-
1
-
-
4444248404
-
BioMEMS: State-of-the-art in detection, opportunities and prospects
-
R. Bashir, “BioMEMS: State-of-the-art in detection, opportunities and prospects,” Adv. Drug Deliv. Rev., vol. 56, pp. 1565–1586, 2004.
-
(2004)
Adv. Drug Deliv. Rev.
, vol.56
, pp. 1565-1586
-
-
Bashir, R.1
-
4
-
-
71249127360
-
Therapeutic micro/nano technology
-
M. Ferrari, Ed. New York: Springer
-
T. A. Desai and S. Bhatia, “Therapeutic micro/nano technology,” in Bio-MEMS and Biomedical Nanotechnology, vol. 3, M. Ferrari, Ed. New York: Springer, 2006, p. 373.
-
(2006)
Bio-MEMS and Biomedical Nanotechnology
, vol.3
, pp. 373
-
-
Desai, T.A.1
Bhatia, S.2
-
6
-
-
1642452594
-
Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery
-
B. Ziaie, A. Baldi, M. Lei, Y. Gu, and R. Siegel, “Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery,” Adv. Drug Deliv. Rev., vol. 56, pp. 145–172, 2004.
-
(2004)
Adv. Drug Deliv. Rev.
, vol.56
, pp. 145-172
-
-
Ziaie, B.1
Baldi, A.2
Lei, M.3
Gu, Y.4
Siegel, R.5
-
7
-
-
1642452589
-
Integrated microsystems for controlled drug delivery
-
S. Razzacki, P. Thwar, M. Yang, V. Ugaz, and M. Bums, “Integrated microsystems for controlled drug delivery,” Adv. Drug Deliv. Rev., vol. 56, pp. 185–198, 2004.
-
(2004)
Adv. Drug Deliv. Rev.
, vol.56
, pp. 185-198
-
-
Razzacki, S.1
Thwar, P.2
Yang, M.3
Ugaz, V.4
Bums, M.5
-
8
-
-
33646862381
-
Application of micro- and nano-electromechanical devices to drug delivery
-
M. Staples, K. Daniel, M. Cima, and R. Langer, “Application of micro- and nano-electromechanical devices to drug delivery,” Pharmaceut. Res., vol. 23, pp. 847–863, 2006.
-
(2006)
Pharmaceut. Res.
, vol.23
, pp. 847-863
-
-
Staples, M.1
Daniel, K.2
Cima, M.3
Langer, R.4
-
9
-
-
11144236389
-
A BioMEMS review: MEMS technology for physiologically integrated devices
-
A. Grayson, R. Shawgo, A. Johnson, N. Flynn, Y. Li, M. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proc. IEEE, vol. 92, pp. 6–21, 2004.
-
(2004)
Proc. IEEE
, vol.92
, pp. 6-21
-
-
Grayson, A.1
Shawgo, R.2
Johnson, A.3
Flynn, N.4
Li, Y.5
Cima, M.6
Langer, R.7
-
10
-
-
0141765877
-
Small-scale systems for in vitro drug delivery
-
D. La Van, T. McGuire, and R. Langer, “Small-scale systems for in vitro drug delivery,” Nat. Biotechnol., vol. 21, no. 10, pp. 1184–1191, 2003.
-
(2003)
Nat. Biotechnol.
, vol.21
, Issue.10
, pp. 1184-1191
-
-
La Van, D.1
McGuire, T.2
Langer, R.3
-
11
-
-
33847796211
-
Microfabricated nanochannel implantable drug delivery devices: Trends, limitations, and possibilities
-
P. Gardner, “Microfabricated nanochannel implantable drug delivery devices: Trends, limitations, and possibilities,” Expet. Opin. Drug Deliv., vol. 3, pp. 479–487, 2006.
-
(2006)
Expet. Opin. Drug Deliv.
, vol.3
, pp. 479-487
-
-
Gardner, P.1
-
12
-
-
1542358759
-
Microneedles for transdemal drug delivery
-
M. Prausnitz, “Microneedles for transdemal drug delivery,” Adv. Drug Deliv. Rev., vol. 56, pp. 581–587, 2004.
-
(2004)
Adv. Drug Deliv. Rev.
, vol.56
, pp. 581-587
-
-
Prausnitz, M.1
-
13
-
-
18144397536
-
Microsystems for drug and gene delivery
-
M. Reed and W. Lye, “Microsystems for drug and gene delivery,” Proc. IEEE, vol. 92, pp. 56–75, 2004.
-
(2004)
Proc. IEEE
, vol.92
, pp. 56-75
-
-
Reed, M.1
Lye, W.2
-
14
-
-
64749105462
-
Transdermal drug delivery by localized intervention
-
T. R. Gowrishankar, T. O. Herndon, and J. C. Weaver, “Transdermal drug delivery by localized intervention,” IEEE Eng. Med. Biol. Mag., vol. 28, no. 1, pp. 55–63, 2008.
-
(2008)
IEEE Eng. Med. Biol. Mag.
, vol.28
, Issue.1
, pp. 55-63
-
-
Gowrishankar, T.R.1
Herndon, T.O.2
Weaver, J.C.3
-
16
-
-
0035142406
-
Lack of pain associated with microfabricated microneedles
-
S. Kaushik, A. Hord, D. Denson, D. McAllister, S. Smitra, M. Allen, and M. Prausnitz, “Lack of pain associated with microfabricated microneedles,” Anesth. Analg., vol. 92, pp. 502–504, 2001.
-
(2001)
Anesth. Analg.
, vol.92
, pp. 502-504
-
-
Kaushik, S.1
Hord, A.2
Denson, D.3
McAllister, D.4
Smitra, S.5
Allen, M.6
Prausnitz, M.7
-
17
-
-
17444403584
-
Clinical microneedle injection of methy nicotinate: Stratum corneum penetration
-
R. Sivamani, B. Stoeber, G. Wu, H. Zhai, D. Liepmann, and H. Maibach, “Clinical microneedle injection of methy nicotinate: Stratum corneum penetration,” Skin Res. Technol., vol. 11, pp. 152–156, 2005.
-
(2005)
Skin Res. Technol.
, vol.11
, pp. 152-156
-
-
Sivamani, R.1
Stoeber, B.2
Wu, G.3
Zhai, H.4
Liepmann, D.5
Maibach, H.6
-
18
-
-
24144480586
-
Sugar micro needles as transdermic drug delivery system
-
T. Miyano, Y. Tobinaga, T. Kanno, Y. Matsuzaki, H. Takeda, M. Wakui, and K. Hanada, “Sugar micro needles as transdermic drug delivery system,” Biomed. Microdevices, vol. 7, pp. 185–188, 2005.
-
(2005)
Biomed. Microdevices
, vol.7
, pp. 185-188
-
-
Miyano, T.1
Tobinaga, Y.2
Kanno, T.3
Matsuzaki, Y.4
Takeda, H.5
Wakui, M.6
Hanada, K.7
-
19
-
-
41149125953
-
Microneedles permit transdermal delivery of a skin impermeant medication to humans
-
D. Wermeling, S. Banks, D. Hudson, H. Gill, J. Gupta, M. Prausnitz, and A. Stinchcomb, “Microneedles permit transdermal delivery of a skin impermeant medication to humans,” Proc. Natl. Acad. Sci. USA, vol. 105, no. 6, pp. 2058–2063, 2008.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, Issue.6
, pp. 2058-2063
-
-
Wermeling, D.1
Banks, S.2
Hudson, D.3
Gill, H.4
Gupta, J.5
Prausnitz, M.6
Stinchcomb, A.7
-
20
-
-
0031852494
-
Microfabricated microneedles: A novel approach to transdermal drug delivery
-
S. Henry, D. McAllister, M. Allen, and M. Prausnitz, “Microfabricated microneedles: A novel approach to transdermal drug delivery,” J. Pharmaceut. Sci., vol. 87, pp. 922–925, 1998.
-
(1998)
J. Pharmaceut. Sci.
, vol.87
, pp. 922-925
-
-
Henry, S.1
McAllister, D.2
Allen, M.3
Prausnitz, M.4
-
21
-
-
3042809905
-
Transdermal delivery of insulin using microneedles in vivo
-
W. Martanto, S. Davis, N. Holiday, J. Wang, H. Gill, and M. Prausnitz, “Transdermal delivery of insulin using microneedles in vivo,” Pharmaceut. Res., vol. 21, pp. 947–952, 2004.
-
(2004)
Pharmaceut. Res.
, vol.21
, pp. 947-952
-
-
Martanto, W.1
Davis, S.2
Holiday, N.3
Wang, J.4
Gill, H.5
Prausnitz, M.6
-
22
-
-
0036105150
-
Improved genetic immunization via micromechanical disruption of skin-barrier function and targeting epidermal delivery
-
J. Mikszta, J. Alarcon, J. Brittingham, D. Sutter, R. Pettis, and N. Harvey, “Improved genetic immunization via micromechanical disruption of skin-barrier function and targeting epidermal delivery,” Nat. Med., vol. 8, pp. 415–419, 2002.
-
(2002)
Nat. Med.
, vol.8
, pp. 415-419
-
-
Mikszta, J.1
Alarcon, J.2
Brittingham, J.3
Sutter, D.4
Pettis, R.5
Harvey, N.6
-
23
-
-
0034657049
-
Cutane-ous vaccination: The skin as an immunologically active tissue and the challenge of antigen delivery
-
S. Babiuk, M. Baca-Estrada, L. Babiuk, C. Ewen, and M. Foldvari, “Cutane-ous vaccination: The skin as an immunologically active tissue and the challenge of antigen delivery,” J. Control. Release, vol. 66, pp. 199–214, 2000.
-
(2000)
J. Control. Release
, vol.66
, pp. 199-214
-
-
Babiuk, S.1
Baca-Estrada, M.2
Babiuk, L.3
Ewen, C.4
Foldvari, M.5
-
24
-
-
33846492454
-
Coated microneedles for transdermal delivery
-
H. Gill and M. Prausnitz, “Coated microneedles for transdermal delivery,” J. Control. Release, vol. 117, pp. 227–237, 2007.
