-
1
-
-
0034820160
-
Autophagy in yeast: Mechanistic insights and physiological function
-
Abeliovich H., Klionsky D.J. Autophagy in yeast: mechanistic insights and physiological function. Microbiol Mol Biol Rev. 65:2001;463-479.
-
(2001)
Microbiol Mol Biol Rev
, vol.65
, pp. 463-479
-
-
Abeliovich, H.1
Klionsky, D.J.2
-
2
-
-
0033791650
-
Autophagy, cytoplasm to vacuole targeting pathway, and pexophagy in yeast and mammalian cells
-
Kim J., Klionsky D.J. Autophagy, cytoplasm to vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem. 69:2000;303-342.
-
(2000)
Annu Rev Biochem
, vol.69
, pp. 303-342
-
-
Kim, J.1
Klionsky, D.J.2
-
3
-
-
0033280667
-
Vacuolar import of proteins and organelles from the cytoplasm
-
Klionsky D.J., Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol. 15:1999;1-32.
-
(1999)
Annu Rev Cell Dev Biol
, vol.15
, pp. 1-32
-
-
Klionsky, D.J.1
Ohsumi, Y.2
-
4
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation. Science. 290:2000;1717-1721.
-
(2000)
Science
, vol.290
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
5
-
-
0031038661
-
Concepts of cell death and application to carcinogenesis
-
Schulte-Hermann R., Bursch W., Grasl-Kraupp B., Marian B., Torok L., Kahl-Rainer P., Ellinger A. Concepts of cell death and application to carcinogenesis. Toxicol Pathol. 25:1997;89-93.
-
(1997)
Toxicol Pathol
, vol.25
, pp. 89-93
-
-
Schulte-Hermann, R.1
Bursch, W.2
Grasl-Kraupp, B.3
Marian, B.4
Torok, L.5
Kahl-Rainer, P.6
Ellinger, A.7
-
6
-
-
17044440789
-
Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease)
-
Nishino I., Fu J., Tanji K., Yamada T., Shimojo S., Koori T., Mora M., Riggs J.E., Oh S.J., Koga Y., et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 406:2000;906-910.
-
(2000)
Nature
, vol.406
, pp. 906-910
-
-
Nishino, I.1
Fu, J.2
Tanji, K.3
Yamada, T.4
Shimojo, S.5
Koori, T.6
Mora, M.7
Riggs, J.E.8
Oh, S.J.9
Koga, Y.10
-
7
-
-
19244384656
-
Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice
-
Tanaka Y., Guhde G., Suter A., Eskelinen E.L., Hartmann D., Lullmann-Rauch R., Janssen P.M., Blanz J., von Figura K., Saftig P. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature. 406:2000;902-906.
-
(2000)
Nature
, vol.406
, pp. 902-906
-
-
Tanaka, Y.1
Guhde, G.2
Suter, A.3
Eskelinen, E.L.4
Hartmann, D.5
Lullmann-Rauch, R.6
Janssen, P.M.7
Blanz, J.8
Von Figura, K.9
Saftig, P.10
-
8
-
-
0034307476
-
Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy
-
Kegel K.B., Kim M., Sapp E., McIntyre C., Castano J.G., Aronin N., DiFiglia M. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci. 20:2000;7268-7278.
-
(2000)
J Neurosci
, vol.20
, pp. 7268-7278
-
-
Kegel, K.B.1
Kim, M.2
Sapp, E.3
McIntyre, C.4
Castano, J.G.5
Aronin, N.6
DiFiglia, M.7
-
9
-
-
0032512636
-
Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
-
Noda T., Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 273:1998;3963-3966.
-
(1998)
J Biol Chem
, vol.273
, pp. 3963-3966
-
-
Noda, T.1
Ohsumi, Y.2
-
10
-
-
0034644525
-
TOR, a central controller of cell growth
-
Schmelzle T., Hall M.N. TOR, a central controller of cell growth. Cell. 103:2000;253-262.
