메뉴 건너뛰기




Volumn 7, Issue 3, 2006, Pages

Ranked prediction of p53 targets using hidden variable dynamic modeling

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN P53; SMALL INTERFERING RNA; TRANSCRIPTION FACTOR;

EID: 33745038921     PISSN: 1474760X     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/gb-2006-7-3-r25     Document Type: Article
Times cited : (126)

References (46)
  • 1
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 2
    • 4444226267 scopus 로고    scopus 로고
    • Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data
    • Sontag E, Kiyatkin A, Kholodenko BN: Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 2004, 20:1877-1886.
    • (2004) Bioinformatics , vol.20 , pp. 1877-1886
    • Sontag, E.1    Kiyatkin, A.2    Kholodenko, B.N.3
  • 4
    • 0036678794 scopus 로고    scopus 로고
    • Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics
    • Ronen M, Rosenberg R, Shraiman BI, Alon U: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci USA 2002, 99:10555-10560.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 10555-10560
    • Ronen, M.1    Rosenberg, R.2    Shraiman, B.I.3    Alon, U.4
  • 5
    • 4444339832 scopus 로고    scopus 로고
    • Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle
    • Chen HC, Lee HC, Lin TY, Li WH, Chen BS: Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 2004, 20:1914-1927.
    • (2004) Bioinformatics , vol.20 , pp. 1914-1927
    • Chen, H.C.1    Lee, H.C.2    Lin, T.Y.3    Li, W.H.4    Chen, B.S.5
  • 6
    • 25444464334 scopus 로고    scopus 로고
    • Quantitative inference of dynamic regulatory pathways via microarray data
    • Chang WC, Li CW, Chen BS: Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics 2005, 6:44.
    • (2005) BMC Bioinformatics , vol.6 , pp. 44
    • Chang, W.C.1    Li, C.W.2    Chen, B.S.3
  • 11
    • 0038094430 scopus 로고    scopus 로고
    • From the top down: Towards a predictive biology of signalling networks
    • Stark J, Callard R, Hubank M: From the top down: towards a predictive biology of signalling networks. Trends Biotechnol 2003, 21:290-293.
    • (2003) Trends Biotechnol , vol.21 , pp. 290-293
    • Stark, J.1    Callard, R.2    Hubank, M.3
  • 12
    • 14844307659 scopus 로고    scopus 로고
    • Modelling gene networks at different organisational levels
    • Schlitt T, Brazma A: Modelling gene networks at different organisational levels. FEBS Lett 2005, 579:1859-1866.
    • (2005) FEBS Lett , vol.579 , pp. 1859-1866
    • Schlitt, T.1    Brazma, A.2
  • 14
    • 0141757504 scopus 로고    scopus 로고
    • P53 and radiation responses
    • Fei P, El-Deiry WS: P53 and radiation responses. Oncogene 2003, 22:5774-5783.
    • (2003) Oncogene , vol.22 , pp. 5774-5783
    • Fei, P.1    El-Deiry, W.S.2
  • 15
    • 0141853958 scopus 로고    scopus 로고
    • Transcriptional response of lymphoblastoid cells to ionizing radiation
    • Jen KY, Cheung VG: Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 2003, 13:2092-2100.
    • (2003) Genome Res , vol.13 , pp. 2092-2100
    • Jen, K.Y.1    Cheung, V.G.2
  • 16
    • 9144247813 scopus 로고    scopus 로고
    • Microarray analysis reveals that TP53- and ATM-mutant B-CLLs share a defect in activating proapoptotic responses after DNA damage but are distinguished by major differences in activating prosurvival responses
    • Stankovic T, Hubank M, Cronin D, Stewart GS, Fletcher D, Bignell CR, Alvi AJ, Austen B, Weston VJ, Fegan C, et al.: Microarray analysis reveals that TP53- and ATM-mutant B-CLLs share a defect in activating proapoptotic responses after DNA damage but are distinguished by major differences in activating prosurvival responses. Blood 2004, 103:291-300.
    • (2004) Blood , vol.103 , pp. 291-300
    • Stankovic, T.1    Hubank, M.2    Cronin, D.3    Stewart, G.S.4    Fletcher, D.5    Bignell, C.R.6    Alvi, A.J.7    Austen, B.8    Weston, V.J.9    Fegan, C.10
  • 17
    • 2342583373 scopus 로고    scopus 로고
    • Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53
    • Li CQ, Robles AI, Hanigan CL, Hofseth LJ, Trudel LJ, Harris CC, Wogan GN: Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53. Cancer Res 2004, 64:3022-3029.
    • (2004) Cancer Res , vol.64 , pp. 3022-3029
    • Li, C.Q.1    Robles, A.I.2    Hanigan, C.L.3    Hofseth, L.J.4    Trudel, L.J.5    Harris, C.C.6    Wogan, G.N.7
  • 18
    • 0043211850 scopus 로고    scopus 로고
    • Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal beta vs. external gamma radiation
    • Marko NF, Dieffenbach PB, Yan G, Ceryak S, Howell RW, McCaffrey TA, Hu VW: Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal beta vs. external gamma radiation. FASEB J 2003, 17:1470-1486.
    • (2003) FASEB J , vol.17 , pp. 1470-1486
    • Marko, N.F.1    Dieffenbach, P.B.2    Yan, G.3    Ceryak, S.4    Howell, R.W.5    McCaffrey, T.A.6    Hu, V.W.7
  • 19
    • 0037038699 scopus 로고    scopus 로고
    • Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites
    • Qian H, Wang T, Naumovski L, Lopez CD, Brachmann RK: Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene 2002, 21:7901-7911.
    • (2002) Oncogene , vol.21 , pp. 7901-7911
    • Qian, H.1    Wang, T.2    Naumovski, L.3    Lopez, C.D.4    Brachmann, R.K.5
  • 20
    • 4444236147 scopus 로고    scopus 로고
    • Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells
    • Rieger KE, Chu G: Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res 2004, 32:4786-4803.
    • (2004) Nucleic Acids Res , vol.32 , pp. 4786-4803
    • Rieger, K.E.1    Chu, G.2
  • 21
    • 0033531264 scopus 로고    scopus 로고
    • PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes
    • Velasco-Miguel S, Buckbinder L, Jean P, Gelbert L, Talbott R, Laidlaw J, Seizinger B, Kley N: PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 1999, 18:127-137.
    • (1999) Oncogene , vol.18 , pp. 127-137
    • Velasco-Miguel, S.1    Buckbinder, L.2    Jean, P.3    Gelbert, L.4    Talbott, R.5    Laidlaw, J.6    Seizinger, B.7    Kley, N.8
  • 25
    • 0348134742 scopus 로고    scopus 로고
    • Mono-versus polyubiquitination: Differential control of p53 fate by Mdm2
    • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W: Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 2003, 302:1972-1975.
    • (2003) Science , vol.302 , pp. 1972-1975
    • Li, M.1    Brooks, C.L.2    Wu-Baer, F.3    Chen, D.4    Baer, R.5    Gu, W.6
  • 26
    • 0037134020 scopus 로고    scopus 로고
    • A system for stable expression of short interfering RNAs in mammalian cells
    • Brummelkamp TR, Bernards R, Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science 2002, 296:550-553.
    • (2002) Science , vol.296 , pp. 550-553
    • Brummelkamp, T.R.1    Bernards, R.2    Agami, R.3
  • 27
    • 0032475953 scopus 로고    scopus 로고
    • The promoter of human p22/PACAP response gene 1 (PRGI) contains functional binding sites for the p53 tumor suppressor and for NFkappaB
    • Schafer H, Diebel J, Arlt A, Trauzold A, Schmidt WE: The promoter of human p22/PACAP response gene 1 (PRGI) contains functional binding sites for the p53 tumor suppressor and for NFkappaB. FEBS Lett 1998, 436:139-143.
    • (1998) FEBS Lett , vol.436 , pp. 139-143
    • Schafer, H.1    Diebel, J.2    Arlt, A.3    Trauzold, A.4    Schmidt, W.E.5
  • 30
    • 18144363600 scopus 로고    scopus 로고
    • Engineering gene networks to emulate Drosophila embryonic pattern formation
    • Isalan M, Lemerle C, Serrano L: Engineering gene networks to emulate Drosophila embryonic pattern formation. PLoS Biol 2005, 3:e64.
    • (2005) PLoS Biol , vol.3
    • Isalan, M.1    Lemerle, C.2    Serrano, L.3
  • 31
    • 27744485351 scopus 로고    scopus 로고
    • Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification
    • Lin LH, Lee HC, Li WH, Chen BS: Dynamic modeling of cis-regulatory circuits and gene expression prediction via cross-gene identification. BMC Bioinformatics 2005, 6:258.