-
(2007)
J. Control. Release
, vol.117
, pp. 227-237
-
-
Gill, H.1
Prausnitz, M.2
-
25
-
-
34249875157
-
Coating formulas for microneedles
-
H. Gill and M. Prausnitz, “Coating formulas for microneedles,” Pharmaceut. Res., vol. 24, pp. 1369–1380, 2007.
-
(2007)
Pharmaceut. Res.
, vol.24
, pp. 1369-1380
-
-
Gill, H.1
Prausnitz, M.2
-
26
-
-
3042556333
-
Transdermal delivery of desmopressin using a coated microneedle array patch system
-
M. Cormier, B. Johnson, M. Ameri, K. Nyam, L. Libiran, D. Zhang, and P. Daddona, “Transdermal delivery of desmopressin using a coated microneedle array patch system,” J. Control. Release, vol. 97, pp. 503–507, 2004.
-
(2004)
J. Control. Release
, vol.97
, pp. 503-507
-
-
Cormier, M.1
Johnson, B.2
Ameri, M.3
Nyam, K.4
Libiran, L.5
Zhang, D.6
Daddona, P.7
-
27
-
-
0036007129
-
Macroflux® microprojection array patch technology: A new and efficient approach for intracutaneous immunization
-
J. Matriano, M. Cormier, J. Johnson, W. Young, M. Buttery, K. Nyam, and P. Daddona, “Macroflux® microprojection array patch technology: A new and efficient approach for intracutaneous immunization,” Pharmaceut. Res., vol. 19, pp. 63–70, 2002.
-
(2002)
Pharmaceut. Res.
, vol.19
, pp. 63-70
-
-
Matriano, J.1
Cormier, M.2
Johnson, J.3
Young, W.4
Buttery, M.5
Nyam, K.6
Daddona, P.7
-
28
-
-
32544446281
-
Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system
-
G. Widera, J. Johnson, L. Kim, L. Libiran, K. Nyam, P. Daddona, and M. Cormier, “Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system,” Vaccine, vol. 24, pp. 1653–1664, 2006.
-
(2006)
Vaccine
, vol.24
, pp. 1653-1664
-
-
Widera, G.1
Johnson, J.2
Kim, L.3
Libiran, L.4
Nyam, K.5
Daddona, P.6
Cormier, M.7
-
29
-
-
0035659567
-
Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux®) technology
-
W. Lin, M. Cormier, A. Samiee, A. Griffin, B. Johnson, C. Teng, G. Hardee, and P. Daddona, “Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux®) technology,” Pharmaceut. Res., vol. 18, pp. 1789–1793, 2001.
-
(2001)
Pharmaceut. Res.
, vol.18
, pp. 1789-1793
-
-
Lin, W.1
Cormier, M.2
Samiee, A.3
Griffin, A.4
Johnson, B.5
Teng, C.6
Hardee, G.7
Daddona, P.8
-
30
-
-
79959385178
-
-
Mar. 21, [Online]. Available: www.macroflux.com
-
MACROFLUX. (2008, Mar. 21). Zosano Pharma [Online]. Available: www.macroflux.com
-
(2008)
Zosano Pharma
-
-
-
31
-
-
33744502619
-
Microfabricated microneedle with porous tip for drug delivery
-
J. Ji, F. Tay, J. Miao, and C. Iliescu, “Microfabricated microneedle with porous tip for drug delivery,” J. Micromech. Microeng., vol. 16, pp. 958–964, 2006.
-
(2006)
J. Micromech. Microeng.
, vol.16
, pp. 958-964
-
-
Ji, J.1
Tay, F.2
Miao, J.3
Iliescu, C.4
-
32
-
-
18144410179
-
Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery
-
J. Park, M. Allen, and M. Prausnitz, “Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery,” J. Control. Release, vol. 104, pp. 51–66, 2005.
-
(2005)
J. Control. Release
, vol.104
, pp. 51-66
-
-
Park, J.1
Allen, M.2
Prausnitz, M.3
-
33
-
-
34247350469
-
Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery
-
J. Park, Y. Yoon, S. Choi, M. Prausnitz, and M. Allen, “Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery,” IEEE Trans. Biomed. Eng., vol. 54, no. 5, pp. 903–913, 2007.
-
(2007)
IEEE Trans. Biomed. Eng.
, vol.54
, Issue.5
, pp. 903-913
-
-
Park, J.1
Yoon, Y.2
Choi, S.3
Prausnitz, M.4
Allen, M.5
-
34
-
-
34147150696
-
Polymer particle-based micromolding to fabricate novel microstructures
-
J. Park, S. Choi, R. Kamath, Y. Yoon, M. Allen, and M. Prausnitz, “Polymer particle-based micromolding to fabricate novel microstructures,” Biomed. Microdevices, vol. 9, pp. 223–234, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 223-234
-
-
Park, J.1
Choi, S.2
Kamath, R.3
Yoon, Y.4
Allen, M.5
Prausnitz, M.6
-
35
-
-
40049112272
-
Dissolving microneedles for transdermal drug delivery
-
J. Lee, J. Park, and M. Prausnitz, “Dissolving microneedles for transdermal drug delivery,” Biomaterials, vol. 29, pp. 2113–2124, 2008.
-
(2008)
Biomaterials
, vol.29
, pp. 2113-2124
-
-
Lee, J.1
Park, J.2
Prausnitz, M.3
-
36
-
-
0033230574
-
Micromachined needle arrays for drug delivery or fluid extraction
-
J. Brazzle, I. Papautsky, and A. Frazier, “Micromachined needle arrays for drug delivery or fluid extraction,” IEEE Eng. Med. Biol. Mag., vol. 18, pp. 53–58, 1999.
-
(1999)
IEEE Eng. Med. Biol. Mag.
, vol.18
, pp. 53-58
-
-
Brazzle, J.1
Papautsky, I.2
Frazier, A.3
-
37
-
-
0037699910
-
Surface machined metallic microneedles
-
S. Chandrasekaran, J. Brazzle, and A. Frazier, “Surface machined metallic microneedles,” J. Microelectromech. Syst., vol. 12, pp. 281–288, 2003.
-
(2003)
J. Microelectromech. Syst.
, vol.12
, pp. 281-288
-
-
Chandrasekaran, S.1
Brazzle, J.2
Frazier, A.3
-
38
-
-
0008670190
-
Microfabricated polysilicon microneedles for minimally invasive biomedical devices
-
J. Zahn, N. Talbot, D. Liepmann, and A. Pisano, “Microfabricated polysilicon microneedles for minimally invasive biomedical devices,” Biomed. Microclevices, vol. 2, pp. 295–303, 2000.
-
(2000)
Biomed. Microclevices
, vol.2
, pp. 295-303
-
-
Zahn, J.1
Talbot, N.2
Liepmann, D.3
Pisano, A.4
-
39
-
-
18144406839
-
Microdialysis microneedles for continuous medical monitoring
-
J. Zahn, D. Trebotich, and D. Liepmann, “Microdialysis microneedles for continuous medical monitoring,” Biomed. Microdevices, vol. 7, pp. 59–69, 2005.
-
(2005)
Biomed. Microdevices
, vol.7
, pp. 59-69
-
-
Zahn, J.1
Trebotich, D.2
Liepmann, D.3
-
40
-
-
0033100851
-
Silicon-processed microneedles
-
L. Lin and A. Pisano, “Silicon-processed microneedles,” J. Microelectromech. Syst., vol. 8, no. 1, pp. 78–84, 1999.
-
(1999)
J. Microelectromech. Syst.
, vol.8
, Issue.1
, pp. 78-84
-
-
Lin, L.1
Pisano, A.2
-
41
-
-
4544350495
-
Continuous on-chip micropumping for microneedled enhanced drug delivery
-
J. Zahn, A. Deshmekh, A. Pisano, and D. Liepmann, “Continuous on-chip micropumping for microneedled enhanced drug delivery,” Biomed. Microdevices, vol. 6, pp. 183–190, 2004.
-
(2004)
Biomed. Microdevices
, vol.6
, pp. 183-190
-
-
Zahn, J.1
Deshmekh, A.2
Pisano, A.3
Liepmann, D.4
-
42
-
-
85008061549
-
-
Mar. 21, [Online]. Available: www.kumetrix.com
-
Kumetrix, Inc. (2008, Mar. 21). [Online]. Available: www.kumetrix.com
-
(2008)
-
-
-
43
-
-
18144406466
-
In vitro and in vivo characterization of MEMS microneedles
-
M. Ai Ling Teo, C. Shearwood, K. Chye Ng, J. Lu, and S. Moochhala, “In vitro and in vivo characterization of MEMS microneedles,” Biomed. Microdevices, vol. 7, pp. 47–52, 2005.
-
(2005)
Biomed. Microdevices
, vol.7
, pp. 47-52
-
-
Teo, M.A.L.1
Shearwood, C.2
Ng, K.C.3
Lu, J.4
Moochhala, S.5
-
44
-
-
22444434334
-
Arrays of hollow out-of-plane microneedles for drug delivery
-
B. Stoeber and D. Liepmann, “Arrays of hollow out-of-plane microneedles for drug delivery,” J. Microelectromech. Syst., vol. 14, pp. 472–479, 2005.
-
(2005)
J. Microelectromech. Syst.
, vol.14
, pp. 472-479
-
-
Stoeber, B.1
Liepmann, D.2
-
45
-
-
0037871729
-
Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfers
-
P. Griss and G. Stemme, “Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfers,” J. Microelectromech. Syst., vol. 12, pp. 296–301, 2003.