-
(2000)
Cell
, vol.103
, pp. 253-262
-
-
Schmelzle, T.1
Hall, M.N.2
-
12
-
-
0034683568
-
Tor-mediated induction of autophagy via an Apg1 protein kinase complex
-
Kamada Y., Funakoshi T., Shintani T., Nagano K., Ohsumi M., Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 150:2000;1507-1513. This paper, together with Scott et al. (2000) [13•], lays important groundwork on the molecular basis of autophagy induction. Nutrient-based changes in Tor signaling are shown to regulate Apg13-Apg1 complex formation and the invitro kinase activity of Apg1. Also, Apg1 is shown to physically interact with autophagy and cytoplasm to vacuole targeting (Cvt)-specific components, suggesting that different Apg1-containing complexes drive autophagy and the Cvt pathway.
-
(2000)
J Cell Biol
, vol.150
, pp. 1507-1513
-
-
Kamada, Y.1
Funakoshi, T.2
Shintani, T.3
Nagano, K.4
Ohsumi, M.5
Ohsumi, Y.6
-
13
-
-
0034682772
-
Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting
-
Scott S.V., Nice D.C. III, Nau J.J., Weisman L.S., Kamada Y., Keizer Gunnink I., Funakoshi T., Veenhuis M., Ohsumi Y., Klionsky D.J. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem. 275:2000;25840-25849. The authors show nutrient-dependent regulation of Apg13 phosphorylation and physical interaction of Apg13 with a Cvt-pathway-specific component Vac8. On the basis of these findings, the authors propose that Apg13 and Vac8 are part of a protein complex that regulates conversion between autophagy and the Cvt pathway.
-
(2000)
J Biol Chem
, vol.275
, pp. 25840-25849
-
-
Scott, S.V.1
Nice D.C. III2
Nau, J.J.3
Weisman, L.S.4
Kamada, Y.5
Keizer Gunnink, I.6
Funakoshi, T.7
Veenhuis, M.8
Ohsumi, Y.9
Klionsky, D.J.10
-
14
-
-
0030983504
-
Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae
-
Matsuura A., Tsukada M., Wada Y., Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene. 192:1997;245-250.
-
(1997)
Gene
, vol.192
, pp. 245-250
-
-
Matsuura, A.1
Tsukada, M.2
Wada, Y.3
Ohsumi, Y.4
-
15
-
-
0030919092
-
Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae
-
Funakoshi T., Matsuura A., Noda T., Ohsumi Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene. 192:1997;207-213.
-
(1997)
Gene
, vol.192
, pp. 207-213
-
-
Funakoshi, T.1
Matsuura, A.2
Noda, T.3
Ohsumi, Y.4
-
16
-
-
0029913505
-
Cytoplasm to vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole
-
Scott S.V., Hefner-Gravink A., Morano K.A., Noda T., Ohsumi Y., Klionsky D.J. Cytoplasm to vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci USA. 93:1996;12304-12308.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 12304-12308
-
-
Scott, S.V.1
Hefner-Gravink, A.2
Morano, K.A.3
Noda, T.4
Ohsumi, Y.5
Klionsky, D.J.6
-
17
-
-
0035897414
-
Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole
-
Kim J., Kamada Y., Stromhaug P.E., Guan J., Hefner-Gravink A., Baba M., Scott S.V., Ohsumi Y., Dunn W.A. Jr, Klionsky D.J. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol. 153:2001;381-396. The authors show that S. cerevisiae Cvt9 is a peripheral membrane protein required primarily for Cvt vesicle formation and pexophagy. The Pichia pastoris homologue of CVT9, GSA9, is shown to be important mainly for glucose-induced pexophagy. Cvt9 localizes to the membranous perivacuolar site identified in subsequent work to contain many other autophagy proteins. Localization to this site and physical interaction with Apg1 kinase suggests the protein is involved in an early step in Cvt vesicle formation. Gsa9 localizes to perivacuolar regions that contact peroxisomes, suggesting it might help to specifically tether peroxisomes to the vacuole during micropexophagy.
-
(2001)
J Cell Biol
, vol.153
, pp. 381-396
-
-
Kim, J.1
Kamada, Y.2
Stromhaug, P.E.3
Guan, J.4
Hefner-Gravink, A.5
Baba, M.6
Scott, S.V.7
Ohsumi, Y.8
Dunn W.A. Jr9
Klionsky, D.J.10
-
18
-
-
0035192612
-
Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
-
Ishihara N., Hamasaki M., Yokota S., Suzuki K., Kamada Y., Kihara A., Yoshimori T., Noda T., Ohsumi Y. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell. 12:2001;3690-3702.
