메뉴 건너뛰기




Volumn 185, Issue 3, 2009, Pages 423-437

Cdc28/Cdk1 positively and negatively affects genome stability in S. cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIN DEPENDENT KINASE 1; MRE11 PROTEIN; NUCLEIC ACID SYNTHESIS INHIBITOR; PHLEOMYCIN;

EID: 65649090278     PISSN: 00219525     EISSN: 00219525     Source Type: Journal    
DOI: 10.1083/jcb.200811083     Document Type: Article
Times cited : (33)

References (82)
  • 1
    • 0026610360 scopus 로고
    • Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevi- siae
    • Amon, A., U. Surana, I. Muroff, and K. Nasmyth. 1992. Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevi- siae. Nature. 355:368-371.
    • (1992) Nature , vol.355 , pp. 368-371
    • Amon, A.1    Surana, U.2    Muroff, I.3    Nasmyth, K.4
  • 2
    • 11244269445 scopus 로고    scopus 로고
    • The CDK regulates repair of double- strand breaks by homologous recombination during the cell cycle
    • Aylon, Y., B. Liefshitz, and M. Kupiec. 2004. The CDK regulates repair of double- strand breaks by homologous recombination during the cell cycle. EMBO J. 23:4868-4875.
    • (2004) EMBO J , vol.23 , pp. 4868-4875
    • Aylon, Y.1    Liefshitz, B.2    Kupiec, M.3
  • 3
    • 18844415826 scopus 로고    scopus 로고
    • The yeast cyclin-dependent kinase inhibitor Sicl and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain
    • Barberis, M., L. De Gioia, M. Ruzzene, S. Sarno, P. Coccetti, P. Fantucci, M. Vanoni, and L. Alberghina. 2005. The yeast cyclin-dependent kinase inhibitor Sicl and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain. Biochem. J. 387:639-647.
    • (2005) Biochem. J , vol.387 , pp. 639-647
    • Barberis, M.1    De Gioia, L.2    Ruzzene, M.3    Sarno, S.4    Coccetti, P.5    Fantucci, P.6    Vanoni, M.7    Alberghina, L.8
  • 4
    • 39549114009 scopus 로고    scopus 로고
    • Differential regulation of the cellular response to DNA double-strand breaks in G1
    • Barlow, J.H., M. Lisby, and R. Rothstein. 2008. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol. Cell. 30:73-85.
    • (2008) Mol. Cell , vol.30 , pp. 73-85
    • Barlow, J.H.1    Lisby, M.2    Rothstein, R.3
  • 7
    • 33847784791 scopus 로고    scopus 로고
    • Multiple levels of cyclin specificity in cell-cycle control
    • Bloom, J., and F.R. Cross. 2007. Multiple levels of cyclin specificity in cell-cycle control. Nat. Rev. Mol. Cell Biol. 8:149-160.
    • (2007) Nat. Rev. Mol. Cell Biol , vol.8 , pp. 149-160
    • Bloom, J.1    Cross, F.R.2
  • 8
    • 42949130159 scopus 로고    scopus 로고
    • Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage
    • Bonilla, C.Y., J.A. Melo, and D.P. Toczyski. 2008. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol. Cell. 30:267-276.
    • (2008) Mol. Cell , vol.30 , pp. 267-276
    • Bonilla, C.Y.1    Melo, J.A.2    Toczyski, D.P.3
  • 9
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen, C., and R.D. Kolodner. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23:81-85.
    • (1999) Nat. Genet , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 10
    • 0031460633 scopus 로고    scopus 로고
    • The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway
    • Cohen-Fix, O., and D. Koshland. 1997. The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc. Natl. Acad. Sci. USA. 94:14361-14366.
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 14361-14366
    • Cohen-Fix, O.1    Koshland, D.2
  • 11
    • 0033180066 scopus 로고    scopus 로고
    • Pds1p of budding yeast has dual roles: Inhibition of anaphase initiation and regulation of mitotic exit
    • Cohen-Fix, O., and D. Koshland. 1999. Pds1p of budding yeast has dual roles: inhibition of anaphase initiation and regulation of mitotic exit. Genes Dev. 13:1950-1959.