-
(2003)
J. Microelectromech. Syst.
, vol.12
, pp. 296-301
-
-
Griss, P.1
Stemme, G.2
-
46
-
-
36949000879
-
Penetration-enhanced ultrasharp microneedles and prediction on skin interation for efficient trans-demal drug delivery
-
N. Roxhed, C. Gasser, P. Griss, G. Holzapfel, and G. Stemme, “Penetration-enhanced ultrasharp microneedles and prediction on skin interation for efficient trans-demal drug delivery,” J. Microelectromech. Syst., vol. 16, no. 6, pp. 1429–1440, 2007.
-
(2007)
J. Microelectromech. Syst.
, vol.16
, Issue.6
, pp. 1429-1440
-
-
Roxhed, N.1
Gasser, C.2
Griss, P.3
Holzapfel, G.4
Stemme, G.5
-
47
-
-
0742301752
-
Silicon micromachined hollow microneedles for transdermal liquid transport
-
H. Gardeniers, R. Luttge, E. Berenschot, M. de Boer, S. Yeshurun, M. Hefetz, R. van't Oever, and A. van den Berg, “Silicon micromachined hollow microneedles for transdermal liquid transport,” J. Microelectromech. Syst., vol. 12, pp. 855–862, 2003.
-
(2003)
J. Microelectromech. Syst.
, vol.12
, pp. 855-862
-
-
Gardeniers, H.1
Luttge, R.2
Berenschot, E.3
de Boer, M.4
Yeshurun, S.5
Hefetz, M.6
van't Oever, R.7
van den Berg, A.8
-
48
-
-
85008060323
-
-
Mar. 21, [Online]. Available: www. nanopass.com
-
NanoPass Technologies Ltd. (2008, Mar. 21). [Online]. Available: www. nanopass.com
-
(2008)
-
-
-
49
-
-
85008032532
-
-
Mar. 21, [Online]. Available: www.debiotech.com
-
Debiotech. (2008, Mar. 21). Medical Devices—Switzerland [Online]. Available: www.debiotech.com
-
(2008)
Medical Devices—Switzerland
-
-
-
50
-
-
34249872741
-
Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic Control: An initial comparison with subcutaneous administration
-
L. Nordquist, N. Roxhed, P. Griss, and G. Stemme, “Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic Control: An initial comparison with subcutaneous administration,” Pharmaceut. Res., vol. 24, no. 7, pp. 1381–1387, 2007.
-
(2007)
Pharmaceut. Res.
, vol.24
, Issue.7
, pp. 1381-1387
-
-
Nordquist, L.1
Roxhed, N.2
Griss, P.3
Stemme, G.4
-
51
-
-
40349099997
-
Membrane-sealed hollow micronee-dles and related administration schemes for transdermal drug delivery
-
N. Roxhed, P. Griss, and G. Stemme, “Membrane-sealed hollow micronee-dles and related administration schemes for transdermal drug delivery,” Biomed. Microdevices, vol. 10, pp. 271–279, 2008.
-
(2008)
Biomed. Microdevices
, vol.10
, pp. 271-279
-
-
Roxhed, N.1
Griss, P.2
Stemme, G.3
-
52
-
-
34548010067
-
Integrated lithographic molding for microneedle-based devices
-
R. Luttge, E. Berenschot, M. De Boer, D. Altpeter, E. Vrouwe, A. Van den Berg, and M. Elwenspoek, “Integrated lithographic molding for microneedle-based devices,” J. Microelectromech. Syst., vol. 16, pp. 872–884, 2007.
-
(2007)
J. Microelectromech. Syst.
, vol.16
, pp. 872-884
-
-
Luttge, R.1
Berenschot, E.2
De Boer, M.3
Altpeter, D.4
Vrouwe, E.5
Van den Berg, A.6
Elwenspoek, M.7
-
53
-
-
33344467371
-
Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol
-
F. Perennes, B. Marmiroli, M. Matteucci, M. Tormen, L. Vaccari, and E. Di Fabrizio, “Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol,” J. Micromech. Microeng., vol. 16, pp. 473–479, 2006.
-
(2006)
J. Micromech. Microeng.
, vol.16
, pp. 473-479
-
-
Perennes, F.1
Marmiroli, B.2
Matteucci, M.3
Tormen, M.4
Vaccari, L.5
Fabrizio, E.D.6
-
54
-
-
32244435024
-
Design and fabrication of a novel microfluidic nanoprobe
-
N. Moldovan, K. Kim, and H. Espinosa, “Design and fabrication of a novel microfluidic nanoprobe,” J. Microelectromech. Syst., vol. 15, pp. 204–213, 2006.
-
(2006)
J. Microelectromech. Syst.
, vol.15
, pp. 204-213
-
-
Moldovan, N.1
Kim, K.2
Espinosa, H.3
-
55
-
-
2942716734
-
Insertion of microneedles into the skin: measurement and prediction of insertion force and needle fracture force
-
S. Davis, B. Landis, Z. Adams, M. Allen, and M. Prausnitz, “Insertion of microneedles into the skin: measurement and prediction of insertion force and needle fracture force,” J. Biomechanics, vol. 37, pp. 1155–1163, 2004.
-
(2004)
J. Biomechanics
, vol.37
, pp. 1155-1163
-
-
Davis, S.1
Landis, B.2
Adams, Z.3
Allen, M.4
Prausnitz, M.5
-
56
-
-
32244440926
-
Microinfusion using hollow microneedles
-
W. Martanto, J. Moore, O. Kashlan, R. Kamath, P. Wang, J. O'Neal, and M. Prausnitz, “Microinfusion using hollow microneedles,” Pharmaceut. Res., vol. 23, pp. 104–113, 2006.
-
(2006)
Pharmaceut. Res.
, vol.23
, pp. 104-113
-
-
Martanto, W.1
Moore, J.2
Kashlan, O.3
Kamath, R.4
Wang, P.5
O'Neal, J.6
Prausnitz, M.7
-
57
-
-
33646709695
-
Mechanism of fluid infusion during microneedles insertion and retraction
-
W. Martanto, J. Moore, T. Couse, and M. Prausnitz, “Mechanism of fluid infusion during microneedles insertion and retraction,” J. Control. Release, vol. 112, pp. 357–361, 2006.
-
(2006)
J. Control. Release
, vol.112
, pp. 357-361
-
-
Martanto, W.1
Moore, J.2
Couse, T.3
Prausnitz, M.4
-
58
-
-
33646148967
-
Precise microinjection into skin using hollow microneedles
-
P. Wang, M. Cornwell, J. Hill, and M. Prausnitz, “Precise microinjection into skin using hollow microneedles,” J. Inves. Dermatol., vol. 126, pp. 1080–1087, 2006.
-
(2006)
J. Inves. Dermatol.
, vol.126
, pp. 1080-1087
-
-
Wang, P.1
Cornwell, M.2
Hill, J.3
Prausnitz, M.4
-
59
-
-
42749084964
-
Improved piercing of microneedle arrays in dermatomed human skin by and impact insertion method
-
F. Verbaan, S. Bal, D. van den Berg, J. Dijksman, M. van Hecke, H. Verpoorten, A. van den Berg, R. Luttge, and J. Bouwstra, “Improved piercing of microneedle arrays in dermatomed human skin by and impact insertion method,” J. Control. Release, 2008.
-
(2008)
J. Control. Release
-
-
Verbaan, F.1
Bal, S.2
van den Berg, D.3
Dijksman, J.4
van Hecke, M.5
Verpoorten, H.6
van den Berg, A.7
Luttge, R.8
Bouwstra, J.9
-
60
-
-
4544385215
-
Communications & therapeutic micro and nanotechnology section: Microneedle insertion force reduction using vibratory actuation
-
M. Yang and J. Zahn, “Communications & therapeutic micro and nanotechnology section: Microneedle insertion force reduction using vibratory actuation,” Biomed. Microdevices, vol. 6, pp. 177–182, 2004.
-
(2004)
Biomed. Microdevices
, vol.6
, pp. 177-182
-
-
Yang, M.1
Zahn, J.2
-
61
-
-
0031214943
-
A multichannel neural probe for selective chemical delivery at the cellular level
-
J. Chen, K. Wise, J. Hetke, and S. Bledsoe, “A multichannel neural probe for selective chemical delivery at the cellular level,” IEEE Trans. Biomed. Eng., vol. 44, no. 8, pp. 760–769, 1997.
-
(1997)
IEEE Trans. Biomed. Eng.
, vol.44
, Issue.8
, pp. 760-769
-
-
Chen, J.1
Wise, K.2
Hetke, J.3
Bledsoe, S.4
-
62
-
-
6344233433
-
Model neural protheses with integrated microfluidics: A potential intervention strategy for controlling reactive cell and tissue responses
-
S. Retterer, K. Smith, C. Bjomsson, K. Neeves, A. Spence, J. Turner, W. Shain, and M. Isaacson, “Model neural protheses with integrated microfluidics: A potential intervention strategy for controlling reactive cell and tissue responses,” IEEE Trans. Biomed. Eng., vol. 51, no. 11, pp. 2063–2073, 2004.
-
(2004)
IEEE Trans. Biomed. Eng.
, vol.51
, Issue.11
, pp. 2063-2073
-
-
Retterer, S.1
Smith, K.2
Bjomsson, C.3
Neeves, K.4
Spence, A.5
Turner, J.6
Shain, W.7
Isaacson, M.8
-
63
-
-
33645213642
-
Fabrication and characterization of microfluidic probes for convection enhanced drug delivery
-
K. Neeves, C. Foley, W. Saltzman, and W. Olbricht, “Fabrication and characterization of microfluidic probes for convection enhanced drug delivery,” J. Control. Release, vol. 111, pp. 252–262, 2006.
-
(2006)
J. Control. Release
, vol.111
, pp. 252-262
-
-
Neeves, K.1
Foley, C.2
Saltzman, W.3
Olbricht, W.4
-
64
-
-
33747438905
-
A shuttered neural probe with on-chip flowmeters for chronic in vivo drug delivery
-
D. Papageorgiou, S. Shore, S. Bledsoe, and K. Wise, “A shuttered neural probe with on-chip flowmeters for chronic in vivo drug delivery,” J. Microelectromech. Syst., vol. 15, pp. 1025–1033, 2006.