-
(2001)
Mol Biol Cell
, vol.12
, pp. 3690-3702
-
-
Ishihara, N.1
Hamasaki, M.2
Yokota, S.3
Suzuki, K.4
Kamada, Y.5
Kihara, A.6
Yoshimori, T.7
Noda, T.8
Ohsumi, Y.9
-
19
-
-
0035503594
-
The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki K., Kirisako T., Kamada Y., Mizushima N., Noda T., Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:2001;5971-5981. Using fluorescent-protein tagging, the signaling protein Apg1, and conjugation machinery-related proteins Apg5 and Apg16, are shown to co-localize to a novel perivacuolar structure. Aut7 can be traced to the vacuole, establishing the functional importance of the structure. Significantly, the integral membrane protein Apg9 and members of the Vps34 phosphatidylinositol 3-kinase complex are implicated in localizing the conjugation machinery to this site.
-
(2001)
EMBO J
, vol.20
, pp. 5971-5981
-
-
Suzuki, K.1
Kirisako, T.2
Kamada, Y.3
Mizushima, N.4
Noda, T.5
Ohsumi, Y.6
-
20
-
-
0037016752
-
Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation
-
Kim J., Huang W.P., Stromhaug P.E., Klionsky D.J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem. 277:2002;763-773. Using fluorescent protein tagging, density gradients and affinity isolation, the authors show that autophagy and Cvt-specific components required for vesicle formation co-localize to a novel dot structure at the vacuole edge. This structure, originally defined by Cvt9 localization, contains Cvt19, Apg1p, the Vps34 phosphatidylinositol 3-kinase complex member Apg14, and the conjugation components Apg5 and Apg12. Aut7, an autophagosomal marker, can be traced from the perivacuolar site into the vacuole lumen, suggesting that this compartment is physiologically relevant and might be the initiation site for autophagosome and Cvt vesicle nucleation/formation.
-
(2002)
J Biol Chem
, vol.277
, pp. 763-773
-
-
Kim, J.1
Huang, W.P.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
21
-
-
0033231275
-
Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p
-
Abeliovich H., Darsow T., Emr S.D. Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J. 18:1999;6005-6016.
-
(1999)
EMBO J
, vol.18
, pp. 6005-6016
-
-
Abeliovich, H.1
Darsow, T.2
Emr, S.D.3
-
22
-
-
0035809160
-
Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae
-
Kihara A., Noda T., Ishihara N., Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 152:2001;519-530. This paper shows that Vps34, a yeast phosphatidylinositol (PI) 3-kinase, exists in two different protein complexes, each containing a protein that functions specifically in Prc1 sorting or the autophagy/Cvt pathways. Thus, it is likely that PI 3-kinase is involved in multiple membrane-trafficking events.
-
(2001)
J Cell Biol
, vol.152
, pp. 519-530
-
-
Kihara, A.1
Noda, T.2
Ishihara, N.3
Ohsumi, Y.4
-
23
-
-
0033978633
-
Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells
-
Petiot A., Ogier-Denis E., Blommaart E.F., Meijer A.J., Codogno P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem. 275:2000;992-998.
-
(2000)
J Biol Chem
, vol.275
, pp. 992-998
-
-
Petiot, A.1
Ogier-Denis, E.2
Blommaart, E.F.3
Meijer, A.J.4
Codogno, P.5
-
24
-
-
0034722378
-
Dissection of autophagosome biogenesis into distinct nucleation and expansion steps
-
Abeliovich H., Dunn W.A. Jr, Kim J., Klionsky D.J. Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol. 151:2000;1025-1034. This study of the requirements for autophagy induction leads to a useful two-step model for autophagosome formation: a signaling-based inductive/nucleation step and a protein-synthesis-dependent vesicle-expansion step involving at least one structural component of vesicles, Aut7.
-
(2000)
J Cell Biol
, vol.151
, pp. 1025-1034
-
-
Abeliovich, H.1
Dunn, W.A.2
Kim, J.3
Klionsky, D.J.4
-
25
-
-
0034964443
-
Cvt19 is a receptor for the cytoplasm to vacuole targeting pathway
-
Scott S.V., Guan J., Hutchins M.U., Kim J., Klionsky D.J. Cvt19 is a receptor for the cytoplasm to vacuole targeting pathway. Mol Cell. 7:2001;1131-1141. Cvt19, originally identified ina two-hybrid screen, is shown to be a peripheral membrane protein that directly binds precursor aminopeptidase I (prApe 1) and localizes to a perivacoular compartment. Cvt19 is important for prApe 1 targeting via both the cytoplasm to a vacoule targeting and autophagy pathways, and is most likely delivered to the vacoule with prApe 1and then rapidly degraded. These observations argued that Cvt19 functions either as a receptor or an adapter for a prApe 1.