    • (1999) Genes Dev , vol.13 , pp. 1950-1959
    • Cohen-Fix, O.1    Koshland, D.2
  • 12
    • 4544221279 scopus 로고    scopus 로고
    • Regulation of early events in chromosome replication
    • Diffley, J.F. 2004. Regulation of early events in chromosome replication. Curr. Biol. 14:R778-R786.
    • (2004) Curr. Biol , vol.14
    • Diffley, J.F.1
  • 13
    • 34547420591 scopus 로고    scopus 로고
    • The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage
    • Dotiwala, F., J. Haase, A. Arbel-Eden, K. Bloom, and J.E. Haber. 2007. The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc. Natl. Acad. Sci. USA. 104:11358-11363.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 11358-11363
    • Dotiwala, F.1    Haase, J.2    Arbel-Eden, A.3    Bloom, K.4    Haber, J.E.5
  • 14
    • 33645285867 scopus 로고    scopus 로고
    • Traffic safety for the cell: Influence of cyclin- dependent kinase activity on genomic stability
    • Enders, G.H., and S.L. Maude. 2006. Traffic safety for the cell: influence of cyclin- dependent kinase activity on genomic stability. Gene. 371:1-6.
    • (2006) Gene , vol.371 , pp. 1-6
    • Enders, G.H.1    Maude, S.L.2
  • 15
    • 33845337082 scopus 로고    scopus 로고
    • Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae
    • Enserink, J.M., M.B. Smolka, H. Zhou, and R.D. Kolodner. 2006. Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J. Cell Biol. 175:729-741.
    • (2006) J. Cell Biol , vol.175 , pp. 729-741
    • Enserink, J.M.1    Smolka, M.B.2    Zhou, H.3    Kolodner, R.D.4
  • 16
    • 33750431337 scopus 로고    scopus 로고
    • Regulation of telomere elongation by the cyclin-dependent kinase CDK1
    • Frank, C.J., M. Hyde, and C.W. Greider. 2006. Regulation of telomere elongation by the cyclin-dependent kinase CDK1. Mol. Cell. 24:423-432.
    • (2006) Mol. Cell , vol.24 , pp. 423-432
    • Frank, C.J.1    Hyde, M.2    Greider, C.W.3
  • 17
    • 8644238124 scopus 로고    scopus 로고
    • Diminished S-phase cyclin-dependent kinase function elicits vital Rad53-dependent checkpoint responses in Saccharomyces cerevisiae
    • Gibson, D.G., J.G. Aparicio, F. Hu, and O.M. Aparicio. 2004. Diminished S-phase cyclin-dependent kinase function elicits vital Rad53-dependent checkpoint responses in Saccharomyces cerevisiae. Mol. Cell. Biol. 24:10208-10222.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 10208-10222
    • Gibson, D.G.1    Aparicio, J.G.2    Hu, F.3    Aparicio, O.M.4
  • 18
    • 0344197749 scopus 로고    scopus 로고
    • Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells
    • Grandin, N., and M. Charbonneau. 2003. Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells. Mol. Cell. Biol. 23:9162-9177.
    • (2003) Mol. Cell. Biol , vol.23 , pp. 9162-9177
    • Grandin, N.1    Charbonneau, M.2
  • 19
    • 53649090109 scopus 로고    scopus 로고
    • DNA helicases Sgs1 and BLM promote DNA double-strand break resection
    • Gravel, S., J.R. Chapman, C. Magill, and S.P. Jackson. 2008. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22:2767-2772.
    • (2008) Genes Dev , vol.22 , pp. 2767-2772
    • Gravel, S.1    Chapman, J.R.2    Magill, C.3    Jackson, S.P.4
  • 20
    • 0030953472 scopus 로고    scopus 로고
    • Frameshift intermediates in homo- polymer runs are removed efficiently by yeast mismatch repair proteins
    • Greene, C.N., and S. Jinks-Robertson. 1997. Frameshift intermediates in homo- polymer runs are removed efficiently by yeast mismatch repair proteins. Mol. Cell. Biol. 17:2844-2850.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 2844-2850
    • Greene, C.N.1    Jinks-Robertson, S.2
  • 21
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan, D., and R.A. Weinberg. 2000. The hallmarks of cancer. Cell. 100:57-70.
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 22
    • 0024425887 scopus 로고
    • Checkpoints: Controls that ensure the order of cell cycle events
    • Hartwell, L.H., and T.A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science. 246:629-634.