-
(2006)
J. Microelectromech. Syst.
, vol.15
, pp. 1025-1033
-
-
Papageorgiou, D.1
Shore, S.2
Bledsoe, S.3
Wise, K.4
-
65
-
-
0034578084
-
Microfabricated microneedles for gene and drug delivery
-
D. McAllister, M. Allen, and M. Prausnitz, “Microfabricated microneedles for gene and drug delivery,” Annu. Rev. Biomed. Eng., vol. 2, pp. 289–313, 2000.
-
(2000)
Annu. Rev. Biomed. Eng.
, vol.2
, pp. 289-313
-
-
McAllister, D.1
Allen, M.2
Prausnitz, M.3
-
66
-
-
0038020063
-
Semiconductor micro- and nanonee-dles for microinjections and ink-jet printing
-
A. Prinz, V. Prinz, and V. Seleznev, “Semiconductor micro- and nanonee-dles for microinjections and ink-jet printing,” Microelectronic Eng., vol. 67/68, pp. 782–788, 2003.
-
(2003)
Microelectronic Eng.
, vol.67/68
, pp. 782-788
-
-
Prinz, A.1
Prinz, V.2
Seleznev, V.3
-
67
-
-
0141521740
-
Carbon nanopipettes
-
R. Mani, X. Li, M. Sunkara, and K. Rajan, “Carbon nanopipettes,” Nano Lett., vol. 3, pp. 671–673, 2003.
-
(2003)
Nano Lett.
, vol.3
, pp. 671-673
-
-
Mani, R.1
Li, X.2
Sunkara, M.3
Rajan, K.4
-
68
-
-
18744425318
-
Micromechanical devices for intravascular drug delivery
-
M. Reed, C. Wu, J. Kneller, S. Watkins, D. Vorp, A. Nadeem, L. Weiss, K. Rebello, M. Mescher, A. J. Smith, W. Rosenblum, and M. Feldman, “Micromechanical devices for intravascular drug delivery,” J. Pharmaceut. Sci., vol. 87, no. 11, pp. 1387–1394, 1998.
-
(1998)
J. Pharmaceut. Sci.
, vol.87
, Issue.11
, pp. 1387-1394
-
-
Reed, M.1
Wu, C.2
Kneller, J.3
Watkins, S.4
Vorp, D.5
Nadeem, A.6
Weiss, L.7
Rebello, K.8
Mescher, M.9
Smith, A.J.10
Rosenblum, W.11
Feldman, M.12
-
69
-
-
31544458945
-
Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery
-
T.-W. Wong, C.-H. Chen, C.-C. Huang, C.-D. Lin, and S.-W. Hui, “Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery,” J. Control. Release, vol. 110, pp. 557–565, 2006.
-
(2006)
J. Control. Release
, vol.110
, pp. 557-565
-
-
Wong, T.-W.1
Chen, C.-H.2
Huang, C.-C.3
Lin, C.-D.4
Hui, S.-W.5
-
70
-
-
0037391704
-
MEMS-base piezoelectric array microjet
-
S. Yuan, Z. Zhou, G. Wang, and C. Lui, “MEMS-base piezoelectric array microjet,” Microelectronic Eng., vol. 66, pp. 767–772, 2003.
-
(2003)
Microelectronic Eng.
, vol.66
, pp. 767-772
-
-
Yuan, S.1
Zhou, Z.2
Wang, G.3
Lui, C.4
-
71
-
-
33645747948
-
Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling
-
J. Meacham, M. Varady, F. Degertekin, and A. Fedorov, “Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling,” Phys. Fluids, vol. 17, pp. 100605/1–100605/7, 2005.
-
(2005)
Phys. Fluids
, vol.17
, pp. 100605/1-100605/7
-
-
Meacham, J.1
Varady, M.2
Degertekin, F.3
Fedorov, A.4
-
72
-
-
33646005498
-
Enhanced permeation of diazapam through artificial membranes from from supersaturated solutions
-
H. Hou and R. Siegel, “Enhanced permeation of diazapam through artificial membranes from from supersaturated solutions,” J. Pharmaceut. Sci., vol. 95, pp. 896–905, 2006.
-
(2006)
J. Pharmaceut. Sci.
, vol.95
, pp. 896-905
-
-
Hou, H.1
Siegel, R.2
-
73
-
-
21544484335
-
Gastrointestinal patch systems for oral drug delivery
-
S. Tao and T. Desai, “Gastrointestinal patch systems for oral drug delivery,” Drug Discov. Today, vol. 10, pp. 909–915, 2005.
-
(2005)
Drug Discov. Today
, vol.10
, pp. 909-915
-
-
Tao, S.1
Desai, T.2
-
74
-
-
0034894419
-
Bioadhesive microdevices for drug delivery: A feasibility study
-
A. Ahmed, C. Bonner, and T. Desai, “Bioadhesive microdevices for drug delivery: A feasibility study,” Biomed. Microdevices, vol. 3, pp. 89–96, 2001.
-
(2001)
Biomed. Microdevices
, vol.3
, pp. 89-96
-
-
Ahmed, A.1
Bonner, C.2
Desai, T.3
-
75
-
-
0037124471
-
Bioadhesive microdevices with multiple reservoirs: A new platform for oral drug delivery
-
A. Ahmed, C. Bonner, and T. Desai, “Bioadhesive microdevices with multiple reservoirs: A new platform for oral drug delivery,” J. Control. Release, vol. 81, pp. 291–306, 2002.
-
(2002)
J. Control. Release
, vol.81
, pp. 291-306
-
-
Ahmed, A.1
Bonner, C.2
Desai, T.3
-
76
-
-
0037423774
-
Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery
-
S. Tao, M. Lubeley, and T. Desai, “Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery,” J. Control. Release, vol. 88, pp. 215–228, 2003.
-
(2003)
J. Control. Release
, vol.88
, pp. 215-228
-
-
Tao, S.1
Lubeley, M.2
Desai, T.3
-
77
-
-
22044457632
-
Microfabrication of multilayer, assymetric, polymeric devices for drug delivery
-
S. Tao and T. Desai, “Microfabrication of multilayer, assymetric, polymeric devices for drug delivery,” Adv. Mater., vol. 17, pp. 1625–1630, 2005.
-
(2005)
Adv. Mater.
, vol.17
, pp. 1625-1630
-
-
Tao, S.1
Desai, T.2
-
78
-
-
28444472366
-
Micromachined devices: The impact of controlled geometry from cell-targeting to bio-availability
-
S. Tao and T. Desai, “Micromachined devices: The impact of controlled geometry from cell-targeting to bio-availability,” J. Control. Release, vol. 109, pp. 127–138, 2005.
-
(2005)
J. Control. Release
, vol.109
, pp. 127-138
-
-
Tao, S.1
Desai, T.2
-
79
-
-
0037255435
-
Microfabricated porous silicon particles enhanced paracellular delivery of insulin across intestinal caco-2 cell monolayers
-
A. Foraker, R. Walczak, M. Cohen, T. Boairski, C. Grove, and P. Swaan, “Microfabricated porous silicon particles enhanced paracellular delivery of insulin across intestinal caco-2 cell monolayers,” Pharmaceut. Res., vol. 20, pp. 110–116, 2003.
-
(2003)
Pharmaceut. Res.
, vol.20
, pp. 110-116
-
-
Foraker, A.1
Walczak, R.2
Cohen, M.3
Boairski, T.4
Grove, C.5
Swaan, P.6
-
80
-
-
29244447704
-
An oral delivery deviced based on self-folding hydrogels
-
H. He, J. Guan, and J. Lee, “An oral delivery deviced based on self-folding hydrogels,” J. Control. Release, vol. 110, pp. 339–346, 2006.
-
(2006)
J. Control. Release
, vol.110
, pp. 339-346
-
-
He, H.1
Guan, J.2
Lee, J.3
-
81
-
-
33947244878
-
Fabrication of particulate reservoir: Containing, capsule like, self-folding polymer microstructures for drug delivery
-
J. Guan, H. He, J. Lee, and D. Hansford, “Fabrication of particulate reservoir: Containing, capsule like, self-folding polymer microstructures for drug delivery,” Small, vol. 3, pp. 412–418, 2007.
-
(2007)
Small
, vol.3
, pp. 412-418
-
-
Guan, J.1
He, H.2
Lee, J.3
Hansford, D.4
-
82
-
-
33748258031
-
Fabrication of polymeric microparticles for drug delivery by soft lithography
-
J. Guan, N. Ferrell, J. Lee, and D. Hansford, “Fabrication of polymeric microparticles for drug delivery by soft lithography,” Biomaterials, vol. 27, pp. 4034–4041, 2006.
-
(2006)
Biomaterials
, vol.27
, pp. 4034-4041
-
-
Guan, J.1
Ferrell, N.2
Lee, J.3
Hansford, D.4
-
83
-
-
22244460241
-
Direct fabrication and harvesting of monodisperse, shape-specific nanobiomate-rials
-
J. Rolland, B. Maynor, L. Euliss, A. Exner, G. Denison, and J. DeSimone, “Direct fabrication and harvesting of monodisperse, shape-specific nanobiomate-rials,” J. Am. Chem. Soc., vol. 127, pp. 10096–10100, 2005.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 10096-10100
-
-
Rolland, J.1
Maynor, B.2
Euliss, L.3
Exner, A.4
Denison, G.5
DeSimone, J.6
-
84
-
-
34547216961
-
Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles
-
S. Gratton, P. Pohlhaus, J. Lee, J. Guo, M. Cho, and J. DeSimone, “Nanofabricated particles for engineered drug therapies: A preliminary biodistribution study of PRINT™ nanoparticles,” J. Control. Release, vol. 121, pp. 10–18, 2007.