    • (2005) BMC Bioinformatics , vol.6 , pp. 258
    • Lin, L.H.1    Lee, H.C.2    Li, W.H.3    Chen, B.S.4
  • 32
    • 15744362285 scopus 로고    scopus 로고
    • Computational methods for transcriptional regulation
    • Siggia ED: Computational methods for transcriptional regulation. Curr Opin Genet Dev 2005, 15:214-221.
    • (2005) Curr Opin Genet Dev , vol.15 , pp. 214-221
    • Siggia, E.D.1
  • 33
    • 1542399989 scopus 로고    scopus 로고
    • FatiGO: A web tool for finding significant associations of Gene Ontology terms with groups of genes
    • Al-Shahrour F, Diaz-Uriarte R, Dopazo J: FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 2004, 20:578-580.
    • (2004) Bioinformatics , vol.20 , pp. 578-580
    • Al-Shahrour, F.1    Diaz-Uriarte, R.2    Dopazo, J.3
  • 34
  • 36
    • 10044240790 scopus 로고    scopus 로고
    • Using prior knowledge to improve genetic network reconstruction from microarray data
    • Le Phillip P, Bahl A, Ungar LH: Using prior knowledge to improve genetic network reconstruction from microarray data. In Silico Biol 2004, 4:335-353.
    • (2004) Silico Biol , vol.4 , pp. 335-353
    • Le Phillip, P.1    Bahl, A.2    Ungar, L.H.3
  • 37
    • 23944482310 scopus 로고    scopus 로고
    • Dissection of a DNA-damage-induced transcriptional network using a combination of microarrays, RNA interference and computational promoter analysis
    • Elkon R, Rashi-Elkeles S, Lerenthal Y, Linhart C, Tenne T, Amariglio N, Rechavi G, Shamir R, Shiloh Y: Dissection of a DNA-damage-induced transcriptional network using a combination of microarrays, RNA interference and computational promoter analysis. Genome Biol 2005, 6:R43.
    • (2005) Genome Biol , vol.6
    • Elkon, R.1    Rashi-Elkeles, S.2    Lerenthal, Y.3    Linhart, C.4    Tenne, T.5    Amariglio, N.6    Rechavi, G.7    Shamir, R.8    Shiloh, Y.9
  • 41
    • 7444253428 scopus 로고    scopus 로고
    • Systems biology and new technologies enable predictive and preventative medicine
    • Hood L, Heath JR, Phelps ME, Lin B: Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306:640-643.
    • (2004) Science , vol.306 , pp. 640-643
    • Hood, L.1    Heath, J.R.2    Phelps, M.E.3    Lin, B.4
  • 43
    • 2542491957 scopus 로고    scopus 로고
    • Improving the statistical detection of regulated genes from microarray data using intensity-based variance estimation
    • Comander J, Natarajan S, Gimbrone MA Jr, Garcia-Cardena G: Improving the statistical detection of regulated genes from microarray data using intensity-based variance estimation. BMC Genomics 2004, 5(1):17.
    • (2004) BMC Genomics , vol.5 , Issue.1 , pp. 17
    • Comander, J.1    Natarajan, S.2    Gimbrone Jr., M.A.3    Garcia-Cardena, G.4
  • 44
    • 3042518853 scopus 로고    scopus 로고
    • A simple method for statistical analysis of intensity differences in microarray-derived gene expression data
    • Kamb A, Ramaswanni M: A simple method for statistical analysis of intensity differences in microarray-derived gene expression data. BMC Biotechnol 2001, 1(1):8.
    • (2001) BMC Biotechnol , vol.1 , Issue.1 , pp. 8
    • Kamb, A.1    Ramaswanni, M.2
  • 45
    • 0035684378 scopus 로고    scopus 로고
    • A model for measurement error for gene expression arrays
    • Rocke DM, Durbin B: A model for measurement error for gene expression arrays. J Comput Biol 2001, 8(6):557-569.
    • (2001) J Comput Biol , vol.8 , Issue.6 , pp. 557-569
    • Rocke, D.M.1    Durbin, B.2
  • 46
    • 0037590376 scopus 로고
    • The limit fold change model: A practical approach for selecting differentially expressed genes from microarray data
    • Mutch DM, Berger A, Mansourian R, Rytz A, Roberts MA: The limit fold change model: a practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics 1992, 3(1):17.
    • (1992) BMC Bioinformatics , vol.3 , Issue.1 , pp. 17
    • Mutch, D.M.1    Berger, A.2    Mansourian, R.3    Rytz, A.4    Roberts, M.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.