메뉴 건너뛰기




Volumn 20, Issue 4, 2005, Pages 388-400

Experiments in stochastic computation for high-dimensional graphical models

Author keywords

Decomposable models; Markov chain monte carlo; Nondecomposable models; Parallel implementation; Shotgun stochastic search

Indexed keywords


EID: 20144364427     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/088342305000000304     Document Type: Article
Times cited : (196)

References (30)
  • 3
    • 84872002632 scopus 로고    scopus 로고
    • The marginal likelihood for decomposable and non-decomposable graphical Gaussian models
    • To appear
    • ATAY-KAYIS, A. and MASSAM, H. (2006). The marginal likelihood for decomposable and non-decomposable graphical Gaussian models. Biometrika. To appear.
    • (2006) Biometrika
    • Atay-Kayis, A.1    Massam, H.2
  • 5
    • 21344482755 scopus 로고
    • Hyper-Markov laws in the statistical analysis of decomposable graphical models
    • DAWID, A. P. and LAURITZEN, S. L. (1993). Hyper-Markov laws in the statistical analysis of decomposable graphical models. Ann. Statist. 21 1272-1317.
    • (1993) Ann. Statist. , vol.21 , pp. 1272-1317
    • Dawid, A.P.1    Lauritzen, S.L.2
  • 6
    • 0000860415 scopus 로고    scopus 로고
    • Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models
    • DELLAPORTAS, P. and FORSTER, J. J. (1999). Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models. Biometrika 86 615-633.
    • (1999) Biometrika , vol.86 , pp. 615-633
    • Dellaportas, P.1    Forster, J.J.2
  • 7
    • 3843120764 scopus 로고    scopus 로고
    • Bayesian inference for nondecomposable graphical Gaussian models
    • DELLAPORTAS, P., GIUDICI, P. and ROBERTS, G. (2003). Bayesian inference for nondecomposable graphical Gaussian models. Sankhyā 65 43-55.
    • (2003) Sankhyā , vol.65 , pp. 43-55
    • Dellaportas, P.1    Giudici, P.2    Roberts, G.3
  • 8
    • 0001038826 scopus 로고
    • Covariance selection
    • DEMPSTER, A. P. (1972). Covariance selection. Biometrics 28 157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.P.1
  • 9
    • 0002467247 scopus 로고
    • The weighted likelihood ratio, linear hypotheses on normal location parameters
    • DICKEY, J. M. (1971). The weighted likelihood ratio, linear hypotheses on normal location parameters. Ann. Math. Statist. 42 204-223.
    • (1971) Ann. Math. Statist. , vol.42 , pp. 204-223
    • Dickey, J.M.1
  • 10
    • 0034710980 scopus 로고    scopus 로고
    • Bounds for cell entries in contingency tables given marginal totals and decomposable graphs
    • DOBRA, A. and FIENBERG, S. E. (2000). Bounds for cell entries in contingency tables given marginal totals and decomposable graphs. Proc. Natl. Acad. Sci. U.S.A. 97 11,885-11,892.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97
    • Dobra, A.1    Fienberg, S.E.2
  • 12
    • 33144479549 scopus 로고    scopus 로고
    • Bayesian covariance selection
    • DOBRA, A. and WEST, M. (2004). Bayesian covariance selection. Available as Discussion Paper 04-23 at www.isds.duke.edu.
    • (2004) Discussion Paper 04-23
    • Dobra, A.1    West, M.2
  • 15
    • 0011433907 scopus 로고    scopus 로고
    • Learning in graphical Gaussian models
    • (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) Oxford Univ. Press, London
    • GIUDICI, P. (1996). Learning in graphical Gaussian models. In Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 621-628. Oxford Univ. Press, London.
    • (1996) Bayesian Statistics 5 , pp. 621-628
    • Giudici, P.1
  • 16
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • GIUDICI, P. and CASTELO, R. (2003). Improving Markov chain Monte Carlo model search for data mining. Machine Learning 50 127-158.
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 17
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • GIUDICI, P. and GREEN, P. J. (1999). Decomposable graphical Gaussian model determination. Biometrika 86 785-801.
    • (1999) Biometrika , vol.86 , pp. 785-801
    • Giudici, P.1    Green, P.J.2
  • 18
  • 22
    • 2542631175 scopus 로고    scopus 로고
    • Graphical models for genetic analyses
    • LAURITZEN, S. L. and SHEEHAN, N. A. (2003). Graphical models for genetic analyses. Statist. Sci. 18 489-514.
    • (2003) Statist. Sci. , vol.18 , pp. 489-514
    • Lauritzen, S.L.1    Sheehan, N.A.2
  • 23
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • MADIGAN, D. and YORK, J. (1995). Bayesian graphical models for discrete data. Internat. Statist. Rev. 63 215-232.
    • (1995) Internat. Statist. Rev. , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 24
    • 0035995077 scopus 로고    scopus 로고
    • Hyper-inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models
    • ROVERATO, A. (2002). Hyper-inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scand. J. Statist. 29 391-411.
    • (2002) Scand. J. Statist. , vol.29 , pp. 391-411
    • Roverato, A.1
  • 25
    • 0017129474 scopus 로고
    • Model search among multiplicative models
    • WERMUTH, N. (1976). Model search among multiplicative models. Biometrics 32 253-263.
    • (1976) Biometrics , vol.32 , pp. 253-263
    • Wermuth, N.1
  • 28
    • 3843149220 scopus 로고    scopus 로고
    • Efficient estimation of covariance selection models
    • WONG, F., CARTER, C. and KOHN, R. (2003). Efficient estimation of covariance selection models. Biometrika 90 809-830.
    • (2003) Biometrika , vol.90 , pp. 809-830
    • Wong, F.1    Carter, C.2    Kohn, R.3
  • 29
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu, J., SMITH, V., WANG, P., HARTEMINK, A. and JARVIS, E. (2004). Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20 3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.2    Wang, P.3    Hartemink, A.4    Jarvis, E.5
  • 30
    • 0036790999 scopus 로고    scopus 로고
    • Transitive functional annotation by shortest-path analysis of gene expression data
    • ZHOU, X., KAO, M. J. and WONG, W. H. (2002). Transitive functional annotation by shortest-path analysis of gene expression data. Proc. Natl. Acad. Sci. U.S.A. 99 12,783-12,788.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99
    • Zhou, X.1    Kao, M.J.2    Wong, W.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.