-
(2007)
J. Control. Release
, vol.121
, pp. 10-18
-
-
Gratton, S.1
Pohlhaus, P.2
Lee, J.3
Guo, J.4
Cho, M.5
DeSimone, J.6
-
85
-
-
38349144057
-
Nanoimprint lithography based fabrication of shape-specific, enzymatically triggered smart nanoparticles
-
L. Glangchai, M. Caldorera-Moore, L. Shi, and K. Roy, “Nanoimprint lithography based fabrication of shape-specific, enzymatically triggered smart nanoparticles,” J. Control. Release, vol. 125, pp. 263–272, 2008.
-
(2008)
J. Control. Release
, vol.125
, pp. 263-272
-
-
Glangchai, L.1
Caldorera-Moore, M.2
Shi, L.3
Roy, K.4
-
86
-
-
4544366400
-
Dynamic pattern formation in a vestical-generating microfluidic device
-
T. Thorson, R. Roberts, F. Arnold, and S. Quake, “Dynamic pattern formation in a vestical-generating microfluidic device,” Phys. Rev. Lett., vol. 86, pp. 4163–4166, 2001.
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 4163-4166
-
-
Thorson, T.1
Roberts, R.2
Arnold, F.3
Quake, S.4
-
87
-
-
0037455351
-
Formation of dispersion using ‘flow focusing’ in microchannels
-
S. Anna, N. Bontoux, and H. Stone, “Formation of dispersion using ‘flow focusing’ in microchannels,” Appl. Phys. Lett., vol. 82, pp. 364–366, 2003.
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 364-366
-
-
Anna, S.1
Bontoux, N.2
Stone, H.3
-
88
-
-
15844392396
-
Controlled synthesis of nonspherical microparticles using microfluidics
-
D. Dendukuri, K. Tsoi, A. Hatton, and P. Doyle, “Controlled synthesis of nonspherical microparticles using microfluidics,” Langmuir, vol. 21, pp. 2113–2116, 2005.
-
(2005)
Langmuir
, vol.21
, pp. 2113-2116
-
-
Dendukuri, D.1
Tsoi, K.2
Hatton, A.3
Doyle, P.4
-
89
-
-
13444280469
-
Generation of monodisperse particles by using microfluidics: Controld over size, shape, and composition
-
S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. Stone, P. Garstecki, D. Weibel, I. Gitlin, and G. Whitesides, “Generation of monodisperse particles by using microfluidics: Controld over size, shape, and composition,” Angew. Chem. Int. Ed., vol. 44, pp. 724–728, 2005.
-
(2005)
Angew. Chem. Int. Ed.
, vol.44
, pp. 724-728
-
-
Xu, S.1
Nie, Z.2
Seo, M.3
Lewis, P.4
Kumacheva, E.5
Stone, H.6
Garstecki, P.7
Weibel, D.8
Gitlin, I.9
Whitesides, G.10
-
90
-
-
34147124963
-
Manufacturing monodisperse chitosan microparticles containing amplicillin using a microchannel chip
-
C. Yang, K. Huang, and J. Chang, “Manufacturing monodisperse chitosan microparticles containing amplicillin using a microchannel chip,” Biomed. Microdevices, vol. 9, pp. 253–259, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 253-259
-
-
Yang, C.1
Huang, K.2
Chang, J.3
-
91
-
-
33845984034
-
Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules
-
S. Sugiura, T. Oda, Y. Aoyagi, R. Matsuo, T. Enomoto, K. Matsumoto, T. Nakamura, M. Satake, A. Ochiai, N. Ohkochi, and M. Nakajima, “Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules,” Biomed. Microdevices, vol. 9, pp. 91–99, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 91-99
-
-
Sugiura, S.1
Oda, T.2
Aoyagi, Y.3
Matsuo, R.4
Enomoto, T.5
Matsumoto, K.6
Nakamura, T.7
Satake, M.8
Ochiai, A.9
Ohkochi, N.10
Nakajima, M.11
-
92
-
-
35649016583
-
Generating of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device
-
C. Choi, J. Jung, Y. Rhee, D. Kim, S. Shim, and C. Lee, “Generating of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device,” Biomed. Microdevices, vol. 9, pp. 855–862, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 855-862
-
-
Choi, C.1
Jung, J.2
Rhee, Y.3
Kim, D.4
Shim, S.5
Lee, C.6
-
93
-
-
34547443439
-
Generation of uniformly sized alginate microparticles for cell encapsulation by using a soft-lithography approach
-
C. Qui, M. Chen, H. Yan, and H. Wu, “Generation of uniformly sized alginate microparticles for cell encapsulation by using a soft-lithography approach,” Adv. Mater., vol. 19, pp. 1603–1607, 2007.
-
(2007)
Adv. Mater.
, vol.19
, pp. 1603-1607
-
-
Qui, C.1
Chen, M.2
Yan, H.3
Wu, H.4
-
94
-
-
40449122225
-
Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications
-
E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A. Leonard, B. Price, M. Ming-Cheng, P. Decuzzi, J. Tour, F. Robertson, and M. Ferrari, “Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications,” Nat. Nanotechnol., vol. 3, pp. 151–157, 2008.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 151-157
-
-
Tasciotti, E.1
Liu, X.2
Bhavane, R.3
Plant, K.4
Leonard, A.5
Price, B.6
Ming-Cheng, M.7
Decuzzi, P.8
Tour, J.9
Robertson, F.10
Ferrari, M.11
-
95
-
-
33646475253
-
Continuous-flow lithography for high-throughput micrparticles synthesis
-
D. Dendukuri, D. Pregibon, J. Collins, A. Hatton, and P. Doyle, “Continuous-flow lithography for high-throughput micrparticles synthesis,” Nat. Mater., vol. 5, pp. 365–369, 2006.
-
(2006)
Nat. Mater.
, vol.5
, pp. 365-369
-
-
Dendukuri, D.1
Pregibon, D.2
Collins, J.3
Hatton, A.4
Doyle, P.5
-
96
-
-
0033611506
-
A controlled-release microchip
-
J. Santini, M. Cima, and R. Langer, “A controlled-release microchip,” Nature, vol. 397, pp. 335–338, 1999.
-
(1999)
Nature
, vol.397
, pp. 335-338
-
-
Santini, J.1
Cima, M.2
Langer, R.3
-
97
-
-
0034679484
-
Microchips as controlled drug-delivery devices
-
J. Santini, A. Richards, R. Scheidt, M. Cima, and R. Langer, “Microchips as controlled drug-delivery devices,” Angew. Chem. Int. Ed., vol. 39, pp. 2396–2407, 2000.
-
(2000)
Angew. Chem. Int. Ed.
, vol.39
, pp. 2396-2407
-
-
Santini, J.1
Richards, A.2
Scheidt, R.3
Cima, M.4
Langer, R.5
-
98
-
-
0036705876
-
BioMEMS for drug delivery
-
R. Shawgo, A. Grayson, and M. Cima, “BioMEMS for drug delivery,” Curr. Opin. Solid State Mater. Sci., vol. 6, pp. 329–334, 2002.
-
(2002)
Curr. Opin. Solid State Mater. Sci.
, vol.6
, pp. 329-334
-
-
Shawgo, R.1
Grayson, A.2
Cima, M.3
-
99
-
-
8544229900
-
In vivo release from a drug delivery MEMS device
-
W. Li, R. Shawgo, B. Tyler, P. Henderson, J. Vogel, A. Rosenberg, P. Storm, R. Langer, H. Brem, and M. Cima, “In vivo release from a drug delivery MEMS device,” J. Control. Release, vol. 100, pp. 211–219, 2004.
-
(2004)
J. Control. Release
, vol.100
, pp. 211-219
-
-
Li, W.1
Shawgo, R.2
Tyler, B.3
Henderson, P.4
Vogel, J.5
Rosenberg, A.6
Storm, P.7
Langer, R.8
Brem, H.9
Cima, M.10
-
100
-
-
1642375664
-
In vivo inflammatory and wound healing effects of gold electrode voltammetry for MEMS micro-reservoir drug delivery device
-
G. Voskerician, R. Shawgo, P. Hiltner, J. Anderson, M. Cima, and R. Langer, “In vivo inflammatory and wound healing effects of gold electrode voltammetry for MEMS micro-reservoir drug delivery device,” IEEE Trans. Biomed. Eng., vol. 51, pp. 627–635, 2004.
-
(2004)
IEEE Trans. Biomed. Eng.
, vol.51
, pp. 627-635
-
-
Voskerician, G.1
Shawgo, R.2
Hiltner, P.3
Anderson, J.4
Cima, M.5
Langer, R.6
-
101
-
-
9644265357
-
Repeated in vivo electrochemical activation and the biological effects of microelectromechanical systems drug delivery device
-
R. Shawgo, G. Voskerician, H. L. Ho Due, Y. Li, A. Lynn, M. MacEwan, R. Langer, J. Anderson, and M. Cima, “Repeated in vivo electrochemical activation and the biological effects of microelectromechanical systems drug delivery device,” J. Biomed. Mater. Res., vol. 71, pp. 559–568, 2004.
-
(2004)
J. Biomed. Mater. Res.
, vol.71
, pp. 559-568
-
-
Shawgo, R.1
Voskerician, G.2
Due, H.L.H.3
Li, Y.4
Lynn, A.5
MacEwan, M.6
Langer, R.7
Anderson, J.8
Cima, M.9
-
102
-
-
23744452913
-
In vivo delivery of BCNU from a MEMS device to a tumor model
-
Y. Li, H. L. Ho Duc, B. Tyler, T. Williams, M. Tupper, R. Langer, H. Brem, and M. Cima, “In vivo delivery of BCNU from a MEMS device to a tumor model,” J. Control. Release, vol. 106, pp. 138–145, 2005.
-
(2005)
J. Control. Release
, vol.106
, pp. 138-145
-
-
Li, Y.1
Duc, H.L.H.2
Tyler, B.3
Williams, T.4
Tupper, M.5
Langer, R.6
Brem, H.7
Cima, M.8
-
103
-
-
12744268504
-
Design and testing of an impedance-based sensor for monitoring drug delivery
-
A. Johnson, D. Sadoway, M. Cima, and R. Langer, “Design and testing of an impedance-based sensor for monitoring drug delivery,” J. Electrochem. Soc., vol. 152, pp. H6–H11, 2005.