-
(2001)
Mol Cell
, vol.7
, pp. 1131-1141
-
-
Scott, S.V.1
Guan, J.2
Hutchins, M.U.3
Kim, J.4
Klionsky, D.J.5
-
26
-
-
0035800870
-
Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole
-
Leber R., Silles E., Sandoval I.V., Mazon M.J. Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole. J Biol Chem. 276:2001;29210-29217. The authors show, by two-hybrid, that Cvt19 interacts with precursor Ape1 (prApe1), and to a lesser extent mature Ape1, and that Cvt19 is required for prApe1 targeting to the vacuole.
-
(2001)
J Biol Chem
, vol.276
, pp. 29210-29217
-
-
Leber, R.1
Silles, E.2
Sandoval, I.V.3
Mazon, M.J.4
-
27
-
-
0035827541
-
Vacuolar localization of oligomeric (mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae
-
Hutchins M.U., Klionsky D.J. Vacuolar localization of oligomeric (mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae. J Biol Chem. 276:2001;20491-20498. This study provides compelling evidence that α-mannosidase, another resident vacuolar hydrolase, is targeted to the vacuole via the Cvt pathway, similar to prApe1.
-
(2001)
J Biol Chem
, vol.276
, pp. 20491-20498
-
-
Hutchins, M.U.1
Klionsky, D.J.2
-
28
-
-
0034614934
-
Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways
-
Noda T., Kim J., Huang W.P., Baba M., Tokunaga C., Ohsumi Y., Klionsky D.J. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol. 148:2000;465-480. This paper describes the cloning and characterization of APG9. The APG9 gene product is the first integral membrane protein required for Cvt vesicle and autophagosome formation. On the basis of these characteristics, the authors speculate that Apg9 is involved in marking the membrane site involved in initiating vesicle formation.
-
(2000)
J Cell Biol
, vol.148
, pp. 465-480
-
-
Noda, T.1
Kim, J.2
Huang, W.P.3
Baba, M.4
Tokunaga, C.5
Ohsumi, Y.6
Klionsky, D.J.7
-
29
-
-
0034114549
-
Autophagy and the Cvt pathway both depend on AUT9
-
Lang T., Reiche S., Straub M., Bredschneider M., Thumm M. Autophagy and the Cvt pathway both depend on AUT9. J Bacteriol. 182:2000;2125-2133.
-
(2000)
J Bacteriol
, vol.182
, pp. 2125-2133
-
-
Lang, T.1
Reiche, S.2
Straub, M.3
Bredschneider, M.4
Thumm, M.5
-
30
-
-
0035839430
-
Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways
-
Wang C.W., Kim J., Huang W.P., Abeliovich H., Stromhaug P.E., Dunn W.A. Jr, Klionsky D.J. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem. 276:2001;30442-30451.
-
(2001)
J Biol Chem
, vol.276
, pp. 30442-30451
-
-
Wang, C.W.1
Kim, J.2
Huang, W.P.3
Abeliovich, H.4
Stromhaug, P.E.5
Dunn, W.A.6
Klionsky, D.J.7
-
31
-
-
0035839551
-
Apg2p functions in autophagosome formation on the perivacuolar structure
-
Shintani T., Suzuki K., Kamada Y., Noda T., Ohsumi Y. Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem. 276:2001;30452-30460.
-
(2001)
J Biol Chem
, vol.276
, pp. 30452-30460
-
-
Shintani, T.1
Suzuki, K.2
Kamada, Y.3
Noda, T.4
Ohsumi, Y.5
-
32
-
-
0035286734
-
Molecular dissection of autophagy: Two ubiquitin-like systems
-
Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2:2001;211-216.
-
(2001)
Nat Rev Mol Cell Biol
, vol.2
, pp. 211-216
-
-
Ohsumi, Y.1
-
33
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
Mizushima N., Noda T., Yoshimori T., Tanaka Y., Ishii T., George M.D., Klionsky D.J., Ohsumi M., Ohsumi Y. A protein conjugation system essential for autophagy. Nature. 395:1998;395-398.
