메뉴 건너뛰기




Volumn 13, Issue 3, 2006, Pages 838-851

Bayesian sequential inference for stochastic kinetic biochemical network models

Author keywords

Bayesian inference; Missing data; Nonlinear diffusion; Particle filter; Stochastic differential equation

Indexed keywords

ANALYTICAL ERROR; ARTICLE; AUTOREGULATION; BAYES THEOREM; BIOCHEMISTRY; DIFFUSION; GENETICS; GENOMICS; KINETICS; NONHUMAN; NONLINEAR SYSTEM; PREDICTION; PRIORITY JOURNAL; PROKARYOTE; STOCHASTIC MODEL;

EID: 33744475347     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2006.13.838     Document Type: Article
Times cited : (76)

References (31)
  • 2
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells
    • Arkin, A., Ross, J., and McAdams, H.H. 1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 633-648.
    • (1998) Genetics , vol.149 , pp. 633-648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 3
    • 0031321240 scopus 로고    scopus 로고
    • Dynamic conditional independence models and Markov chain Monte Carlo methods
    • Berzuini, C., Best, N.G., Gilks, W.R., and Larizza, C. 1997. Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Am. Statist. Assoc. 92(440), 1403-1412.
    • (1997) J. Am. Statist. Assoc. , vol.92 , Issue.440 , pp. 1403-1412
    • Berzuini, C.1    Best, N.G.2    Gilks, W.R.3    Larizza, C.4
  • 6
    • 0007564147 scopus 로고
    • The analysis of chemically reacting systems
    • Gordon and Breach Science Publishers, New York
    • Doraiswamy, L.K., and Kulkarni, B.D. 1987. The analysis of chemically reacting systems, vol. 4 of Topics in Chemical Engineering, Gordon and Breach Science Publishers, New York.
    • (1987) Topics in Chemical Engineering , vol.4
    • Doraiswamy, L.K.1    Kulkarni, B.D.2
  • 7
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • Doucet, A., Godsill, S., and Andrieu, C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10, 197-208.
    • (2000) Stat. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 8
    • 0036339461 scopus 로고    scopus 로고
    • Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes
    • Durham, G.B., and Gallant, R.A. 2002. Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J. Bus. Econ. Statist. 20, 279-316.
    • (2002) J. Bus. Econ. Statist. , vol.20 , pp. 279-316
    • Durham, G.B.1    Gallant, R.A.2
  • 9
    • 0000440935 scopus 로고    scopus 로고
    • Likelihood inference for discretely observed nonlinear diffusions
    • Elerian, O., Chib, S., and Shephard, N. 2001. Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69(4), 959-993.
    • (2001) Econometrica , vol.69 , Issue.4 , pp. 959-993
    • Elerian, O.1    Chib, S.2    Shephard, N.3
  • 10
    • 0035586814 scopus 로고    scopus 로고
    • MCMC analysis of diffusion models with application to finance
    • Eraker, B. 2001. MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Statist. 19, 177-191.
    • (2001) J. Bus. Econ. Statist. , vol.19 , pp. 177-191
    • Eraker, B.1
  • 12
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • Gillespie, D.T. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340-2361.
    • (1977) J. Phys. Chem. , vol.81 , pp. 2340-2361
    • Gillespie, D.T.1
  • 13
    • 27744503232 scopus 로고    scopus 로고
    • Bayesian inference for stochastic kinetic models using a diffusion approximation
    • Golightly, A., and Wilkinson, D.J. 2005a. Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61(3), 781-788.
    • (2005) Biometrics , vol.61 , Issue.3 , pp. 781-788
    • Golightly, A.1    Wilkinson, D.J.2
  • 19
    • 0001225908 scopus 로고    scopus 로고
    • Combined parameter and state estimation in simulation-based filtering
    • Doucet, A., de Freitas, N., and Gordon, N., eds., Springer-Verlag, New York
    • Liu, J., and West, M. 2001. Combined parameter and state estimation in simulation-based filtering, in Doucet, A., de Freitas, N., and Gordon, N., eds., Sequential Monte Carlo Methods in Practice, Springer-Verlag, New York.
    • (2001) Sequential Monte Carlo Methods in Practice
    • Liu, J.1    West, M.2
  • 20
    • 0033083733 scopus 로고    scopus 로고
    • Its a noisy business: Genetic regulation at the nanomolar scale
    • McAdams, H.H., and Arkin, A. 1999. Its a noisy business: Genetic regulation at the nanomolar scale. TIG 15, 65-69.
    • (1999) TIG , vol.15 , pp. 65-69
    • McAdams, H.H.1    Arkin, A.2
  • 21
    • 0001601301 scopus 로고
    • Stochastic approach to chemical kinetics
    • McQuarrie, D.A. 1967. Stochastic approach to chemical kinetics. J. Appl. Probab. 4, 413-478.
    • (1967) J. Appl. Probab. , vol.4 , pp. 413-478
    • McQuarrie, D.A.1
  • 24
    • 0002841968 scopus 로고
    • A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations
    • Pedersen, A. 1995. A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist. 1995(22), 55-71.
    • (1995) Scand. J. Statist. , vol.1995 , Issue.22 , pp. 55-71
    • Pedersen, A.1
  • 25
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • Pitt, M.K., and Shephard, N. 1999. Filtering via simulation: Auxiliary particle filters. J. Am. Statist. Assoc. 446(94), 590-599.
    • (1999) J. Am. Statist. Assoc. , vol.446 , Issue.94 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 27
    • 10244252366 scopus 로고    scopus 로고
    • On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm
    • Roberts, G.O., and Stramer, O. 2001. On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm. Biometrika 88(4), 603-621.
    • (2001) Biometrika , vol.88 , Issue.4 , pp. 603-621
    • Roberts, G.O.1    Stramer, O.2
  • 28
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M.A., and Wong, W.H. 1987. The calculation of posterior distributions by data augmentation. J. Am. Statist. Assoc. 82(398), 528-540.
    • (1987) J. Am. Statist. Assoc. , vol.82 , Issue.398 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 30
    • 0000782444 scopus 로고
    • Approximating posterior distributions by mixtures
    • West, M. 1993. Approximating posterior distributions by mixtures. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 55, 409-422.
    • (1993) J. Roy. Stat. Soc. Ser. B Stat. Methodol. , vol.55 , pp. 409-422
    • West, M.1
  • 31
    • 4043117355 scopus 로고    scopus 로고
    • Discussion to 'Non centred parameterisations for hierarchical models and data augmentation' by Papaspiliopoulos, Roberts, and Skold
    • Oxford Science Publications, London
    • Wilkinson, D.J. 2003. Discussion to 'Non centred parameterisations for hierarchical models and data augmentation' by Papaspiliopoulos, Roberts, and Skold, in Bayesian Statistics 7, 323-324, Oxford Science Publications, London.
    • (2003) Bayesian Statistics , vol.7 , pp. 323-324
    • Wilkinson, D.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.