    • (1989) Science , vol.246 , pp. 629-634
    • Hartwell, L.H.1    Weinert, T.A.2
  • 23
  • 24
    • 33745265628 scopus 로고    scopus 로고
    • Cyclin- dependent kinase directly regulates initiation of meiotic recombination
    • Henderson, K.A., K. Kee, S. Maleki, P.A. Santini, and S. Keeney. 2006. Cyclin- dependent kinase directly regulates initiation of meiotic recombination. Cell. 125:1321-1332.
    • (2006) Cell , vol.125 , pp. 1321-1332
    • Henderson, K.A.1    Kee, K.2    Maleki, S.3    Santini, P.A.4    Keeney, S.5
  • 25
    • 14644425402 scopus 로고    scopus 로고
    • A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage
    • Huang, M.E., and R.D. Kolodner. 2005. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol. Cell. 17:709-720.
    • (2005) Mol. Cell , vol.17 , pp. 709-720
    • Huang, M.E.1    Kolodner, R.D.2
  • 26
    • 53349162987 scopus 로고    scopus 로고
    • CDK targets Sae2 to control DNA-end resection and homologous recombination
    • Huertas, P., F. Cortes-Ledesma, A.A. Sartori, A. Aguilera, and S.P. Jackson. 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature. 455:689-692.
    • (2008) Nature , vol.455 , pp. 689-692
    • Huertas, P.1    Cortes-Ledesma, F.2    Sartori, A.A.3    Aguilera, A.4    Jackson, S.P.5
  • 27
    • 0037248593 scopus 로고    scopus 로고
    • A conserved RING finger protein required for histone H2B monoubiquitination and cell size control
    • Hwang, W.W., S. Venkatasubrahmanyam, A.G. Ianculescu, A. Tong, C. Boone, and H.D. Madhani. 2003. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol. Cell. 11:261-266.
    • (2003) Mol. Cell , vol.11 , pp. 261-266
    • Hwang, W.W.1    Venkatasubrahmanyam, S.2    Ianculescu, A.G.3    Tong, A.4    Boone, C.5    Madhani, H.D.6
  • 29
    • 0346882614 scopus 로고    scopus 로고
    • Wee1-dependent mechanisms required for coordination of cell growth and cell division
    • Kellogg, D.R. 2003. Wee1-dependent mechanisms required for coordination of cell growth and cell division. J. Cell Sci. 116:4883-4890.
    • (2003) J. Cell Sci , vol.116 , pp. 4883-4890
    • Kellogg, D.R.1
  • 30
    • 0037073720 scopus 로고    scopus 로고
    • An essential function of yeast cyclin- dependent kinase Cdc28 maintains chromosome stability
    • Kitazono, A.A., and S.J. Kron. 2002. An essential function of yeast cyclin- dependent kinase Cdc28 maintains chromosome stability. J. Biol. Chem. 277:48627-48634.
    • (2002) J. Biol. Chem , vol.277 , pp. 48627-48634
    • Kitazono, A.A.1    Kron, S.J.2
  • 31
    • 0042831247 scopus 로고    scopus 로고
    • Mutations in the yeast cyclin- dependent kinase Cdc28 reveal a role in the spindle assembly checkpoint
    • Kitazono, A.A., D.A. Garza, and S.J. Kron. 2003. Mutations in the yeast cyclin- dependent kinase Cdc28 reveal a role in the spindle assembly checkpoint. Mol. Genet. Genomics. 269:672-684.
    • (2003) Mol. Genet. Genomics , vol.269 , pp. 672-684
    • Kitazono, A.A.1    Garza, D.A.2    Kron, S.J.3
  • 32
    • 0037178722 scopus 로고    scopus 로고
    • Maintenance of genome stability in Saccharomyces cerevisiae
    • Kolodner, R.D., C.D. Putnam, and K. Myung. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science. 297:552-557.
    • (2002) Science , vol.297 , pp. 552-557
    • Kolodner, R.D.1    Putnam, C.D.2    Myung, K.3
  • 33
    • 9744272519 scopus 로고    scopus 로고
    • DNA replication checkpoint prevents precocious chromosome segregation by regulating spindle behavior
    • Krishnan, V., S. Nirantar, K. Crasta, A.Y. Cheng, and U. Surana. 2004. DNA replication checkpoint prevents precocious chromosome segregation by regulating spindle behavior. Mol. Cell. 16:687-700.
