot Cell
, vol.7
, pp. 1819-1830
-
-
Sturgill, T.W.1
Cohen, A.2
Diefenbacher, M.3
Trautwein, M.4
Martin, D.E.5
Hall, M.N.6
-
70
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban J., Soulard A., Huber A., Lippman S., Mukhopadhyay D., Deloche O., Wanke V., Anrather D., Ammerer G., Riezman H., Broach J.R., De Virgilio C., Hall M.N., and Loewith R. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 26 (2007) 663-674
-
(2007)
Mol. Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
Soulard, A.2
Huber, A.3
Lippman, S.4
Mukhopadhyay, D.5
Deloche, O.6
Wanke, V.7
Anrather, D.8
Ammerer, G.9
Riezman, H.10
Broach, J.R.11
De Virgilio, C.12
Hall, M.N.13
Loewith, R.14
-
71
-
-
0035853552
-
Regulation of longevity and stress resistance by Sch9 in yeast
-
Fabrizio P., Pozza F., Pletcher S.D., Gendron C.M., and Longo V.D. Regulation of longevity and stress resistance by Sch9 in yeast. Science 292 (2001) 288-290
-
(2001)
Science
, vol.292
, pp. 288-290
-
-
Fabrizio, P.1
Pozza, F.2
Pletcher, S.D.3
Gendron, C.M.4
Longo, V.D.5
-
72
-
-
34447339427
-
The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes
-
Pascual-Ahuir A., and Proft M. The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes. EMBO J. 26 (2007) 3098-3108
-
(2007)
EMBO J.
, vol.26
, pp. 3098-3108
-
-
Pascual-Ahuir, A.1
Proft, M.2
-
73
-
-
34948828483
-
Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae
-
Yorimitsu T., Zaman S., Broach J.R., and Klionsky D.J. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 18 (2007) 4180-4189
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 4180-4189
-
-
Yorimitsu, T.1
Zaman, S.2
Broach, J.R.3
Klionsky, D.J.4
-
74
-
-
0034645038
-
Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors
-
Komeili A., Wedaman K.P., O'Shea E.K., and Powers T. Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J. Cell Biol. 151 (2000) 863-878
-
(2000)
J. Cell Biol.
, vol.151
, pp. 863-878
-
-
Komeili, A.1
Wedaman, K.P.2
O'Shea, E.K.3
Powers, T.4
-
75
-
-
0035078505
-
TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation
-
Valenzuela L., Aranda C., and Gonzalez A. TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J. Bacteriol. 183 (2001) 2331-2334
-
(2001)
J. Bacteriol.
, vol.183
, pp. 2331-2334
-
-
Valenzuela, L.1
Aranda, C.2
Gonzalez, A.3
-
76
-
-
0347624594
-
Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast
-
Schmelzle T., Beck T., Martin D.E., and Hall M.N. Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol. Cell Biol. 24 (2004) 338-351
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 338-351
-
-
Schmelzle, T.1
Beck, T.2
Martin, D.E.3
Hall, M.N.4
-
77
-
-
2442645050
-
The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae
-
Budovskaya Y.V., Stephan J.S., Reggiori F., Klionsky D.J., and Herman P.K. The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J. Biol. Chem. 279 (2004) 20663-20671
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20663-20671
-
-
Budovskaya, Y.V.1
Stephan, J.S.2
Reggiori, F.3
Klionsky, D.J.4
Herman, P.K.5
-
78
-
-
0032835137
-
Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae
-
Thevelein J.M., and de Winde J.H. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33 (1999) 904-918
-
(1999)
Mol. Microbiol.
, vol.33
, pp. 904-918
-
-
Thevelein, J.M.1
de Winde, J.H.2
-
79
-
-
0026051160
-
RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway
-
Broach J.R. RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet. 7 (1991) 28-33
-
(1991)
Trends Genet.
