메뉴 건너뛰기




Volumn 47, Issue 2, 2007, Pages 113-126

Applications of Artificial Neural Networks (ANNs) in food science

Author keywords

Electronic nose; Machine perception; Machine vision; Microbiology; Process control; Spectroscopy

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; FERMENTATION; FOOD CONTROL; FOOD HANDLING; HUMAN; QUALITY CONTROL; SIGNAL PROCESSING; SPECTROSCOPY;

EID: 33847250435     PISSN: 10408398     EISSN: 15497852     Source Type: Journal    
DOI: 10.1080/10408390600626453     Document Type: Article
Times cited : (159)

References (118)
  • 1
    • 0030461005 scopus 로고    scopus 로고
    • Verifying wine origin: A neural network approach
    • Aires-De-Sousa, J. 1996.Verifying wine origin: a neural network approach. Am. J. Enol. Vitic., 47(4):410-414.
    • (1996) Am. J. Enol. Vitic , vol.47 , Issue.4 , pp. 410-414
    • Aires-De-Sousa, J.1
  • 2
    • 0029993850 scopus 로고    scopus 로고
    • Sensory evaluation of virgin olive oils by artificial neural network processing of dynamic head-space gas Chromatographic data
    • Angerosa, F., Giacinto, A.D., Vito, R., and Cumitini, S. 1996. Sensory evaluation of virgin olive oils by artificial neural network processing of dynamic head-space gas Chromatographic data. J. Sci. Food Agric., 72:323-328.
    • (1996) J. Sci. Food Agric , vol.72 , pp. 323-328
    • Angerosa, F.1    Giacinto, A.D.2    Vito, R.3    Cumitini, S.4
  • 3
    • 0031742319 scopus 로고    scopus 로고
    • Use of digital aroma technology and SPME GC-MS to compare volatile compounds produced by bacterial isolated from processed poultry
    • Arnold, J.W., and Senter, S.D. 1998. Use of digital aroma technology and SPME GC-MS to compare volatile compounds produced by bacterial isolated from processed poultry. J. Sci. Food Agric., 78:343-348.
    • (1998) J. Sci. Food Agric , vol.78 , pp. 343-348
    • Arnold, J.W.1    Senter, S.D.2
  • 4
    • 0041841539 scopus 로고    scopus 로고
    • Front-end signal conditioning used for resistance-based sensors in electronic nose systems: A review
    • Arshak, K., Lyons, G., Cavanagh, L., and Clifford, S. 2003. Front-end signal conditioning used for resistance-based sensors in electronic nose systems: a review. Sens. Rev., 23(3):230-241.
    • (2003) Sens. Rev , vol.23 , Issue.3 , pp. 230-241
    • Arshak, K.1    Lyons, G.2    Cavanagh, L.3    Clifford, S.4
  • 5
    • 0000990794 scopus 로고
    • Predicting protein functionality with artificial neural networks: Forming and emulsifying properties
    • Arteaga, G.E., and Nakai, S. 1993. Predicting protein functionality with artificial neural networks: forming and emulsifying properties. J. Food Sci., 58(5):1152-1156.
    • (1993) J. Food Sci , vol.58 , Issue.5 , pp. 1152-1156
    • Arteaga, G.E.1    Nakai, S.2
  • 6
    • 33847311122 scopus 로고    scopus 로고
    • Bain, A. 2004 (reprint). Mind and Body: The Theories of Their Relation. Kessinger Publishing Company, Whitefish, MT.
    • Bain, A. 2004 (reprint). Mind and Body: The Theories of Their Relation. Kessinger Publishing Company, Whitefish, MT.
  • 7
    • 1642518715 scopus 로고    scopus 로고
    • Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile
    • Berna, A.Z., Lammertyn, J., Saevels, S., Natale, C.D., and Nicolai, B.M. 2004. Electronic nose systems to study shelf life and cultivar effect on tomato aroma profile. Sens. Actuators B., 97:324-333.
    • (2004) Sens. Actuators B , vol.97 , pp. 324-333
    • Berna, A.Z.1    Lammertyn, J.2    Saevels, S.3    Natale, C.D.4    Nicolai, B.M.5
  • 8
    • 0345643467 scopus 로고    scopus 로고
    • Identification of wheat varieties using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and an artificial neural network
    • Bloch, H.A., Kesmir, C., Petersen, M., Jacobsen, S., and Søndergaard, I. 1999. Identification of wheat varieties using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and an artificial neural network. Rapid Commun. Mass Spectrom., 13:1535-1539.