    • (2004) Mol. Cell , vol.16 , pp. 687-700
    • Krishnan, V.1    Nirantar, S.2    Crasta, K.3    Cheng, A.Y.4    Surana, U.5
  • 34
    • 0036278984 scopus 로고    scopus 로고
    • The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1)
    • Lengronne, A., and E. Schwob. 2002. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol. Cell. 9:1067-1078.
    • (2002) Mol. Cell , vol.9 , pp. 1067-1078
    • Lengronne, A.1    Schwob, E.2
  • 35
    • 0344643062 scopus 로고    scopus 로고
    • PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break
    • Leroy, C., S.E. Lee, M.B. Vaze, F. Ochsenbien, R. Guerois, J.E. Haber, and M.C. Marsolier-Kergoat. 2003. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell. 11:827-835.
    • (2003) Mol. Cell , vol.11 , pp. 827-835
    • Leroy, C.1    Lee, S.E.2    Vaze, M.B.3    Ochsenbien, F.4    Guerois, R.5    Haber, J.E.6    Marsolier-Kergoat, M.C.7
  • 36
    • 0344309014 scopus 로고    scopus 로고
    • The morphogenesis checkpoint: How yeast cells watch their figures
    • Lew, D.J. 2003. The morphogenesis checkpoint: how yeast cells watch their figures. Curr. Opin. Cell Biol. 15:648-653.
    • (2003) Curr. Opin. Cell Biol , vol.15 , pp. 648-653
    • Lew, D.J.1
  • 37
    • 58149094903 scopus 로고    scopus 로고
    • Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression
    • Li, S., S. Makovets, T. Matsuguchi, J.D. Blethrow, K.M. Shokat, and E.H. Blackburn. 2009. Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell. 136:50-61.
    • (2009) Cell , vol.136 , pp. 50-61
    • Li, S.1    Makovets, S.2    Matsuguchi, T.3    Blethrow, J.D.4    Shokat, K.M.5    Blackburn, E.H.6
  • 38
    • 0030987085 scopus 로고    scopus 로고
    • Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae
    • Li, X., and M. Cai. 1997. Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:2723-2734.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 2723-2734
    • Li, X.1    Cai, M.2
  • 39
    • 0034665462 scopus 로고    scopus 로고
    • Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity
    • Liberi, G., I. Chiolo, A. Pellicioli, M. Lopes, P. Plevani, M. Muzi-Falconi, and M. Foiani. 2000. Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J. 19:5027-5038.
    • (2000) EMBO J , vol.19 , pp. 5027-5038
    • Liberi, G.1    Chiolo, I.2    Pellicioli, A.3    Lopes, M.4    Plevani, P.5    Muzi-Falconi, M.6    Foiani, M.7
  • 40
    • 4544281398 scopus 로고    scopus 로고
    • Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins
    • Lisby, M., J.H. Barlow, R.C. Burgess, and R. Rothstein. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell. 118:699-713.
    • (2004) Cell , vol.118 , pp. 699-713
    • Lisby, M.1    Barlow, J.H.2    Burgess, R.C.3    Rothstein, R.4
  • 42
    • 33845607102 scopus 로고    scopus 로고
    • The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint
    • Majka, J., A. Niedziela-Majka, and P.M. Burgers. 2006. The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol. Cell. 24:891-901.
    • (2006) Mol. Cell , vol.24 , pp. 891-901
    • Majka, J.1    Niedziela-Majka, A.2    Burgers, P.M.3
  • 43
    • 25444483052 scopus 로고    scopus 로고
    • Revisiting the "Cdk-centric" view of the mammalian cell cycle
    • Malumbres, M. 2005. Revisiting the "Cdk-centric" view of the mammalian cell cycle. Cell Cycle. 4:206-210.
    • (2005) Cell Cycle , vol.4 , pp. 206-210
    • Malumbres, M.1
  • 44
    • 27544470656 scopus 로고    scopus 로고
    • Mammalian cyclin-dependent kinases
    • Malumbres, M., and M. Barbacid. 2005. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30:630-641.