, vol.7
, pp. 28-33
-
-
Broach, J.R.1
-
80
-
-
0021140814
-
Genetic analysis of yeast RAS1 and RAS2 genes
-
Kataoka T., Powers S., McGill C., Fasano O., Strathern J., Broach J., and Wigler M. Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37 (1984) 437-445
-
(1984)
Cell
, vol.37
, pp. 437-445
-
-
Kataoka, T.1
Powers, S.2
McGill, C.3
Fasano, O.4
Strathern, J.5
Broach, J.6
Wigler, M.7
-
81
-
-
0025093512
-
Mutations of the adenylyl cyclase gene that block RAS function in Saccharomyces cerevisiae
-
Field J., Xu H.P., Michaeli T., Ballester R., Sass P., Wigler M., and Colicelli J. Mutations of the adenylyl cyclase gene that block RAS function in Saccharomyces cerevisiae. Science 247 (1990) 464-467
-
(1990)
Science
, vol.247
, pp. 464-467
-
-
Field, J.1
Xu, H.P.2
Michaeli, T.3
Ballester, R.4
Sass, P.5
Wigler, M.6
Colicelli, J.7
-
82
-
-
6344237317
-
PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p
-
Santhanam A., Hartley A., Duvel K., Broach J.R., and Garrett S. PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryot. Cell 3 (2004) 1261-1271
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 1261-1271
-
-
Santhanam, A.1
Hartley, A.2
Duvel, K.3
Broach, J.R.4
Garrett, S.5
-
83
-
-
0348047591
-
TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0
-
Pedruzzi I., Dubouloz F., Cameroni E., Wanke V., Roosen J., Winderickx J., and De Virgilio C. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol. Cell 12 (2003) 1607-1613
-
(2003)
Mol. Cell
, vol.12
, pp. 1607-1613
-
-
Pedruzzi, I.1
Dubouloz, F.2
Cameroni, E.3
Wanke, V.4
Roosen, J.5
Winderickx, J.6
De Virgilio, C.7
-
84
-
-
29244478354
-
Regulation of G0 entry by the Pho80-Pho85 cyclin-CDK complex
-
Wanke V., Pedruzzi I., Cameroni E., Dubouloz F., and De Virgilio C. Regulation of G0 entry by the Pho80-Pho85 cyclin-CDK complex. EMBO J. 24 (2005) 4271-4278
-
(2005)
EMBO J.
, vol.24
, pp. 4271-4278
-
-
Wanke, V.1
Pedruzzi, I.2
Cameroni, E.3
Dubouloz, F.4
De Virgilio, C.5
-
85
-
-
0037080980
-
Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor
-
Gorner W., Durchschlag E., Wolf J., Brown E.L., Ammerer G., Ruis H., and Schuller C. Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J. 21 (2002) 135-144
-
(2002)
EMBO J.
, vol.21
, pp. 135-144
-
-
Gorner, W.1
Durchschlag, E.2
Wolf, J.3
Brown, E.L.4
Ammerer, G.5
Ruis, H.6
Schuller, C.7
-
86
-
-
0033118209
-
Glucose repression in yeast
-
Carlson M. Glucose repression in yeast. Curr. Opin. Microbiol. 2 (1999) 202-207
-
(1999)
Curr. Opin. Microbiol.