    • (1999) Rapid Commun. Mass Spectrom , vol.13 , pp. 1535-1539
    • Bloch, H.A.1    Kesmir, C.2    Petersen, M.3    Jacobsen, S.4    Søndergaard, I.5
  • 9
    • 44049123532 scopus 로고
    • A method for prediction by combining data analysis and neural networks: Application to prediction of apple quality using near infra-red spectra
    • Bochereau, L., Bourgine, P. and Palagos, B. 1992. A method for prediction by combining data analysis and neural networks: application to prediction of apple quality using near infra-red spectra. J. Agric. Engng Res., 51:207-216.
    • (1992) J. Agric. Engng Res , vol.51 , pp. 207-216
    • Bochereau, L.1    Bourgine, P.2    Palagos, B.3
  • 10
    • 0037210898 scopus 로고    scopus 로고
    • Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions
    • Boilot, P., Hines, E.L., Gongora, M.A., and Folland, R.S. 2003. Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. Sens. Actuators B., 88:80-88.
    • (2003) Sens. Actuators B , vol.88 , pp. 80-88
    • Boilot, P.1    Hines, E.L.2    Gongora, M.A.3    Folland, R.S.4
  • 11
    • 0030882953 scopus 로고    scopus 로고
    • Neural network based electronic nose for the classification of aromatic species
    • Brezmes, J., Ferreras, B., Llobet, E., Vilanova, X., and Correig, X. 1997. Neural network based electronic nose for the classification of aromatic species. Anal. Chim. Acta., 348:503-509.
    • (1997) Anal. Chim. Acta , vol.348 , pp. 503-509
    • Brezmes, J.1    Ferreras, B.2    Llobet, E.3    Vilanova, X.4    Correig, X.5
  • 13
    • 0035501663 scopus 로고    scopus 로고
    • Correlation between electronic nose signals and fruit quality indicators on shelf-life measurements with Pink Lady apples
    • Brezmes, J., Llobet, E., Vilanova, X., Orts, J., Saiz, G., and Correig, X. 2001. Correlation between electronic nose signals and fruit quality indicators on shelf-life measurements with Pink Lady apples. Sens. Actuators B., 80:41-50.
    • (2001) Sens. Actuators B , vol.80 , pp. 41-50
    • Brezmes, J.1    Llobet, E.2    Vilanova, X.3    Orts, J.4    Saiz, G.5    Correig, X.6
  • 14
    • 0029779560 scopus 로고    scopus 로고
    • Approaches to adulteration detection in instant coffees using infrared spectroscopy and chemometrics
    • Briandet, R., Kemsley, E.K., and Wilson, R.H. 1996. Approaches to adulteration detection in instant coffees using infrared spectroscopy and chemometrics. J. Sci. Food. Agric., 71:359-366.
    • (1996) J. Sci. Food. Agric , vol.71 , pp. 359-366
    • Briandet, R.1    Kemsley, E.K.2    Wilson, R.H.3
  • 15
    • 1342264266 scopus 로고    scopus 로고
    • Classification of milk by means of an electronic nose and SVM neural network
    • Brudzewski, K., Osowski, S., and Markiewicz, T. 2004. Classification of milk by means of an electronic nose and SVM neural network. Sens. Actuators B., 98:291-298.
    • (2004) Sens. Actuators B , vol.98 , pp. 291-298
    • Brudzewski, K.1    Osowski, S.2    Markiewicz, T.3
  • 16
    • 0031594396 scopus 로고    scopus 로고
    • Holographic neural networks as nonlinear discriminants for chemical applications
    • Burden, F.R. 1998. Holographic neural networks as nonlinear discriminants for chemical applications. J. Chem. Inf. Comput. Sci., 38:47-53.
    • (1998) J. Chem. Inf. Comput. Sci , vol.38 , pp. 47-53
    • Burden, F.R.1
  • 17
    • 0032605712 scopus 로고    scopus 로고
    • Analytical monitoring of citrus juices by using capillary electrophoresis
    • Cancalon, P.F. 1999. Analytical monitoring of citrus juices by using capillary electrophoresis. J. AOAC Int., 82(1):95-105.