    • (2005) Trends Biochem. Sci , vol.30 , pp. 630-641
    • Malumbres, M.1    Barbacid, M.2
  • 45
    • 60749109846 scopus 로고    scopus 로고
    • Cell cycle, CDKs and cancer: A changing paradigm
    • Malumbres, M., and M. Barbacid. 2009. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer. 9:153-166.
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 153-166
    • Malumbres, M.1    Barbacid, M.2
  • 46
    • 0029868110 scopus 로고    scopus 로고
    • Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair
    • Marsischky, G.T., N. Filosi, M.F. Kane, and R. Kolodner. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407-420.
    • (1996) Genes Dev , vol.10 , pp. 407-420
    • Marsischky, G.T.1    Filosi, N.2    Kane, M.F.3    Kolodner, R.4
  • 47
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou, E.P., and L.S. Symington. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature. 455:770-774.
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 48
    • 0037007074 scopus 로고    scopus 로고
    • Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae
    • Myung, K., and R.D. Kolodner. 2002. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 99:4500-4507.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 4500-4507
    • Myung, K.1    Kolodner, R.D.2
  • 49
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung, K., C. Chen, and R.D. Kolodner. 2001a. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature. 411:1073-1076.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 50
    • 0035158640 scopus 로고    scopus 로고
    • SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination
    • Myung, K., A. Datta, C. Chen, and R.D. Kolodner. 2001b. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat. Genet. 27:113-116.
    • (2001) Nat. Genet , vol.27 , pp. 113-116
    • Myung, K.1    Datta, A.2    Chen, C.3    Kolodner, R.D.4
  • 51
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung, K., A. Datta, and R.D. Kolodner. 2001c. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell. 104:397-408.
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.1    Datta, A.2    Kolodner, R.D.3
  • 52
    • 0038312215 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability
    • Myung, K., V. Pennaneach, E.S. Kats, and R.D. Kolodner. 2003. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc. Natl. Acad. Sci. USA. 100:6640-6645.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 6640-6645
    • Myung, K.1    Pennaneach, V.2    Kats, E.S.3    Kolodner, R.D.4
  • 53
    • 8644251877 scopus 로고    scopus 로고
    • Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae
    • Myung, K., S. Smith, and R.D. Kolodner. 2004. Mitotic checkpoint function in the formation of gross chromosomal rearrangements in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 101:15980-15985.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 15980-15985
    • Myung, K.1    Smith, S.2    Kolodner, R.D.3
  • 54
    • 34547196917 scopus 로고    scopus 로고
    • Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage
    • O'Neill, B.M., S.J. Szyjka, E.T. Lis, A.O. Bailey, J.R. Yates III, O.M. Aparicio, and F.E. Romesberg. 2007. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. Proc. Natl. Acad. Sci. USA. 104:9290-9295
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 9290-9295
    • O'Neill, B.M.1    Szyjka, S.J.2    Lis, E.T.3    Bailey, A.O.4    Yates III, J.R.5    Aparicio, O.M.6    Romesberg, F.E.7
  • 55
    • 33644778778 scopus 로고    scopus 로고
    • A DNA integrity network in the yeast Saccharomyces cerevisiae
    • Pan, X., P. Ye, D.S. Yuan, X. Wang, J.S. Bader, and J.D. Boeke. 2006. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell. 124:1069-1081.
    • (2006) Cell , vol.124 , pp. 1069-1081
    • Pan, X.1    Ye, P.2    Yuan, D.S.3    Wang, X.4    Bader, J.S.5    Boeke, J.D.6
  • 56
    • 0031036995 scopus 로고    scopus 로고
    • RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage
    • Paulovich, A.G., R.U. Margulies, B.M. Garvik, and L.H. Hartwell. 1997. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics. 145:45-62.
    • (1997) Genetics , vol.145 , pp. 45-62
    • Paulovich, A.G.1    Margulies, R.U.2    Garvik, B.M.3    Hartwell, L.H.4
  • 57
    • 25844438495 scopus 로고    scopus 로고
    • Repeat instability: Mechanisms of dynamic mutations
    • Pearson, C.E., K.N. Edamura, and J.D. Cleary. 2005. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6:729-742.