, vol.2
, pp. 202-207
-
-
Carlson, M.1
-
87
-
-
0027971938
-
Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae
-
Hardy T.A., Huang D., and Roach P.J. Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J. Biol. Chem. 269 (1994) 27907-27913
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 27907-27913
-
-
Hardy, T.A.1
Huang, D.2
Roach, P.J.3
-
88
-
-
0034898851
-
Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p
-
Wang Z., Wilson W.A., Fujino M.A., and Roach P.J. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21 (2001) 5742-5752
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 5742-5752
-
-
Wang, Z.1
Wilson, W.A.2
Fujino, M.A.3
Roach, P.J.4
-
89
-
-
0037144584
-
Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes
-
Mayordomo I., Estruch F., and Sanz P. Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J. Biol. Chem. 277 (2002) 35650-35656
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 35650-35656
-
-
Mayordomo, I.1
Estruch, F.2
Sanz, P.3
-
90
-
-
0036148362
-
Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3
-
Bertram P.G., Choi J.H., Carvalho J., Chan T.F., Ai W., and Zheng X.F. Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3. Mol. Cell. Biol. 22 (2002) 1246-1252
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 1246-1252
-
-
Bertram, P.G.1
Choi, J.H.2
Carvalho, J.3
Chan, T.F.4
Ai, W.5
Zheng, X.F.6
-
91
-
-
33751191872
-
Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae
-
Orlova M., Kanter E., Krakovich D., and Kuchin S. Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot. Cell 5 (2006) 1831-1837
-
(2006)
Eukaryot. Cell
, vol.5
, pp. 1831-1837
-
-
Orlova, M.1
Kanter, E.2
Krakovich, D.3
Kuchin, S.4
-
92
-
-
0035827541
-
Vacuolar localization of oligomeric α-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae
-
Hutchins M.U., and Klionsky D.J. Vacuolar localization of oligomeric α-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae. J. Biol. Chem. 276 (2001) 20491-20498
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 20491-20498
-
-
Hutchins, M.U.1
Klionsky, D.J.2
-
93
-
-
0026640551
-
Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway
-
Klionsky D.J., Cueva R., and Yaver D.S. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J. Cell Biol. 119 (1992) 287-299
-
(1992)
J. Cell Biol.
, vol.119
, pp. 287-299
-
-
Klionsky, D.J.1
Cueva, R.2
Yaver, D.S.3
-
94
-
-
0030997923
-
Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway
-
Kim J., Scott S.V., Oda M.N., and Klionsky D.J. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 137 (1997) 609-618
-
(1997)
J. Cell Biol.
, vol.137
, pp. 609-618
-
-
Kim, J.1
Scott, S.V.2
Oda, M.N.3
Klionsky, D.J.4
-
95
-
-
0029916949
-
Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I
-
Oda M.N., Scott S.V., Hefner-Gravink A., Caffarelli A.D., and Klionsky D.J. Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase I. J. Cell Biol. 132 (1996) 999-1010
-
(1996)
J. Cell Biol.
, vol.132
, pp. 999-1010
-
-
Oda, M.N.1
Scott, S.V.2
Hefner-Gravink, A.3
Caffarelli, A.D.4
Klionsky, D.J.5
-
96
-
-
0034964443
-
Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway
-
Scott S.V., Guan J., Hutchins M.U., Kim J., and Klionsky D.J. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell 7 (2001) 1131-1141
-
(2001)
Mol. Cell
, vol.7
, pp. 1131-1141
-
-
Scott, S.V.1
Guan, J.2
Hutchins, M.U.3
Kim, J.4
Klionsky, D.J.5
-
97
-
-
0035800870
-
Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole
-
Leber R., Silles E., Sandoval I.V., and Mazon M.J. Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J. Biol. Chem. 276 (2001) 29210-29217
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 29210-29217
-
-
Leber, R.1
Silles, E.2
Sandoval, I.V.3
Mazon, M.J.4
-
98
-
-
28644447348
-
The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae
-
Reggiori F., Monastyrska I., Shintani T., and Klionsky D.J. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16 (2005) 5843-5856
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 5843-5856
-
-
Reggiori, F.1
Monastyrska, I.2
Shintani, T.3
Klionsky, D.J.4
-
99
-
-
0036901104
-
Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway
-
Shintani T., Huang W.P., Stromhaug P.E., and Klionsky D.J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3 (2002) 825-837
-
(2002)
Dev. Cell
, vol.3
, pp. 825-837
-
-
Shintani, T.1
Huang, W.P.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
100
-
-
3142677196
-
Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway
-
Shintani T., and Klionsky D.J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279 (2004) 29889-29894
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 29889-29894
-
-
Shintani, T.1
Klionsky, D.J.2
-
101
-
-
16344365254
-
Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway
-
Yorimitsu T., and Klionsky D.J. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol. Biol. Cell 16 (2005) 1593-1605
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1593-1605
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
102
-
-
0033490110
-
Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway
-
Hutchins M.U., Veenhuis M., and Klionsky D.J. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J. Cell. Sci. 112 Pt 22 (1999) 4079-4087
-
(1999)