    • (1999) J. AOAC Int , vol.82 , Issue.1 , pp. 95-105
    • Cancalon, P.F.1
  • 18
    • 0034630250 scopus 로고    scopus 로고
    • Modelling the growth of Listeria monocytogenes in dynamic conditions
    • Cheroutre-Vialette, M., and Lebert, A. 2000. Modelling the growth of Listeria monocytogenes in dynamic conditions. Int. J. Food Microbiol., 55:201-207.
    • (2000) Int. J. Food Microbiol , vol.55 , pp. 201-207
    • Cheroutre-Vialette, M.1    Lebert, A.2
  • 19
    • 0033836731 scopus 로고    scopus 로고
    • Classification of Montepulciano d'Abruzzo wines by linear discriminant analysis and artificial neural networks
    • Cichelli, A., Damiani, F., Murmura, F., Simonetti, M.S., Odoardi, M., and Damiani, P. 2000. Classification of Montepulciano d'Abruzzo wines by linear discriminant analysis and artificial neural networks. Am. J. Enol. Vitic., 51(2): 108-114.
    • (2000) Am. J. Enol. Vitic , vol.51 , Issue.2 , pp. 108-114
    • Cichelli, A.1    Damiani, F.2    Murmura, F.3    Simonetti, M.S.4    Odoardi, M.5    Damiani, P.6
  • 20
    • 44949269494 scopus 로고
    • Msnet: A neural network that classifies mass spectra
    • Curry, B., and Rumelhart, D.E. 1990. Msnet: A neural network that classifies mass spectra. Tetrahedron Comput. Technol., 3:213-237.
    • (1990) Tetrahedron Comput. Technol , vol.3 , pp. 213-237
    • Curry, B.1    Rumelhart, D.E.2
  • 21
    • 0000355580 scopus 로고
    • Comparison of a neural network and traditional classifier for machine vision inspection of potatoes
    • Deck, S.H., Morrow, C.T., Heinemann, P.H., and Sommer III, H.J. 1995. Comparison of a neural network and traditional classifier for machine vision inspection of potatoes. Appl. Eng. Agric., 11(2):319-326.
    • (1995) Appl. Eng. Agric , vol.11 , Issue.2 , pp. 319-326
    • Deck, S.H.1    Morrow, C.T.2    Heinemann, P.H.3    Sommer III, H.J.4
  • 22
    • 0043194273 scopus 로고    scopus 로고
    • Comparison of three algorithms in the classification of table olives by means of computer vision
    • Diaz, R., Gil, L., Serrano, C., Blasco, M., Moltó, E., and Blasco, J. 2004. Comparison of three algorithms in the classification of table olives by means of computer vision. J. Food Eng., 61:101-107.
    • (2004) J. Food Eng , vol.61 , pp. 101-107
    • Diaz, R.1    Gil, L.2    Serrano, C.3    Blasco, M.4    Moltó, E.5    Blasco, J.6
  • 23
    • 0000701287 scopus 로고
    • Shape feature extraction and classification of food material using computer vision
    • Ding, K., and Gunasekaran, S. 1994. Shape feature extraction and classification of food material using computer vision. Trans. ASAE., 37(5): 1537-1545.
    • (1994) Trans. ASAE , vol.37 , Issue.5 , pp. 1537-1545
    • Ding, K.1    Gunasekaran, S.2
  • 25
    • 1842864019 scopus 로고    scopus 로고
    • Shape extraction and classification of pizza base using computer vision
    • Du, C.J., and Sun, D.-W. 2004. Shape extraction and classification of pizza base using computer vision. J. Food Eng., 64:489-496.
    • (2004) J. Food Eng , vol.64 , pp. 489-496
    • Du, C.J.1    Sun, D.-W.2
  • 26
    • 4544345162 scopus 로고    scopus 로고
    • Pizza sauce spread classification using colour vision and support vector machines
    • Du, C.-J., and Sun, D.-W. 2005. Pizza sauce spread classification using colour vision and support vector machines. J. Food Eng., 66(2): 137-145.