-
(2005)
J. Electrochem. Soc.
, vol.152
, pp. H6-H11
-
-
Johnson, A.1
Sadoway, D.2
Cima, M.3
Langer, R.4
-
104
-
-
28444489991
-
Electrothermally activated microchips for implantable drug delivery and biosensing
-
J. Maloney, S. Uhland, B. Polito, N. Sheppard, C. Pelta, and J. Santini, “Electrothermally activated microchips for implantable drug delivery and biosensing,” J. Control. Release, vol. 109, pp. 244–255, 2005.
-
(2005)
J. Control. Release
, vol.109
, pp. 244-255
-
-
Maloney, J.1
Uhland, S.2
Polito, B.3
Sheppard, N.4
Pelta, C.5
Santini, J.6
-
105
-
-
33645733768
-
Chronic, programmed polypeptide delivery from and implanted, mul-tireservoir microchip device
-
J. Prescott, S. Lipka, S. Baldwin, N. Sheppard, B. Yomtov, M. Staples, and J. Santini, “Chronic, programmed polypeptide delivery from and implanted, mul-tireservoir microchip device,” Nat. Biotechnol., vol. 24, pp. 437–438, 2006.
-
(2006)
Nat. Biotechnol.
, vol.24
, pp. 437-438
-
-
Prescott, J.1
Lipka, S.2
Baldwin, S.3
Sheppard, N.4
Yomtov, B.5
Staples, M.6
Santini, J.7
-
106
-
-
85008035606
-
-
Mar. 21, [Online]. Available: www.mchips.com
-
MicroCHIPS (2008, Mar. 21). [Online]. Available: www.mchips.com
-
(2008)
MicroCHIPS
-
-
-
107
-
-
0033899330
-
Microfabrication technology for polycaprolactone, a biodegradable polymer
-
D. Armani and C. Liu, “Microfabrication technology for polycaprolactone, a biodegradable polymer,” J. Micromech. Microeng., vol. 10, pp. 80–84, 2000.
-
(2000)
J. Micromech. Microeng.
, vol.10
, pp. 80-84
-
-
Armani, D.1
Liu, C.2
-
108
-
-
0242499354
-
Multi-pulse drug delivery from a resorbable polymeric microchip device
-
A. Grayson, I. Choi, B. Tyler, P. Wang, H. Brem, M. Cima, and R. Langer, “Multi-pulse drug delivery from a resorbable polymeric microchip device,” Nat. Mater., vol. 2, pp. 767–772, 2003.
-
(2003)
Nat. Mater.
, vol.2
, pp. 767-772
-
-
Grayson, A.1
Choi, I.2
Tyler, B.3
Wang, P.4
Brem, H.5
Cima, M.6
Langer, R.7
-
109
-
-
2442696544
-
Molecular release from a polymeric microreservoir device: Influence of chemistry, polymer swelling, and loading on device performance
-
A. Grayson, M. Cima, and R. Langer, “Molecular release from a polymeric microreservoir device: Influence of chemistry, polymer swelling, and loading on device performance,” J. Biomed. Mater. Res., vol. 69, pp. 502–512, 2004.
-
(2004)
J. Biomed. Mater. Res.
, vol.69
, pp. 502-512
-
-
Grayson, A.1
Cima, M.2
Langer, R.3
-
110
-
-
9644252904
-
Size and temperature effects on poly-(lactic-co-glycolic acid) degradation and microreservoir device performance
-
A. Grayson, M. Cima, and R. Langer, “Size and temperature effects on poly-(lactic-co-glycolic acid) degradation and microreservoir device performance,” Biomaterials, vol. 26, pp. 2137–2145, 2005.
-
(2005)
Biomaterials
, vol.26
, pp. 2137-2145
-
-
Grayson, A.1
Cima, M.2
Langer, R.3
-
111
-
-
7044245955
-
Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymer for a polymeric drug-delivery microchip
-
A. Grayson, G. Voskerician, A. Lynn, J. Anderson, M. Cima, and R. Langer, “Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymer for a polymeric drug-delivery microchip,” J. Biomater. Sci. Polym. Ed., vol. 15, pp. 1281–1304, 2004.
-
(2004)
J. Biomater. Sci. Polym. Ed.
, vol.15
, pp. 1281-1304
-
-
Grayson, A.1
Voskerician, G.2
Lynn, A.3
Anderson, J.4
Cima, M.5
Langer, R.6
-
112
-
-
35248832087
-
Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 91 flank model
-
G. Kim, B. Tyler, M. Tupper, J. Karp, R. Langer, H. Brem, and M. Cima, “Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 91 flank model,” J. Control. Release, vol. 123, pp. 172–178, 2007.
-
(2007)
J. Control. Release
, vol.123
, pp. 172-178
-
-
Kim, G.1
Tyler, B.2
Tupper, M.3
Karp, J.4
Langer, R.5
Brem, H.6
Cima, M.7
-
113
-
-
22844449807
-
A microfabrication method of a biodegradable polymer chip for a control release system
-
Y. Ito, H. Hasuda, M. Morimatsu, N. Takagi, and Y. Hirai, “A microfabrication method of a biodegradable polymer chip for a control release system,” J. Biomater. Sci. Polym. Ed., vol. 16, pp. 949–955, 2005.
-
(2005)
J. Biomater. Sci. Polym. Ed.
, vol.16
, pp. 949-955
-
-
Ito, Y.1
Hasuda, H.2
Morimatsu, M.3
Takagi, N.4
Hirai, Y.5
-
114
-
-
0025419037
-
A sub-micron particle filter in silicon
-
G. Kittilsland, G. Stemme, and B. Norden, “A sub-micron particle filter in silicon,” Sensors Actuators, vol. A21-A23, pp. 904–907, 1990.
-
(1990)
Sensors Actuators
, vol.A21-A23
, pp. 904-907
-
-
Kittilsland, G.1
Stemme, G.2
Norden, B.3
-
115
-
-
0033787054
-
Micromachined interfaces: New approaches in cell immunoisolation and biomolecular separation
-
T. Desai, D. Hansford, and M. Ferrari, “Micromachined interfaces: New approaches in cell immunoisolation and biomolecular separation,” Biomol. Eng., vol. 17, pp. 23–36, 2000.
-
(2000)
Biomol. Eng.
, vol.17
, pp. 23-36
-
-
Desai, T.1
Hansford, D.2
Ferrari, M.3
-
116
-
-
1642575049
-
Micromachined biocapsules for cell-based sensing and delivery
-
L. Leoni and T. Desai, “Micromachined biocapsules for cell-based sensing and delivery,” Adv. Drug Deliv. Rev., vol. 56, pp. 211–229, 2004.
-
(2004)
Adv. Drug Deliv. Rev.
, vol.56
, pp. 211-229
-
-
Leoni, L.1
Desai, T.2
-
117
-
-
14844354252
-
Diffusion characteristics of microfabricated silicon nanopore membranes as immunoisolation membranes for use in cellular therapeutics
-
C. Smith, R. Kirk, T. West, M. Bratzel, M. Cohen, F. Martin, A. Boiarski, and A. Rampersaud, “Diffusion characteristics of microfabricated silicon nanopore membranes as immunoisolation membranes for use in cellular therapeutics,” Diabetes Tech. Therapeut., vol. 7, pp. 151–162, 2005.
-
(2005)
Diabetes Tech. Therapeut.
, vol.7
, pp. 151-162
-
-
Smith, C.1
Kirk, R.2
West, T.3
Bratzel, M.4
Cohen, M.5
Martin, F.6
Boiarski, A.7
Rampersaud, A.8
-
118
-
-
4444380534
-
Nanoporous microsystems for islet cell replacement
-
T. Desai, T. West, M. Cohen, T. Boiarski, and A. Rampersaud, “Nanoporous microsystems for islet cell replacement,” Adv. Drug Deliv. Rev., vol. 56, pp. 1661–1673, 2004.
-
(2004)
Adv. Drug Deliv. Rev.
, vol.56
, pp. 1661-1673
-
-
Desai, T.1
West, T.2
Cohen, M.3
Boiarski, T.4
Rampersaud, A.5
-
119
-
-
0034324763
-
Nanoporous anti-fouling silicon membranes for biosensor applications
-
T. Desai, D. Hansford, L. Leoni, M. Essenpreis, and M. Ferrari, “Nanoporous anti-fouling silicon membranes for biosensor applications,” Biosens. Bioelectron., vol. 15, pp. 453–462, 2000.
-
(2000)
Biosens. Bioelectron.
, vol.15
, pp. 453-462
-
-
Desai, T.1
Hansford, D.2
Leoni, L.3
Essenpreis, M.4
Ferrari, M.5
-
120
-
-
12144282412
-
Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics
-
F. Martin, R. Walczak, A. Boiarski, M. Cohen, T. West, C. Cosentino, and M. Ferrari, “Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics,” J. Control. Release, vol. 102, pp. 123–133, 2005.
-
(2005)
J. Control. Release
, vol.102
, pp. 123-133
-
-
Martin, F.1
Walczak, R.2
Boiarski, A.3
Cohen, M.4
West, T.5
Cosentino, C.6
Ferrari, M.7
-
121
-
-
24344490317
-
Corrigendum to tailering width of microfabricated nanochannels to solute size can be used to control diffusion kinetics
-
F. Martin, R. Walczak, T. Boiarski, M. Cohen, T. West, C. Cosentino, J. Shapiro, and M. Ferrari, “Corrigendum to tailering width of microfabricated nanochannels to solute size can be used to control diffusion kinetics,” J. Control. Release, vol. 107, no. 1, p. 183, 2005.