-
(1998)
Nature
, vol.395
, pp. 395-398
-
-
Mizushima, N.1
Noda, T.2
Yoshimori, T.3
Tanaka, Y.4
Ishii, T.5
George, M.D.6
Klionsky, D.J.7
Ohsumi, M.8
Ohsumi, Y.9
-
34
-
-
0032898636
-
Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy
-
Tanida I., Mizushima N., Kiyooka M., Ohsumi M., Ueno T., Ohsumi Y., Kominami E. Apg7p/Cvt2p: a novel protein-activating enzyme essential for autophagy. Mol Biol Cell. 10:1999;1367-1379.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1367-1379
-
-
Tanida, I.1
Mizushima, N.2
Kiyooka, M.3
Ohsumi, M.4
Ueno, T.5
Ohsumi, Y.6
Kominami, E.7
-
35
-
-
0032896760
-
Apg7p/Cvt2p is required for the cytoplasm to vacuole targeting, macroautophagy, and peroxisome degradation pathways
-
Kim J., Dalton V.M., Eggerton K.P., Scott S.V., Klionsky D.J. Apg7p/Cvt2p is required for the cytoplasm to vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol Biol Cell. 10:1999;1337-1351.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1337-1351
-
-
Kim, J.1
Dalton, V.M.2
Eggerton, K.P.3
Scott, S.V.4
Klionsky, D.J.5
-
36
-
-
0033214582
-
Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast
-
Shintani T., Mizushima N., Ogawa Y., Matsuura A., Noda T., Ohsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 18:1999;5234-5241.
-
(1999)
EMBO J
, vol.18
, pp. 5234-5241
-
-
Shintani, T.1
Mizushima, N.2
Ogawa, Y.3
Matsuura, A.4
Noda, T.5
Ohsumi, Y.6
-
37
-
-
0033565655
-
Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway
-
Mizushima N., Noda T., Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 18:1999;3888-3896.
-
(1999)
EMBO J
, vol.18
, pp. 3888-3896
-
-
Mizushima, N.1
Noda, T.2
Ohsumi, Y.3
-
38
-
-
0034099224
-
Apg5p functions in the sequestration step in the cytoplasm to vacuole targeting and macroautophagy pathways
-
George M.D., Baba M., Scott S.V., Mizushima N., Garrison B.S., Ohsumi Y., Klionsky D.J. Apg5p functions in the sequestration step in the cytoplasm to vacuole targeting and macroautophagy pathways. Mol Biol Cell. 11:2000;969-982. Previous studies (Mizushima et al. 1998 [33], Shintani et al. [1999] [36] and Mizushima et al. [1999] [37]) identified the Apg12-Apg5 ubiquitin-like conjugation system, including the coiled-coil Apg16 protein that crosslinks the conjugates. In this paper, the authors perform a detailed molecular study of a temperature-sensitive allele of APG5 and show that Apg5 is required to form completed autophagosomes. This work directly implicates the Apg12-Apg5 conjugation system in the process of vesicle formation.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 969-982
-
-
George, M.D.1
Baba, M.2
Scott, S.V.3
Mizushima, N.4
Garrison, B.S.5
Ohsumi, Y.6
Klionsky, D.J.7
-
39
-
-
0032545292
-
A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy
-
Mizushima N., Sugita H., Yoshimori T., Ohsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem. 273:1998;33889-33892.
-
(1998)
J Biol Chem
, vol.273
, pp. 33889-33892
-
-
Mizushima, N.1
Sugita, H.2
Yoshimori, T.3
Ohsumi, Y.4
-
40
-
-
0035911162
-
Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
-
Mizushima N., Yamamoto A., Hatano M., Kobayashi Y., Kabeya Y., Suzuki K., Tokuhisa T., Ohsumi Y., Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 152:2001;657-668. Fluorescent-protein-tagged Apg5 is shown to localize to successive autophagosomal membrane intermediates in mouse embryonic stem cells. Paralleling yeast studies, conjugation of Apg12 to Apg5 is necessary for targeting one of the mouse homologues of Aut7 to membranes. Going beyond the yeast work, the conjugation is shown to play a role in elongation of early membrane precursors. This work augments previous morphological studies on autophagosome formation and identifies the potential structural role of Apg12-Apg5 conjugation in autophagosome formation in animal cells.