    • (2005) J. Food Eng , vol.66 , Issue.2 , pp. 137-145
    • Du, C.-J.1    Sun, D.-W.2
  • 27
    • 0008286212 scopus 로고    scopus 로고
    • Effect of temperature on glycoalkaloid and chlorophyll accumulation in potatoes (Solanum tuberosum L. Cv. King Edward) stored at low photon flux density, including preliminary modeling using an artificial neural network
    • Edwards E.J., and Cobb, A.H. 1997. Effect of temperature on glycoalkaloid and chlorophyll accumulation in potatoes (Solanum tuberosum L. Cv. King Edward) stored at low photon flux density, including preliminary modeling using an artificial neural network. J. Agric. Food Chem., 45:1032-1038.
    • (1997) J. Agric. Food Chem , vol.45 , pp. 1032-1038
    • Edwards, E.J.1    Cobb, A.H.2
  • 29
    • 0034297782 scopus 로고    scopus 로고
    • Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data
    • Evans, P., Persaud, K.C., McNeish, A.S., Sneath, R.W., Hobson, N., and Magan, N. 2000. Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sens. Actuators B., 69:348-358.
    • (2000) Sens. Actuators B , vol.69 , pp. 348-358
    • Evans, P.1    Persaud, K.C.2    McNeish, A.S.3    Sneath, R.W.4    Hobson, N.5    Magan, N.6
  • 30
    • 0031981723 scopus 로고    scopus 로고
    • Neural network modeling of physical properties of ground wheat
    • Fang, Q., Biby, G., Haque, E., Hanna, M.A., and Spillman, C.K. 1998. Neural network modeling of physical properties of ground wheat. Cereal Chem., 75(2):251-253.
    • (1998) Cereal Chem , vol.75 , Issue.2 , pp. 251-253
    • Fang, Q.1    Biby, G.2    Haque, E.3    Hanna, M.A.4    Spillman, C.K.5
  • 31
    • 0037196182 scopus 로고    scopus 로고
    • Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food
    • García-Gimeno, R.M., Hervás-Martínez, C., and de Silóniz, M.I. 2002. Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food. Int. J. Food Microbiol., 72:19-30.
    • (2002) Int. J. Food Microbiol , vol.72 , pp. 19-30
    • García-Gimeno, R.M.1    Hervás-Martínez, C.2    de Silóniz, M.I.3
  • 32
    • 18844462773 scopus 로고    scopus 로고
    • Virgin olive oil quality classification combining neural network and MOS sensors
    • García-Gonzalez, D.L., and Aparicio, R. 2003. Virgin olive oil quality classification combining neural network and MOS sensors. J. Agric. Food Chem., 51:3515-3519.
    • (2003) J. Agric. Food Chem , vol.51 , pp. 3515-3519
    • García-Gonzalez, D.L.1    Aparicio, R.2
  • 33
    • 0002789231 scopus 로고    scopus 로고
    • Machine vision grading of pistachio nuts using Fourier descriptors
    • Ghazanfari, A., Irudayaraj, J., Kusalik, A., and Romaniuk M. 1997. Machine vision grading of pistachio nuts using Fourier descriptors. J. Agri. Eng. Res., 68:247-252.
    • (1997) J. Agri. Eng. Res , vol.68 , pp. 247-252
    • Ghazanfari, A.1    Irudayaraj, J.2    Kusalik, A.3    Romaniuk, M.4
  • 35
    • 0034473812 scopus 로고    scopus 로고
    • Data evaluation for soft drink quality control using principal component analysis and backpropagation neural networks
    • González, G., Méndez, E.M.P., Sánchez, M.J.S., and Havel, J. 2000. Data evaluation for soft drink quality control using principal component analysis and backpropagation neural networks. J. Food Prot., 63(12):1719-1724.
    • (2000) J. Food Prot , vol.63 , Issue.12 , pp. 1719-1724
    • González, G.1    Méndez, E.M.P.2    Sánchez, M.J.S.3    Havel, J.4
  • 36
    • 0032006512 scopus 로고    scopus 로고
    • Neural network pattern recognition of photoacoustic FTIR spectra and knowledge-based techniques for detection of mycotoxigenic fungi in food grain
    • Gordon, S.H., Wheeler, B.C., Schudy, R.B., Wicklow, D.T., and Greene, R.V. 1998. Neural network pattern recognition of photoacoustic FTIR spectra and knowledge-based techniques for detection of mycotoxigenic fungi in food grain. J. Food Prot., 61(2):221-230.
