-
1
-
-
0004176090
-
-
Arnold, London
-
A. O’Hagan. Bayesian Inference, volume 2B of Kendall’s Advanced Theory of Statistics. Arnold, London, 1994.
-
(1994)
Bayesian Inference
-
-
O’Hagan, A.1
-
3
-
-
0041974049
-
Marginal likelihood from the gibbs output
-
S. Chib. Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90(432):1313-1321, 1995.
-
(1995)
Journal of the American Statistical Association
, vol.90
, Issue.432
, pp. 1313-1321
-
-
Chib, S.1
-
5
-
-
0004047518
-
-
Oxford Science Publications, Oxford
-
S.L. Lauritzen. Graphical Models. Oxford Science Publications, Oxford, 1996.
-
(1996)
Graphical Models
-
-
Lauritzen, S.L.1
-
7
-
-
0003687180
-
-
Springer, New York
-
R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Speigelhalter. Probabilistic Networks and Expert Systems. Springer, New York, 1999.
-
(1999)
Probabilistic Networks and Expert Systems
-
-
Cowell, R.G.1
Dawid, A.P.2
Lauritzen, S.L.3
Speigelhalter, D.J.4
-
8
-
-
0141457184
-
Conditional simulation from highly structured gaussian systems, with application to blocking-mcmc for the bayesian analysis of very large linear models
-
D.J. Wilkinson and S.K.H. Yeung. Conditional simulation from highly structured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis of very large linear models. Statistics and Computing, 12:287-300, 2002.
-
(2002)
Statistics and Computing
, vol.12
, pp. 287-300
-
-
Wilkinson, D.J.1
Yeung, S.K.H.2
-
9
-
-
84950442428
-
Propagation of probabilities, means, and variances in mixed graphical association models
-
S.L. Lauritzen. Propagation of probabilities, means, and variances in mixed graphical association models. Journal of the American Statistical Association, 87(420):1098-1108, 1992.
-
(1992)
Journal of the American Statistical Association
, vol.87
, Issue.420
, pp. 1098-1108
-
-
Lauritzen, S.L.1
-
11
-
-
0035649131
-
Fast sampling of gaussian markov random fields
-
H. Rue. Fast sampling of Gaussian Markov random fields. Journal of the Royal Statistical Society, B:63(2):325-338, 2001.
-
(2001)
Journal of the Royal Statistical Society
, vol.63
, Issue.2
, pp. 325-338
-
-
Rue, H.1
-
18
-
-
53149111195
-
Random number generators for parallel applications
-
Monte Carlo Methods in Chemical Physics
-
A. Srinivasan, D.M. Ceperley, and M. Mascagni. Random number generators for parallel applications. Advances in Chemical Physics, 105:13-36, 1999. Monte Carlo Methods in Chemical Physics.
-
(1999)
Advances in Chemical Physics
, vol.105
, pp. 13-36
-
-
Srinivasan, A.1
Ceperley, D.M.2
Mascagni, M.3
-
20
-
-
0003710740
-
-
2nd ed. MIT Press, Cambridge, MA
-
M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI- The Complete Reference: Volume 1, The MPI Core, 2nd ed. MIT Press, Cambridge, MA, 1998.
-
(1998)
MPI
-
-
Snir, M.1
Otto, S.2
Huss-Lederman, S.3
Walker, D.4
Dongarra, J.5
-
21
-
-
0346205399
-
Markov chain monte carlo method and its application
-
S.P. Brooks. Markov chain Monte Carlo method and its application. The Statistician, 47(1):69-100, 1998.
-
(1998)
The Statistician
, vol.47
, Issue.1
, pp. 69-100
-
-
Brooks, S.P.1
-
22
-
-
84972492387
-
Inference from iterative simulation using multiple sequences
-
A. Gelman and D. Rubin. Inference from iterative simulation using multiple sequences. Statistical Science, 7:457-511, 1992.
-
(1992)
Statistical Science
, vol.7
, pp. 457-511
-
-
Gelman, A.1
Rubin, D.2
-
23
-
-
84972511893
-
Practical markov chain monte carlo
-
C.J. Geyer. Practical Markov chain Monte Carlo. Statistical Science, 7:473-511, 1992.
-
(1992)
Statistical Science
, vol.7
, pp. 473-511
-
-
Geyer, C.J.1
-
24
-
-
0000051645
-
Updating schemes, correlation structure, blocking and parameterisation for the gibbs sampler
-
G.O. Roberts and S.K. Sahu. Updating schemes, correlation structure, blocking and parameterisation for the Gibbs sampler. Journal of the Royal Statistical Society, B59(2):291-317, 1997.
-
(1997)
Journal of the Royal Statistical Society
, vol.B59
, Issue.2
, pp. 291-317
-
-
Roberts, G.O.1
Sahu, S.K.2
-
25
-
-
0005193926
-
Exact sampling with coupled markov chains and applications to statistical mechanics
-
J.G. Propp and D.B. Wilson. Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures and Algorithms, 9:223-252, 1996.
-
(1996)
Random Structures and Algorithms
, vol.9
, pp. 223-252
-
-
Propp, J.G.1
Wilson, D.B.2
-
26
-
-
0006407254
-
Winbugs - a bayesian modelling framework: Concepts, structure, and extensibility
-
D.J. Lunn, A. Thomas, N. Best, and D.J. Spiegelhalter. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10(4):325-337, 2000.
-
(2000)
Statistics and Computing
, vol.10
, Issue.4
, pp. 325-337
-
-
Lunn, D.J.1
Thomas, A.2
Best, N.3
Spiegelhalter, D.J.4
-
27
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
M.A. Tanner and W.H. Wong. The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82(398):528-540, 1987.