-
(2001)
J Cell Biol
, vol.152
, pp. 657-668
-
-
Mizushima, N.1
Yamamoto, A.2
Hatano, M.3
Kobayashi, Y.4
Kabeya, Y.5
Suzuki, K.6
Tokuhisa, T.7
Ohsumi, Y.8
Yoshimori, T.9
-
41
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., Mizushima N., Tanida I., Kominami E., Ohsumi M., et al. A ubiquitin-like system mediates protein lipidation. Nature. 408:2000;488-492. The authors show that a novel ubiquitin-like conjugation system mediates the lipidation of Apg8/Aut7, resulting in covalent linkage of Aut7 to phosphatidylethanolamine.
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
Mizushima, N.7
Tanida, I.8
Kominami, E.9
Ohsumi, M.10
-
42
-
-
0034676037
-
The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway
-
Kirisako T., Ichimura Y., Okada H., Kabeya Y., Mizushima N., Yoshimori T., Ohsumi M., Takao T., Noda T., Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 151:2000;263-276. This paper details the molecular action of the cysteine protease Aut2/Apg4 and shows that Aut2 is required for Aut7 binding with, and dissociation from, membranes.
-
(2000)
J Cell Biol
, vol.151
, pp. 263-276
-
-
Kirisako, T.1
Ichimura, Y.2
Okada, H.3
Kabeya, Y.4
Mizushima, N.5
Yoshimori, T.6
Ohsumi, M.7
Takao, T.8
Noda, T.9
Ohsumi, Y.10
-
43
-
-
0035825175
-
Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex
-
Kim J., Huang W.P., Klionsky D.J. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol. 152:2001;51-64. Investigators delineate molecular steps necessary for Aut7 membrane association. Factors involved are Aut1, Aut2 and the Apg12-Apg5 conjugate, all of which are required at the step of vesicle formation/completion in autophagy and the Cvt pathway.
-
(2001)
J Cell Biol
, vol.152
, pp. 51-64
-
-
Kim, J.1
Huang, W.P.2
Klionsky, D.J.3
-
44
-
-
0035971160
-
The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1-E2 complex formation
-
Komatsu M., Tanida I., Ueno T., Ohsumi M., Ohsumi Y., Kominami E. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1-E2 complex formation. J Biol Chem. 276:2001;9846-9854.
-
(2001)
J Biol Chem
, vol.276
, pp. 9846-9854
-
-
Komatsu, M.1
Tanida, I.2
Ueno, T.3
Ohsumi, M.4
Ohsumi, Y.5
Kominami, E.6
-
45
-
-
0032701984
-
Formation process of autophagosome is traced with Apg8/Aut7p in yeast
-
Kirisako T., Baba M., Ishihara N., Miyazawa K., Ohsumi M., Yoshimori T., Noda T., Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol. 147:1999;435-446.
-
(1999)
J Cell Biol
, vol.147
, pp. 435-446
-
-
Kirisako, T.1
Baba, M.2
Ishihara, N.3
Miyazawa, K.4
Ohsumi, M.5
Yoshimori, T.6
Noda, T.7
Ohsumi, Y.8
-
46
-
-
0034050457
-
The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways
-
Huang W.P., Scott S.V., Kim J., Klionsky D.J. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem. 275:2000;5845-5851. The authors show that Aut7/Apg8 expression is induced during autophagy and that Aut7 travels to the vacuole via Cvt vesicles and autophagosomes. Along with Kirisako et al. (1999) [45], this work provides evidence that Aut7 plays a direct structural role in the formation of autophagosomes.
-
(2000)
J Biol Chem
, vol.275
, pp. 5845-5851
-
-
Huang, W.P.1
Scott, S.V.2
Kim, J.3
Klionsky, D.J.4
-
48
-
-
0030807624
-
A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole
-
Darsow T., Rieder S.E., Emr S.D. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol. 138:1997;517-529.
-
(1997)
J Cell Biol
, vol.138
, pp. 517-529
-
-
Darsow, T.1
Rieder, S.E.2
Emr, S.D.3
-
49
-
-
0031841313
-
Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking
-
Sato T.K., Darsow T., Emr S.D. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol Cell Biol. 18:1998;5308-5319.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 5308-5319
-
-
Sato, T.K.1
Darsow, T.2
Emr, S.D.3
-
50
-
-
0030852279
-
Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism
-
Scott S.V., Baba M., Ohsumi Y., Klionsky D.J. Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism. J Cell Biol. 138:1997;37-44.