    • (1998) J. Food Prot , vol.61 , Issue.2 , pp. 221-230
    • Gordon, S.H.1    Wheeler, B.C.2    Schudy, R.B.3    Wicklow, D.T.4    Greene, R.V.5
  • 38
    • 0034555366 scopus 로고    scopus 로고
    • Use of genetic artificial neural networks and spectral imaging for defect detection on cherries
    • Guyer, D., and Yang, X. 2000. Use of genetic artificial neural networks and spectral imaging for defect detection on cherries. Comput. Electron. Agri., 29:179-194.
    • (2000) Comput. Electron. Agri , vol.29 , pp. 179-194
    • Guyer, D.1    Yang, X.2
  • 39
    • 0031031431 scopus 로고    scopus 로고
    • Computational neural networks for predictive microbiology II. Application to microbial growth
    • Hajmeer, M.N., Basheer, I.A., and Najjar, Y.M. 1997. Computational neural networks for predictive microbiology II. Application to microbial growth. Int. J. Food Microbiol., 34:51-66.
    • (1997) Int. J. Food Microbiol , vol.34 , pp. 51-66
    • Hajmeer, M.N.1    Basheer, I.A.2    Najjar, Y.M.3
  • 40
    • 0027627965 scopus 로고
    • Working with neural network
    • July
    • Hammerstrom D. 1993. Working with neural network. IEEE Spectrum. July:46-53.
    • (1993) IEEE Spectrum , pp. 46-53
    • Hammerstrom, D.1
  • 41
    • 0037471584 scopus 로고    scopus 로고
    • Lipid oxidation in herring fillets (Clupea harengus) during ice storage measured by a commercial hybrid gas-sensor array system
    • Haugen, J., and Undeland, I. 2003. Lipid oxidation in herring fillets (Clupea harengus) during ice storage measured by a commercial hybrid gas-sensor array system. J. Agric. Food Chem., 51:752-759.
    • (2003) J. Agric. Food Chem , vol.51 , pp. 752-759
    • Haugen, J.1    Undeland, I.2
  • 42
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J.J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci., 79:2554-2558.
    • (1982) Proc. Natl. Acad. Sci , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 43
    • 0004469897 scopus 로고
    • Neural networks and physical systems with graded response have collective properties like those of two state neurons
    • Hopfield, J.J. 1984. Neural networks and physical systems with graded response have collective properties like those of two state neurons. Proc. Natl. Acad. Sci., 81:3088-3092.
    • (1984) Proc. Natl. Acad. Sci , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 44
    • 0000750567 scopus 로고
    • Neural networks vs. principal component regression for prediction of wheat flour loaf volume in baking tests
    • Horimoto, Y., Durance, T., Nakai, S., and Lukow, O.M. 1995. Neural networks vs. principal component regression for prediction of wheat flour loaf volume in baking tests. J Food Sci., 60(3):429-433.
    • (1995) J Food Sci , vol.60 , Issue.3 , pp. 429-433
    • Horimoto, Y.1    Durance, T.2    Nakai, S.3    Lukow, O.M.4
  • 45
    • 0000731650 scopus 로고    scopus 로고
    • Classification of microbial defects in milk using a dynamic headspace gas Chromatograph and computer-aided data processing.2. Artificial neural networks, partial least squares regression analysis, and principal component regression analysis
    • Horimoto, Y., Lee, K., and Nakai, S. 1997. Classification of microbial defects in milk using a dynamic headspace gas Chromatograph and computer-aided data processing.2. Artificial neural networks, partial least squares regression analysis, and principal component regression analysis. J. Agric. Food Chem., 45:743-747.
    • (1997) J. Agric. Food Chem , vol.45 , pp. 743-747
    • Horimoto, Y.1    Lee, K.2    Nakai, S.3
  • 46
    • 0036524263 scopus 로고    scopus 로고
    • Separating septicemic and normal chicken livers by visible/near-infrared spectroscopy and back-propagation neural networks
    • Hsieh, C., Chen, Y.R., Dey, B.P., and Chan, D.E. 2001. Separating septicemic and normal chicken livers by visible/near-infrared spectroscopy and back-propagation neural networks. Trans. ASAE., 45(2):459-469.
    • (2001) Trans. ASAE , vol.45 , Issue.2 , pp. 459-469
    • Hsieh, C.1    Chen, Y.R.2    Dey, B.P.3    Chan, D.E.4
  • 47
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs, R.A. 1988. Increased rates of convergence through learning rate adaptation. Neural Networks., 1:295-307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 48
    • 85022930601 scopus 로고
    • Neural networks: An overview
    • Jansson, P.A. 1991. Neural networks: an overview. Anal. Chem., 63(6):357A-362A.