    • (2005) Nat. Rev. Genet , vol.6 , pp. 729-742
    • Pearson, C.E.1    Edamura, K.N.2    Cleary, J.D.3
  • 58
    • 2642516988 scopus 로고    scopus 로고
    • Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast
    • Pennaneach, V., and R.D. Kolodner. 2004. Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast. Nat. Genet. 36:612-617.
    • (2004) Nat. Genet , vol.36 , pp. 612-617
    • Pennaneach, V.1    Kolodner, R.D.2
  • 59
    • 33645093716 scopus 로고    scopus 로고
    • Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae
    • Pennaneach, V., C.D. Putnam, and R.D. Kolodner. 2006. Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae. Mol. Microbiol. 59:1357-1368.
    • (2006) Mol. Microbiol , vol.59 , pp. 1357-1368
    • Pennaneach, V.1    Putnam, C.D.2    Kolodner, R.D.3
  • 60
    • 0028085427 scopus 로고
    • Direct inhibition of the yeast cyclin- dependent kinase Cdc28-Cln by Far1
    • Peter, M., and I. Herskowitz. 1994. Direct inhibition of the yeast cyclin- dependent kinase Cdc28-Cln by Far1. Science. 265:1228-1231.
    • (1994) Science , vol.265 , pp. 1228-1231
    • Peter, M.1    Herskowitz, I.2
  • 61
    • 23344449102 scopus 로고    scopus 로고
    • Saccharomyces cerevi- siae as a model system to define the chromosomal instability phenotype
    • Putnam, C.D., V. Pennaneach, and R.D. Kolodner. 2005. Saccharomyces cerevi- siae as a model system to define the chromosomal instability phenotype. Mol. Cell. Biol. 25:7226-7238.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 7226-7238
    • Putnam, C.D.1    Pennaneach, V.2    Kolodner, R.D.3
  • 62
    • 0034695456 scopus 로고    scopus 로고
    • Rad6-dependent ubiquitination of histone H2B in yeast
    • Robzyk, K., J. Recht, and M.A. Osley. 2000. Rad6-dependent ubiquitination of histone H2B in yeast. Science. 287:501-504.
    • (2000) Science , vol.287 , pp. 501-504
    • Robzyk, K.1    Recht, J.2    Osley, M.A.3
  • 63
    • 0033527787 scopus 로고    scopus 로고
    • Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms
    • Sanchez, Y., J. Bachant, H. Wang, F. Hu, D. Liu, M. Tetzlaff, and S.J. Elledge. 1999. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science. 286:1166-1171.
    • (1999) Science , vol.286 , pp. 1166-1171
    • Sanchez, Y.1    Bachant, J.2    Wang, H.3    Hu, F.4    Liu, D.5    Tetzlaff, M.6    Elledge, S.J.7
  • 64
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale, C., and J.F. Diffley. 1998. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 395:615-618.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 65
    • 0028114987 scopus 로고
    • The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cere- visiae
    • Schwob, E., T. Bohm, M.D. Mendenhall, and K. Nasmyth. 1994. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cere- visiae. Cell. 79:233-244.
    • (1994) Cell , vol.79 , pp. 233-244
    • Schwob, E.1    Bohm, T.2    Mendenhall, M.D.3    Nasmyth, K.4
  • 66
    • 33645802169 scopus 로고    scopus 로고
    • Cyclin-dependent kinase pathways as targets for cancer treatment
    • Shapiro, G.I. 2006. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24:1770-1783.
    • (2006) J. Clin. Oncol , vol.24 , pp. 1770-1783
    • Shapiro, G.I.1
  • 67
    • 0017228745 scopus 로고
    • The mechanism of DNA breakage by phleomycin in vitro
    • Sleigh, M.J. 1976. The mechanism of DNA breakage by phleomycin in vitro. Nucleic Acids Res. 3:891-901.
    • (1976) Nucleic Acids Res , vol.3 , pp. 891-901
    • Sleigh, M.J.1
  • 69
    • 0026567896 scopus 로고
    • S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28
    • Sorger, P.K., and A.W. Murray. 1992. S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature. 355:365-368.
    • (1992) Nature , vol.355 , pp. 365-368
    • Sorger, P.K.1    Murray, A.W.2
  • 70
    • 0033575920 scopus 로고    scopus 로고
    • Deregulated cyclin E induces chromosome instability
    • Spruck, C.H., K.A. Won, and S.I. Reed. 1999. Deregulated cyclin E induces chromosome instability. Nature. 401:297-300.