-
(1997)
J Cell Biol
, vol.138
, pp. 37-44
-
-
Scott, S.V.1
Baba, M.2
Ohsumi, Y.3
Klionsky, D.J.4
-
51
-
-
0030830765
-
A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole
-
Rieder S.E., Emr S.D. A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol Biol Cell. 8:1997;2307-2327.
-
(1997)
Mol Biol Cell
, vol.8
, pp. 2307-2327
-
-
Rieder, S.E.1
Emr, S.D.2
-
52
-
-
0033634646
-
Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion
-
Sato T.K., Rehling P., Peterson M.R., Emr S.D. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol Cell. 6:2000;661-671.
-
(2000)
Mol Cell
, vol.6
, pp. 661-671
-
-
Sato, T.K.1
Rehling, P.2
Peterson, M.R.3
Emr, S.D.4
-
53
-
-
0034662876
-
A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion
-
Seals D.F., Eitzen G., Margolis N., Wickner W.T., Price A. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc Natl Acad Sci USA. 97:2000;9402-9407.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 9402-9407
-
-
Seals, D.F.1
Eitzen, G.2
Margolis, N.3
Wickner, W.T.4
Price, A.5
-
54
-
-
0031045326
-
Acidification of vacuoles is required for autophagic degradation in the yeast Saccharomyces cerevisiae
-
Nakamura N., Matsuura A., Wada Y., Ohsumi Y. Acidification of vacuoles is required for autophagic degradation in the yeast Saccharomyces cerevisiae. J Biochem (Tokyo). 121:1997;338-344.
-
(1997)
J Biochem (Tokyo)
, vol.121
, pp. 338-344
-
-
Nakamura, N.1
Matsuura, A.2
Wada, Y.3
Ohsumi, Y.4
-
55
-
-
0026668042
-
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
-
Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 119:1992;301-311.
-
(1992)
J Cell Biol
, vol.119
, pp. 301-311
-
-
Takeshige, K.1
Baba, M.2
Tsuboi, S.3
Noda, T.4
Ohsumi, Y.5
-
56
-
-
0034472435
-
The breakdown of autophagic vesicles inside the vacuole depends on Aut4p
-
Suriapranata I., Epple U.D., Bernreuther D., Bredschneider M., Sovarasteanu K., Thumm M. The breakdown of autophagic vesicles inside the vacuole depends on Aut4p. J Cell Sci. 113:2000;4025-4033.
-
(2000)
J Cell Sci
, vol.113
, pp. 4025-4033
-
-
Suriapranata, I.1
Epple, U.D.2
Bernreuther, D.3
Bredschneider, M.4
Sovarasteanu, K.5
Thumm, M.6
-
57
-
-
0035910577
-
Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase
-
Teter S.A., Eggerton K.P., Scott S.V., Kim J., Fischer A.M., Klionsky D.J. Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem. 276:2001;2083-2087. Cvt17 is characterized as an integral membrane-glycosylated protein required to lyse autophagic and Cvt bodies in the vacuole. Cvt17 has a consensus sequence that is conserved among lipases. Mutational analysis demonstrated the importance of the putative active-site serine within the lipase domain.
-
(2001)
J Biol Chem
, vol.276
, pp. 2083-2087
-
-
Teter, S.A.1
Eggerton, K.P.2
Scott, S.V.3
Kim, J.4
Fischer, A.M.5
Klionsky, D.J.6
-
58
-
-
0034809331
-
Aut5/Cvt17p a putative lipase essential for disintegration of autophagic bodies inside the vacuole
-
Epple U.D., Suriapranata I., Eskelinen E.L., Thumm M. Aut5/Cvt17p a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol. 183:2001;5942-5955. The authors identify and characterize Cvt17 and show that it is transported via the multivesicular body pathway.
-
(2001)
J Bacteriol
, vol.183
, pp. 5942-5955
-
-
Epple, U.D.1
Suriapranata, I.2
Eskelinen, E.L.3
Thumm, M.4
-
59
-
-
0020772844
-
Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes
-
Veenhuis M., Douma A., Harder W., Osumi M. Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol. 134:1983;193-203.