    • (1991) Anal. Chem , vol.63 , Issue.6
    • Jansson, P.A.1
  • 49
    • 0001130002 scopus 로고    scopus 로고
    • Multi-layer neural networks for image analysis of agricultural products
    • Jayas, D.S., Paliwai, J., and Visen, N.S. 2000. Multi-layer neural networks for image analysis of agricultural products. J. Agric. Eng. Res., 77(2):119-128.
    • (2000) J. Agric. Eng. Res , vol.77 , Issue.2 , pp. 119-128
    • Jayas, D.S.1    Paliwai, J.2    Visen, N.S.3
  • 50
    • 0006757070 scopus 로고    scopus 로고
    • Classification of potato varieties using isoelectrophoretic focusing patterns, neural nets, and statistical methods
    • Jensen, K., Tygesen, T.K., Kesmir, C., Skovgaard, I.M., and Søndergaad, I. 1997. Classification of potato varieties using isoelectrophoretic focusing patterns, neural nets, and statistical methods. J. Agric. Food Chem., 45:158-162.
    • (1997) J. Agric. Food Chem , vol.45 , pp. 158-162
    • Jensen, K.1    Tygesen, T.K.2    Kesmir, C.3    Skovgaard, I.M.4    Søndergaad, I.5
  • 51
    • 0035916964 scopus 로고    scopus 로고
    • Microbial growth modeling with artificial neural networks
    • Jeyamkondan, S., Jayas, D.S., and Holley, R.A. 2001. Microbial growth modeling with artificial neural networks. Int. J. Food Microbiol., 64:343-354.
    • (2001) Int. J. Food Microbiol , vol.64 , pp. 343-354
    • Jeyamkondan, S.1    Jayas, D.S.2    Holley, R.A.3
  • 54
    • 0011848865 scopus 로고    scopus 로고
    • Three-dimensional shape recognition using a charge-simulation method to process primary image features
    • Kanali, C., Murase, H., and Honami, N. 1998. Three-dimensional shape recognition using a charge-simulation method to process primary image features. J. of Agric. Eng. Res., 70:195-208.
    • (1998) J. of Agric. Eng. Res , vol.70 , pp. 195-208
    • Kanali, C.1    Murase, H.2    Honami, N.3
  • 55
    • 0002026478 scopus 로고    scopus 로고
    • Optimization of functional group prediction from infrared spectra using neural networks
    • Klawun, C., and Wilkins, C. L. 1996. Optimization of functional group prediction from infrared spectra using neural networks. J. Chem. Inf. Comput. Sci., 36:69-81.
    • (1996) J. Chem. Inf. Comput. Sci , vol.36 , pp. 69-81
    • Klawun, C.1    Wilkins, C.L.2
  • 56
    • 0025513821 scopus 로고
    • Connectionist, ideas and algorithms
    • Knight, K. 1990. Connectionist, ideas and algorithms. Commun. ACM., 33(11):59-73.
    • (1990) Commun. ACM , vol.33 , Issue.11 , pp. 59-73
    • Knight, K.1
  • 57
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T. 1990. The self-organizing map. P. IEEE., 78(9): 1464-1480.
    • (1990) P. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 58
    • 0030270228 scopus 로고    scopus 로고
    • Engineering applications of the self-organization map
    • Kohonen, T., and Simula, O. 1996. Engineering applications of the self-organization map. P. IEEE., 84(10):1358-1384.
    • (1996) P. IEEE , vol.84 , Issue.10 , pp. 1358-1384
    • Kohonen, T.1    Simula, O.2
  • 59
    • 0034306908 scopus 로고    scopus 로고
    • Machine vision based quality evaluation of Iyokan orange fruit using neural networks
    • Kondo, N., Ahmad, U., Monta, M., and Murase, H. 2000. Machine vision based quality evaluation of Iyokan orange fruit using neural networks. Comput. Electron. Agri., 29:135-147.
    • (2000) Comput. Electron. Agri , vol.29 , pp. 135-147
    • Kondo, N.1    Ahmad, U.2    Monta, M.3    Murase, H.4
  • 61
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April:4-22
    • Lippmann, R.P. 1987. An introduction to computing with neural nets. IEEE Assp. Mag., April:4-22.