-
(2005)
J. Control. Release
, vol.107
, Issue.1
, pp. 183
-
-
Martin, F.1
Walczak, R.2
Boiarski, T.3
Cohen, M.4
West, T.5
Cosentino, C.6
Shapiro, J.7
Ferrari, M.8
-
122
-
-
18144363972
-
Dynamic model of biomolecular diffusion through two-dimensional nanochan-nels
-
C. Cosentino, F. Amato, R. Walczak, A. Boiarski, and M. Ferrari, “Dynamic model of biomolecular diffusion through two-dimensional nanochan-nels,” J. Phys. Chem. B, vol. 109, pp. 7358–7364, 2005.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 7358-7364
-
-
Cosentino, C.1
Amato, F.2
Walczak, R.3
Boiarski, A.4
Ferrari, M.5
-
123
-
-
33750741967
-
Multiscale modeling of protein transport in silicon membrane nanochannels. Derivation of molecular parameters from computer simulations
-
S. Pricl, M. Ferrone, M. Fermeglia, F. Amato, C. Cosentino, M. Ming-Cheng, R. Walczak, and M. Ferrari, “Multiscale modeling of protein transport in silicon membrane nanochannels. Part 1. Derivation of molecular parameters from computer simulations,” Biomed. Microdevices, vol. 8, pp. 277–290, 2006.
-
(2006)
Biomed. Microdevices
, vol.8
, pp. 277-290
-
-
Pricl, S.1
Ferrone, M.2
Fermeglia, M.3
Amato, F.4
Cosentino, C.5
Ming-Cheng, M.6
Walczak, R.7
Ferrari, M.8
-
124
-
-
33750716068
-
Multiscale modeling of protein transport in silicon membrane nanochannels. From molecular parameters to a perdictive continuum diffusion model
-
F. Amato, C. Cosentino, S. Pricl, M. Ferrone, M. Fermeglia, M. Ming-Cheng, R. Walczak, and M. Ferrari, “Multiscale modeling of protein transport in silicon membrane nanochannels. Part 2. From molecular parameters to a perdictive continuum diffusion model,” Biomed. Microdevices, vol. 8, pp. 291–298, 2006.
-
(2006)
Biomed. Microdevices
, vol.8
, pp. 291-298
-
-
Amato, F.1
Cosentino, C.2
Pricl, S.3
Ferrone, M.4
Fermeglia, M.5
Ming-Cheng, M.6
Walczak, R.7
Ferrari, M.8
-
125
-
-
7044265023
-
Nanoengineered device for drug delivery application
-
P. Sinha, G. Valco, S. Sharma, X. Liu, and M. Ferrari, “Nanoengineered device for drug delivery application,” Nanotechnology, vol. 15, pp. S585–S589, 2004.
-
(2004)
Nanotechnology
, vol.15
, pp. S585-S589
-
-
Sinha, P.1
Valco, G.2
Sharma, S.3
Liu, X.4
Ferrari, M.5
-
126
-
-
18144369969
-
Release of biologically functional interferon-alpha from a nanochannel delivery system
-
G. Lesinski, S. Sharma, K. Varker, P. Sinha, M. Ferrari, and W. Carson, “Release of biologically functional interferon-alpha from a nanochannel delivery system,” Biomed. Microdevices, vol. 7, pp. 71–79, 2005.
-
(2005)
Biomed. Microdevices
, vol.7
, pp. 71-79
-
-
Lesinski, G.1
Sharma, S.2
Varker, K.3
Sinha, P.4
Ferrari, M.5
Carson, W.6
-
127
-
-
36949036689
-
Fabrication of cylindrical nanopores and nanopore arrays in silicon-on-insulator substrates
-
L. Petrossian, S. Wilk, P. Joshi, S. Hihath, S. Goodnick, and T. Thornton, “Fabrication of cylindrical nanopores and nanopore arrays in silicon-on-insulator substrates,” J. Microelectromech. Syst., vol. 16, pp. 1419–1428, 2007.
-
(2007)
J. Microelectromech. Syst.
, vol.16
, pp. 1419-1428
-
-
Petrossian, L.1
Wilk, S.2
Joshi, P.3
Hihath, S.4
Goodnick, S.5
Thornton, T.6
-
128
-
-
36249027590
-
Cell viability and noninvasive in vitro MRI tracking of 3D cell encapsulation self-assembly microcontainers
-
B. Gimi, D. Artemov, T. Leong, D. Gracias, W. Gilson, M. Stuber, and Z. Bhujwalla, “Cell viability and noninvasive in vitro MRI tracking of 3D cell encapsulation self-assembly microcontainers,” Cell Transplant., vol. 16, pp. 403–408, 2007.
-
(2007)
Cell Transplant.
, vol.16
, pp. 403-408
-
-
Gimi, B.1
Artemov, D.2
Leong, T.3
Gracias, D.4
Gilson, W.5
Stuber, M.6
Bhujwalla, Z.7
-
129
-
-
34548086829
-
Surface tension-driven self-folding polyhedra
-
T. Leong, P. Lester, T. Koh, E. Call, and D. Gracias, “Surface tension-driven self-folding polyhedra,” Langmuir, vol. 23, pp. 8747–8751, 2007.
-
(2007)
Langmuir
, vol.23
, pp. 8747-8751
-
-
Leong, T.1
Lester, P.2
Koh, T.3
Call, E.4
Gracias, D.5
-
130
-
-
34447306639
-
Remote radio-frequency controlled nanoliter chemistry and chemical delivery on substrates
-
H. Ye, C. Randall, T. Leong, D. Slanac, E. Call, and D. Gracias, “Remote radio-frequency controlled nanoliter chemistry and chemical delivery on substrates,” Angew. Chem. Int. Ed., vol. 46, pp. 4991–4994, 2007.
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 4991-4994
-
-
Ye, H.1
Randall, C.2
Leong, T.3
Slanac, D.4
Call, E.5
Gracias, D.6
-
131
-
-
34948862204
-
A monolithic three-dimensional ultrasonic transducer array for medical imaging
-
J. Chen, X. Cheng, I.-M. Shen, J.-H. Liu, P.-C. Li, and M. Wang, “A monolithic three-dimensional ultrasonic transducer array for medical imaging,” J. Microelectromech. Syst., vol. 16, no. 5, pp. 1015–1024, 2007.
-
(2007)
J. Microelectromech. Syst.
, vol.16
, Issue.5
, pp. 1015-1024
-
-
Chen, J.1
Cheng, X.2
Shen, I.-M.3
Liu, J.-H.4
Li, P.-C.5
Wang, M.6
-
132
-
-
34250163875
-
Microdevice-based delivery of gene products using sonoporation
-
T. Siu, R. Rohling, and M. Chiao, “Microdevice-based delivery of gene products using sonoporation,” Biomed. Microdevices, vol. 9, pp. 295–300, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 295-300
-
-
Siu, T.1
Rohling, R.2
Chiao, M.3
-
133
-
-
40349114660
-
Electrosonic ejector microarray for drug and gene delivery
-
V. G. Zarnitsyn, J. M. Meacham, M. J. Varady, C. Hao, F. L. Degertekin, and A. G. Federov, “Electrosonic ejector microarray for drug and gene delivery,” Biomed. Microdevices, vol. 10, pp. 299–308, 2008.
-
(2008)
Biomed. Microdevices
, vol.10
, pp. 299-308
-
-
Zarnitsyn, V.G.1
Meacham, J.M.2
Varady, M.J.3
Hao, C.4
Degertekin, F.L.5
Federov, A.G.6
-
134
-
-
0037462991
-
Lab-on-a-chip for drug development
-
G. Weigl, R. Bardell, and C. Cabrera, “Lab-on-a-chip for drug development,” Adv. Drug Deliv. Rev., vol. 55, pp. 349–377, 2003.
-
(2003)
Adv. Drug Deliv. Rev.
, vol.55
, pp. 349-377
-
-
Weigl, G.1
Bardell, R.2
Cabrera, C.3
-
135
-
-
33847359977
-
Review of MEMS-based drug delivery and dosing systems
-
N. Tsai and C. Sue, “Review of MEMS-based drug delivery and dosing systems,” Sensors Actuators Phys., vol. 134, pp. 555–564, 2007.
-
(2007)
Sensors Actuators Phys.
, vol.134
, pp. 555-564
-
-
Tsai, N.1
Sue, C.2
-
136
-
-
33845516424
-
Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip
-
C. Chen and G. Lee, “Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip,” J. Microelectromech. Syst., vol. 15, pp. 1492–1498, 2006.
-
(2006)
J. Microelectromech. Syst.
, vol.15
, pp. 1492-1498
-
-
Chen, C.1
Lee, G.2
-
137
-
-
34548012627
-
Discrete chemical release from a microfluidic chip
-
M. Hu, T. Lindemann, T. Gottsche, J. Kohnle, R. Zengerle, and P. Koltay, “Discrete chemical release from a microfluidic chip,” J. Microelectromech. Syst., vol. 16, pp. 786–794, 2007.
-
(2007)
J. Microelectromech. Syst.
, vol.16
, pp. 786-794
-
-
Hu, M.1
Lindemann, T.2
Gottsche, T.3
Kohnle, J.4
Zengerle, R.5
Koltay, P.6
-
138
-
-
33846011449
-
Rapid circular microfluidic mixer utilizing unbalanced driving force
-
C. Lin, C. Tsai, C. Pan, and L. Fu, “Rapid circular microfluidic mixer utilizing unbalanced driving force,” Biomed. Microdevices, vol. 9, pp. 43–50, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 43-50
-
-
Lin, C.1
Tsai, C.2
Pan, C.3
Fu, L.4
-
139
-
-
34548598730
-
Membrane-activated microfluidic rotary devices for pumping and mixing
-
H. Tseng, C. Wang, W. Lin, and G. Lee, “Membrane-activated microfluidic rotary devices for pumping and mixing,” Biomed. Microdevices, vol. 9, pp. 545–554, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 545-554
-
-
Tseng, H.1
Wang, C.2
Lin, W.3
Lee, G.4
-
140
-
-
29244477220
-
Programmable autonomous micromixers and micropumps
-
A. Agarwal, S. Sridharamurthy, D. Beebe, and H. Jiang, “Programmable autonomous micromixers and micropumps,” J. Microelectromech. Syst., vol. 14, pp. 1409–1421, 2005.