-
(1987)
Journal of the American Statistical Association
, vol.82
, Issue.398
, pp. 528-540
-
-
Tanner, M.A.1
Wong, W.H.2
-
28
-
-
0000576595
-
Markov chains for exploring posterior distributions (With discussion)
-
L. Tierney. Markov chains for exploring posterior distributions (with discussion). Annals ofStatistics, 21:1701-1762, 1994.
-
(1994)
Annals Ofstatistics
, vol.21
, pp. 1701-1762
-
-
Tierney, L.1
-
30
-
-
77955275656
-
Dynamic lattice-markov spatio-temporal models for environmental data
-
J.M. Bernardo et al., eds., Oxford University Press, Tenerife
-
L.M. Garside and D.J. Wilkinson. Dynamic lattice-Markov spatio-temporal models for environmental data. In J.M. Bernardo et al., eds., Bayesian Statistics, vol. 7. Oxford University Press, Tenerife, 2003, pp. 535-542.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 535-542
-
-
Garside, L.M.1
Wilkinson, D.J.2
-
31
-
-
0036900109
-
On block updating in markov random field models for disease mapping
-
L. Knorr-Held and H. Rue. On block updating in Markov random field models for disease mapping. Scandanavian Journal of Statistics, 29(4):597-614.
-
Scandanavian Journal of Statistics
, vol.29
, Issue.4
, pp. 597-614
-
-
Knorr-Held, L.1
Rue, H.2
-
32
-
-
2442627902
-
Non-centered parameterisations for hierarchical models and data augmentation (With discussion)
-
J.M. Bernardo et al., eds., Oxford University Press, Tenerife
-
O. Papaspiliopoulos, G.O. Roberts, and M. Skold. Non-centered parameterisations for hierarchical models and data augmentation (with discussion). In J.M. Bernardo et al., eds., Bayesian Statistics, vol. 7, Oxford University Press, Tenerife, 2003, pp. 307-326.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 307-326
-
-
Papaspiliopoulos, O.1
Roberts, G.O.2
Skold, M.3
-
34
-
-
85057428352
-
Parallel algorithms for markov chain monte carlo methods in latent gaussian models. Technical report
-
M. Whiley and S.P. Wilson. Parallel algorithms for Markov chain Monte Carlo methods in latent Gaussian models. Technical report, Department of Statistics, Trinity College Dublin, 2004. 14: pp 171-179.
-
(2004)
Department of Statistics, Trinity College Dublin
, vol.14
, pp. 171-179
-
-
Whiley, M.1
Wilson, S.P.2
-
35
-
-
84962984403
-
Multivariate stochastic variance models
-
A. Harvey, E. Ruiz, and N. Shephard. Multivariate stochastic variance models. The Review ofEconomic Studies, 61(2):247-264, 1994.
-
(1994)
The Review ofEconomic Studies
, vol.61
, Issue.2
, pp. 247-264
-
-
Harvey, A.1
Ruiz, E.2
Shephard, N.3
-
37
-
-
0001981538
-
Time varying covariances: A factor stochastic volatility approach
-
J.-M. Bernardo et al., eds., Oxford University Press, Oxford
-
M. Pitt and N. Shephard. Time varying covariances: a factor stochastic volatility approach. In J.-M. Bernardo et al., eds., Bayesian Statistics vol. 6, Oxford University Press, Oxford, 1999, pp. 3-26.
-
(1999)
Bayesian Statistics
, vol.6
, pp. 3-26
-
-
Pitt, M.1
Shephard, N.2
-
38
-
-
0003258788
-
Likelihood analysis of non-gaussian measurement time series
-
N. Shephard and M. K. Pitt. Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84(3):653-667, 1997.
-
(1997)
Biometrika
, vol.84
, Issue.3
, pp. 653-667
-
-
Shephard, N.1
Pitt, M.K.2
-
39
-
-
0001325243
-
The simulation smoother for time-series models
-
P. de Jong and N. Shephard. The simulation smoother for time-series models. Biometrika, 82:339-350, 1995.
-
(1995)
Biometrika
, vol.82
, pp. 339-350
-
-
De Jong, P.1
Shephard, N.2
-
40
-
-
0001251517
-
Stochastic volatility: Likelihood inference and comparison with arch models
-
S. Kim, N. Shephard, and S. Chib. Stochastic volatility: likelihood inference and comparison with ARCH models. Reviews Economic Studies, 65:361-393, 1998.
-
(1998)
Reviews Economic Studies
, vol.65
, pp. 361-393
-
-
Kim, S.1
Shephard, N.2
Chib, S.3
-
41
-
-
0037098211
-
Computationally-intensive econometrics using a distributed matrix-programming language
-
J.A. Doornik, D.F. Hendry, and N. Shephard. Computationally-intensive econometrics using a distributed matrix-programming language. Philosophical Transactions of the Royal Society of London, Series A, 360:1245-1266, 2002.
-
(2002)
Philosophical Transactions of the Royal Society of London, Series
, vol.360
, pp. 1245-1266
-
-
Doornik, J.A.1
Hendry, D.F.2
Shephard, N.3
-
43
-
-
84986397907
-
Fitting nonlinear time-series models with applications to stochastic variance models
-
N. Shephard. Fitting nonlinear time-series models with applications to stochastic variance models. Journal of Applied Econometrics, 8(5):S135-S152, 1993.
-
(1993)
Journal of Applied Econometrics
, vol.8
, Issue.5
, pp. S135-S152
-
-
Shephard, N.1
|