    • (1999) Nature , vol.401 , pp. 297-300
    • Spruck, C.H.1    Won, K.A.2    Reed, S.I.3
  • 71
    • 0024117989 scopus 로고
    • The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity
    • Sung, P., S. Prakash, and L. Prakash. 1988. The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev. 2:1476-1485.
    • (1988) Genes Dev , vol.2 , pp. 1476-1485
    • Sung, P.1    Prakash, S.2    Prakash, L.3
  • 72
    • 0036900120 scopus 로고    scopus 로고
    • Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
    • Symington, L.S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66:630-670.
    • (2002) Microbiol. Mol. Biol. Rev , vol.66 , pp. 630-670
    • Symington, L.S.1
  • 73
    • 0037107343 scopus 로고    scopus 로고
    • Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation
    • Tanaka, S., and J.F. Diffley. 2002. Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev. 16:2639-2649.
    • (2002) Genes Dev , vol.16 , pp. 2639-2649
    • Tanaka, S.1    Diffley, J.F.2
  • 74
    • 0031442653 scopus 로고    scopus 로고
    • A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair
    • Tishkoff, D.X., N. Filosi, G.M. Gaida, and R.D. Kolodner. 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell. 88:253-263.
    • (1997) Cell , vol.88 , pp. 253-263
    • Tishkoff, D.X.1    Filosi, N.2    Gaida, G.M.3    Kolodner, R.D.4
  • 75
    • 0030962035 scopus 로고    scopus 로고
    • Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants
    • Tran, H.T., J.D. Keen, M. Kricker, M.A. Resnick, and D.A. Gordenin. 1997. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell. Biol. 17:2859-2865.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 2859-2865
    • Tran, H.T.1    Keen, J.D.2    Kricker, M.3    Resnick, M.A.4    Gordenin, D.A.5
  • 76
    • 0031960691 scopus 로고    scopus 로고
    • Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
    • Umezu, K., N. Sugawara, C. Chen, J.E. Haber, and R.D. Kolodner. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics. 148:989-1005.
    • (1998) Genetics , vol.148 , pp. 989-1005
    • Umezu, K.1    Sugawara, N.2    Chen, C.3    Haber, J.E.4    Kolodner, R.D.5
  • 77
    • 33749059184 scopus 로고    scopus 로고
    • DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle ki- nase
    • Vodenicharov, M.D., and R.J. Wellinger. 2006. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle ki- nase. Mol. Cell. 24:127-137.
    • (2006) Mol. Cell , vol.24 , pp. 127-137
    • Vodenicharov, M.D.1    Wellinger, R.J.2
  • 79
    • 0029997447 scopus 로고    scopus 로고
    • Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae
    • Yamamoto, A., V. Guacci, and D. Koshland. 1996a. Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiae. J. Cell Biol. 133:85-97.
    • (1996) J. Cell Biol , vol.133 , pp. 85-97
    • Yamamoto, A.1    Guacci, V.2    Koshland, D.3
  • 80
    • 0029960782 scopus 로고    scopus 로고
    • Pds1p, an inhibitor of ana- phase in budding yeast, plays a critical role in the APC and checkpoint pathway(s)
    • Yamamoto, A., V. Guacci, and D. Koshland. 1996b. Pds1p, an inhibitor of ana- phase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol. 133:99-110.
    • (1996) J. Cell Biol , vol.133 , pp. 99-110
    • Yamamoto, A.1    Guacci, V.2    Koshland, D.3
  • 81
    • 51549095956 scopus 로고    scopus 로고
    • Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
    • Zhu, Z., W.H. Chung, E.Y. Shim, S.E. Lee, and G. Ira. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 134:981-994.
    • (2008) Cell , vol.134 , pp. 981-994
    • Zhu, Z.1    Chung, W.H.2    Shim, E.Y.3    Lee, S.E.4    Ira, G.5
  • 82
    • 46949098616 scopus 로고    scopus 로고
    • Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
    • Zierhut, C., and J.F. Diffley. 2008. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 27:1875-1885.
    • (2008) EMBO J , vol.27 , pp. 1875-1885
    • Zierhut, C.1    Diffley, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.