-
(1983)
Arch Microbiol
, vol.134
, pp. 193-203
-
-
Veenhuis, M.1
Douma, A.2
Harder, W.3
Osumi, M.4
-
60
-
-
0027207680
-
Selective autophagy of peroxisomes in methylotrophic yeasts
-
Tuttle D.L., Lewin A.S., Dunn W.A. Jr. Selective autophagy of peroxisomes in methylotrophic yeasts. Eur J Cell Biol. 60:1993;283-290.
-
(1993)
Eur J Cell Biol
, vol.60
, pp. 283-290
-
-
Tuttle, D.L.1
Lewin, A.S.2
Dunn, W.A.3
-
61
-
-
0028855325
-
Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris
-
Tuttle D.L., Dunn W.A. Jr. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci. 108:1995;25-35.
-
(1995)
J Cell Sci
, vol.108
, pp. 25-35
-
-
Tuttle, D.L.1
Dunn, W.A.2
-
62
-
-
0242695642
-
GSA11 encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris
-
Stromhaug P.E., Bevan A., Dunn W.A.J.r. GSA11 encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris. J Biol Chem. 276:2001;42422-42435. Researchers use a random mutagenesis approach to screen for glucose-induced selective autophagy of peroxisomes (GSA) mutants in P. Pastoris. One of the genes identified in the screen, GSA11, is characterized and shown to be a homologue of S. cerevisiae APG2. Gsa11 is required for pexophagy and autophagy.
-
(2001)
J Biol Chem
, vol.276
, pp. 42422-42435
-
-
Stromhaug, P.E.1
Bevan, A.2
Dunn, W.A.J.3
-
63
-
-
0035977052
-
Peroxisome biogenesis and selective degradation converge at Pex14p
-
Bellu A.R., Komori M., van der Klei I.J., Kiel J.A., Veenhuis M. Peroxisome biogenesis and selective degradation converge at Pex14p. J Biol Chem. 276:2001;44570-44574.
-
(2001)
J Biol Chem
, vol.276
, pp. 44570-44574
-
-
Bellu, A.R.1
Komori, M.2
Van der Klei, I.J.3
Kiel, J.A.4
Veenhuis, M.5
-
64
-
-
0032720228
-
A Pichia pastoris VPS15 homologue is required in selective peroxisome autophagy
-
Stasyk O.V., van der Klei I.J., Bellu A.R., Shen S., Kiel J.A., Cregg J.M., Veenhuis M. A Pichia pastoris VPS15 homologue is required in selective peroxisome autophagy. Curr Genet. 36:1999;262-269.
-
(1999)
Curr Genet
, vol.36
, pp. 262-269
-
-
Stasyk, O.V.1
Van der Klei, I.J.2
Bellu, A.R.3
Shen, S.4
Kiel, J.A.5
Cregg, J.M.6
Veenhuis, M.7
-
65
-
-
0033618147
-
The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p
-
Kiel J.A., Rechinger K.B., van der Klei I.J., Salomons F.A., Titorenko V.I., Veenhuis M. The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p. Yeast. 15:1999;741-754.
-
(1999)
Yeast
, vol.15
, pp. 741-754
-
-
Kiel, J.A.1
Rechinger, K.B.2
Van der Klei, I.J.3
Salomons, F.A.4
Titorenko, V.I.5
Veenhuis, M.6
-
66
-
-
0032895859
-
Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein
-
Yuan W., Stromhaug P.E., Dunn W.A.J.r. Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell. 10:1999;1353-1366.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1353-1366
-
-
Yuan, W.1
Stromhaug, P.E.2
Dunn W.A.J.r3
-
67
-
-
0035661648
-
Cvt18/Gsa12 is required for cytoplasm to vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris
-
Guan J., Stromhaug P.E., George M.D., Habibzadegah-Tari P., Bevan A., Dunn W.A. Jr, Klionsky D.J. Cvt18/Gsa12 is required for cytoplasm to vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol Biol Cell. 12:2001;3821-3838.
-
(2001)
Mol Biol Cell
, vol.12
, pp. 3821-3838
-
-
Guan, J.1
Stromhaug, P.E.2
George, M.D.3
Habibzadegah-Tari, P.4
Bevan, A.5
Dunn, W.A.6
Klionsky, D.J.7
|