-
(2005)
J. Microelectromech. Syst.
, vol.14
, pp. 1409-1421
-
-
Agarwal, A.1
Sridharamurthy, S.2
Beebe, D.3
Jiang, H.4
-
141
-
-
0034615958
-
Monolithic micro-fabricated valves and pumps by multilayer soft lithography
-
M. Unger, H. Chou, T. Thorsen, A. Scherer, and S. Quake, “Monolithic micro-fabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113–116, 2000.
-
(2000)
Science
, vol.288
, pp. 113-116
-
-
Unger, M.1
Chou, H.2
Thorsen, T.3
Scherer, A.4
Quake, S.5
-
142
-
-
1642575054
-
Flow control with hydrogels
-
D. Eddington and D. Beebe, “Flow control with hydrogels,” Adv. Drug Deliv. Rev., vol. 56, pp. 199–210, 2004.
-
(2004)
Adv. Drug Deliv. Rev.
, vol.56
, pp. 199-210
-
-
Eddington, D.1
Beebe, D.2
-
143
-
-
34247139173
-
A bi-polymer micro one-way valve
-
D. Kim and D. Beebe, “A bi-polymer micro one-way valve,” Sensors Actuators Phys., vol. 136, pp. 426–433, 2007.
-
(2007)
Sensors Actuators Phys.
, vol.136
, pp. 426-433
-
-
Kim, D.1
Beebe, D.2
-
144
-
-
34249991727
-
Remotely adjustable check-valves with an electrochemical release mechanism for implantable biomedical microsystems
-
T. Pan, A. Baldi, and B. Ziaie, “Remotely adjustable check-valves with an electrochemical release mechanism for implantable biomedical microsystems,” Biomed. Microdevices, vol. 9, pp. 385–394, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 385-394
-
-
Pan, T.1
Baldi, A.2
Ziaie, B.3
-
145
-
-
34249726130
-
Integration of hydrogels with hard and soft microstructures
-
M. Lei, B. Ziaie, E. Nuxoll, K. Ivan, Z. Noszticzius, and R. Siegel, “Integration of hydrogels with hard and soft microstructures,” J. Nanosci. Nanotechnol, vol. 7, pp. 780–789, 2007.
-
(2007)
J. Nanosci. Nanotechnol
, vol.7
, pp. 780-789
-
-
Lei, M.1
Ziaie, B.2
Nuxoll, E.3
Ivan, K.4
Noszticzius, Z.5
Siegel, R.6
-
146
-
-
42549133534
-
A bistable electromagnetically actuated rotary gate microvalve
-
R. Lukaruka and P. Hesketh, “A bistable electromagnetically actuated rotary gate microvalve,” J. Micromech. Microeng., vol. 18, pp. 035015/1–035015/14, 2008.
-
(2008)
J. Micromech. Microeng.
, vol.18
, pp. 035015/1-035015/14
-
-
Lukaruka, R.1
Hesketh, P.2
-
147
-
-
34548598601
-
Perstaltic piezoelectric micropump system for biomedical applications
-
L. Jang and W. Kan, “Perstaltic piezoelectric micropump system for biomedical applications,” Biomed. Microdevices, vol. 9, pp. 619–626, 2007.
-
(2007)
Biomed. Microdevices
, vol.9
, pp. 619-626
-
-
Jang, L.1
Kan, W.2
-
148
-
-
33745145832
-
Electroosmotic pumps fabricated from porous silicon membranes
-
S. Yao, A. Myers, J. Posner, K. Rose, and J. Santiago, “Electroosmotic pumps fabricated from porous silicon membranes,” J. Microelectromech. Syst., vol. 15, pp. 717–728, 2006.
-
(2006)
J. Microelectromech. Syst.
, vol.15
, pp. 717-728
-
-
Yao, S.1
Myers, A.2
Posner, J.3
Rose, K.4
Santiago, J.5
-
149
-
-
35148814582
-
An electrolysis-bubble-actuated micropump based on the roughness gradient design of hydrophobic surface
-
C. Cheng and C. Liu, “An electrolysis-bubble-actuated micropump based on the roughness gradient design of hydrophobic surface,” J. Microelectromech. Syst., vol. 16, pp. 1095–1105, 2007.
-
(2007)
J. Microelectromech. Syst.
, vol.16
, pp. 1095-1105
-
-
Cheng, C.1
Liu, C.2
-
150
-
-
42549155224
-
A membrane-based serpentine-shaped pneumatic micropump with pumping performance modulated by fluidic resistance
-
S. Huang, M. Wu, Z. Cui, and G. Lee, “A membrane-based serpentine-shaped pneumatic micropump with pumping performance modulated by fluidic resistance,” J. Micromech. Microeng., vol. 18, pp. 045008/1–045008/12, 2008.
-
(2008)
J. Micromech. Microeng.
, vol.18
, pp. 045008/1-045008/12
-
-
Huang, S.1
Wu, M.2
Cui, Z.3
Lee, G.4
-
151
-
-
42549129086
-
A programmable planar electroosmotic micropump for lab-on-a-chip applications
-
K. Seibel, L. Scholer, H. Schafer, and M. Bohm, “A programmable planar electroosmotic micropump for lab-on-a-chip applications,” J. Micromech. Microeng., vol. 18, pp. 025008/1–025008/7, 2008.
-
(2008)
J. Micromech. Microeng.
, vol.18
, pp. 025008/1-025008/7
-
-
Seibel, K.1
Scholer, L.2
Schafer, H.3
Bohm, M.4
-
153
-
-
0242406147
-
A hydrogel-actuated environmentally sensitive microvalve for active flow control
-
A. Baldi, G. Yuandong, P. E. Loftness, R. A. Siegel, and B. Ziaie, “A hydrogel-actuated environmentally sensitive microvalve for active flow control,” J. Microelectromech. Syst., vol. 12, no. 5, pp. 613–621, 2003.
-
(2003)
J. Microelectromech. Syst.
, vol.12
, Issue.5
, pp. 613-621
-
-
Baldi, A.1
Yuandong, G.2
Loftness, P.E.3
Siegel, R.A.4
Ziaie, B.5
-
154
-
-
33244456578
-
A microstructured silicon membrane with entrapped hydrogels for environmentally sensitive fluid gating
-
A. Baldi, L. Ming, G. Yuandong, R. A. Siegel, and B. Ziaie, “A microstructured silicon membrane with entrapped hydrogels for environmentally sensitive fluid gating,” Sensors Actuators B Chem., vol. 114, pp. 9–18, 2006.
-
(2006)
Sensors Actuators B Chem.
, vol.114
, pp. 9-18
-
-
Baldi, A.1
Ming, L.2
Yuandong, G.3
Siegel, R.A.4
Ziaie, B.5
-
155
-
-
33645298033
-
A hydrogel-based implantable micromachined transponder for wireless glucose measurement
-
M. Lei, A. Baldi, E. Nuxoll, R. A. Siegel, and B. Ziaie, “A hydrogel-based implantable micromachined transponder for wireless glucose measurement,” Diabetes Tech. Therapeut., vol. 8, no. 1, pp. 112–121, 2006.
-
(2006)
Diabetes Tech. Therapeut.
, vol.8
, Issue.1
, pp. 112-121
-
-
Lei, M.1
Baldi, A.2
Nuxoll, E.3
Siegel, R.A.4
Ziaie, B.5
-
156
-
-
34548794932
-
In vivo tolerance and kinetics of a novel ocular drug delivery device
-
R. T. Pijls, N. H. Hanssen, R. M. Nuijts, G. W. Daube, and L. H. Koole, “In vivo tolerance and kinetics of a novel ocular drug delivery device,” J. Control. Release, vol. 116, pp. e47–e49, 2006.
-
(2006)
J. Control. Release
, vol.116
, pp. e47-e49
-
-
Pijls, R.T.1
Hanssen, N.H.2
Nuijts, R.M.3
Daube, G.W.4
Koole, L.H.5
-
157
-
-
85008034478
-
-
Apr. 10, [Online]. Available: www.surmodics.com
-
SurModics. (2008, Apr. 10). Bringing Innovation Together [Online]. Available: www.surmodics.com
-
(2008)
Bringing Innovation Together
-
-
-
158
-
-
0036240178
-
Evaluation of MEMS materials of construction for implantable medical devices
-
G. Kotzar, M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J. Moran, and J. Melzak, “Evaluation of MEMS materials of construction for implantable medical devices,” Biomaterials, vol. 23, pp. 2737–2750, 2002.
-
(2002)
Biomaterials
, vol.23
, pp. 2737-2750
-
-
Kotzar, G.1
Freas, M.2
Abel, P.3
Fleischman, A.4
Roy, S.5
Zorman, C.6
Moran, J.7
Melzak, J.8
-
159
-
-
0037400556
-
Biocompatibility and biofouling of MEMS drug delivery devices
-
G. Voskerician, M. Shive, R. Shawgo, H. Von Recum, J. Anderson, M. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials, vol. 24, pp. 1959–1967, 2003.
-
(2003)
Biomaterials
, vol.24
, pp. 1959-1967
-
-
Voskerician, G.1
Shive, M.2
Shawgo, R.3
Von Recum, H.4
Anderson, J.5
Cima, M.6
Langer, R.7
-
160
-
-
4444330267
-
Biomaterials: Where have we been and where are we going
-
B. Ratner and S. Bryant, “Biomaterials: Where have we been and where are we going,” Annu. Rev. Biomed. Eng., vol. 6, pp. 41–75, 2004.
-
(2004)
Annu. Rev. Biomed. Eng.
, vol.6
, pp. 41-75
-
-
Ratner, B.1
Bryant, S.2
|