J. Cell. Sci.
, vol.112
, Issue.PART 22
, pp. 4079-4087
-
-
Hutchins, M.U.1
Veenhuis, M.2
Klionsky, D.J.3
-
103
-
-
34247172582
-
Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival
-
Tal R., Winter G., Ecker N., Klionsky D.J., and Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem. 282 (2007) 5617-5624
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 5617-5624
-
-
Tal, R.1
Winter, G.2
Ecker, N.3
Klionsky, D.J.4
Abeliovich, H.5
-
104
-
-
27944482199
-
Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast
-
Priault M., Salin B., Schaeffer J., Vallette F.M., di Rago J.P., and Martinou J.C. Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ. 12 (2005) 1613-1621
-
(2005)
Cell Death Differ.
, vol.12
, pp. 1613-1621
-
-
Priault, M.1
Salin, B.2
Schaeffer, J.3
Vallette, F.M.4
di Rago, J.P.5
Martinou, J.C.6
-
105
-
-
34250796793
-
Selective and non-selective autophagic degradation of mitochondria in yeast
-
Kissova I., Salin B., Schaeffer J., Bhatia S., Manon S., and Camougrand N. Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3 (2007) 329-336
-
(2007)
Autophagy
, vol.3
, pp. 329-336
-
-
Kissova, I.1
Salin, B.2
Schaeffer, J.3
Bhatia, S.4
Manon, S.5
Camougrand, N.6
-
106
-
-
12444343145
-
Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast
-
Hamasaki M., Noda T., Baba M., and Ohsumi Y. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6 (2005) 56-65
-
(2005)
Traffic
, vol.6
, pp. 56-65
-
-
Hamasaki, M.1
Noda, T.2
Baba, M.3
Ohsumi, Y.4
-
107
-
-
33845480131
-
Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
-
Bernales S., McDonald K.L., and Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4 (2006) e423
-
(2006)
PLoS Biol.
, vol.4
-
-
Bernales, S.1
McDonald, K.L.2
Walter, P.3
-
108
-
-
44149095068
-
G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae
-
Nazarko V.Y., Thevelein J.M., and Sibirny A.A. G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol. Int. 32 (2008) 502-504
-
(2008)
Cell Biol. Int.
, vol.32
, pp. 502-504
-
-
Nazarko, V.Y.1
Thevelein, J.M.2
Sibirny, A.A.3
-
109
-
-
0028265881
-
Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development
-
Gimeno C.J., and Fink G.R. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol. Cell Biol. 14 (1994) 2100-2112
-
(1994)
Mol. Cell Biol.
, vol.14
, pp. 2100-2112
-
-
Gimeno, C.J.1
Fink, G.R.2
-
110
-
-
35048862871
-
An interrelationship between autophagy and filamentous growth in budding yeast
-
Ma J., Jin R., Jia X., Dobry C.J., Wang L., Reggiori F., Zhu J., and Kumar A. An interrelationship between autophagy and filamentous growth in budding yeast. Genetics 177 (2007) 205-214
-
(2007)
Genetics
, vol.177
, pp. 205-214
-
-
Ma, J.1
Jin, R.2
Jia, X.3
Dobry, C.J.4
Wang, L.5
Reggiori, F.6
Zhu, J.7
Kumar, A.8
-
111
-
-
45749108672
-
Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11
-
Vinod P.K., Sengupta N., Bhat P.J., and Venkatesh K.V. Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS ONE 3 (2008) e1663
-
(2008)
PLoS ONE
, vol.3
-
-
Vinod, P.K.1
Sengupta, N.2
Bhat, P.J.3
Venkatesh, K.V.4
-
112
-
-
0035664839
-
The TOR signal transduction cascade controls cellular differentiation in response to nutrients
-
Cutler N.S., Pan X., Heitman J., and Cardenas M.E. The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol. Biol. Cell 12 (2001) 4103-4113
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 4103-4113
-
-
Cutler, N.S.1
Pan, X.2
Heitman, J.3
Cardenas, M.E.4
|