    • (1987) IEEE Assp. Mag
    • Lippmann, R.P.1
  • 62
    • 0001530159 scopus 로고
    • Spectroscopic calibration and quantitation using artificial neural networks
    • Long, J.R., Gregorious, V.G., and Gemperline, P.J. 1990. Spectroscopic calibration and quantitation using artificial neural networks. Anal. Chem., 62(17):1791-1797.
    • (1990) Anal. Chem , vol.62 , Issue.17 , pp. 1791-1797
    • Long, J.R.1    Gregorious, V.G.2    Gemperline, P.J.3
  • 63
    • 0034869488 scopus 로고    scopus 로고
    • Artificial neural network-based predictive model for bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products
    • Lou, W., and Nakai, S. 2001. Artificial neural network-based predictive model for bacterial growth in a simulated medium of modified-atmosphere-packed cooked meat products. J. Agri. Food Chem., 49:1799-1804.
    • (2001) J. Agri. Food Chem , vol.49 , pp. 1799-1804
    • Lou, W.1    Nakai, S.2
  • 64
    • 0033390779 scopus 로고    scopus 로고
    • Comparison of statistical and neural network methods for classifying cereal grain using machine vision
    • Luo, X., Jayas, D.S., and Symons, S.J. 1999. Comparison of statistical and neural network methods for classifying cereal grain using machine vision. Trans. ASAE., 42(2):413-419.
    • (1999) Trans. ASAE , vol.42 , Issue.2 , pp. 413-419
    • Luo, X.1    Jayas, D.S.2    Symons, S.J.3
  • 65
    • 0034473332 scopus 로고    scopus 로고
    • Classification of cereal grains using machine vision: I. morphology models
    • Majumdar, S., and Jayas, D.S. 2000a. Classification of cereal grains using machine vision: I. morphology models. Trans. ASAE., 43(6): 1669-1675.
    • (2000) Trans. ASAE , vol.43 , Issue.6 , pp. 1669-1675
    • Majumdar, S.1    Jayas, D.S.2
  • 66
    • 0034471670 scopus 로고    scopus 로고
    • Classification of cereal grains using machine vision: II. color models
    • Majumdar, S., and Jayas, D.S. 2000b. Classification of cereal grains using machine vision: II. color models. Trans. ASAE., 43(6): 1677-1680.
    • (2000) Trans. ASAE , vol.43 , Issue.6 , pp. 1677-1680
    • Majumdar, S.1    Jayas, D.S.2
  • 67
    • 0035842411 scopus 로고    scopus 로고
    • Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: Characterization of vegetable oils
    • Martín, Y.G., Oliveros, M.C.C., Pavón, J.L.P., Pinto, C.G., and Cordero, B.M. 2001. Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterization of vegetable oils. Anal. Chim. Acta., 449:69-80
    • (2001) Anal. Chim. Acta , vol.449 , pp. 69-80
    • Martín, Y.G.1    Oliveros, M.C.C.2    Pavón, J.L.P.3    Pinto, C.G.4    Cordero, B.M.5
  • 68
    • 0027372403 scopus 로고
    • Neural networks for interpretation of infrared spectra using extremely reduced spectral data
    • Mayer, M., Mayer, K., and Hobert, H. 1993. Neural networks for interpretation of infrared spectra using extremely reduced spectral data. Anal. Chim. Acta., 282:407-415.
    • (1993) Anal. Chim. Acta , vol.282 , pp. 407-415
    • Mayer, M.1    Mayer, K.2    Hobert, H.3
  • 69
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W.S., and Pitts, W. 1943. A logical calculus of the ideas immanent in nervous activity. B. Math. Biophys., 5:115-133
    • (1943) B. Math. Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 70
    • 33847332882 scopus 로고
    • Reprinted in
    • (Reprinted in B. Math. Biophys. 1990, 52(1-2):99-115).
    • (1990) Biophys , vol.52 , Issue.1-2 , pp. 99-115
    • Math, B.1
  • 71
    • 0002850103 scopus 로고
    • Mathematical modeling of beer foam
    • Melm, G., Tung, P., and Pringle, A. 1995. Mathematical modeling of beer foam. MBAA Tech. Q., 32:6-10.
    • (1995) MBAA Tech. Q , vol.32 , pp. 6-10
    • Melm, G.1    Tung, P.2    Pringle, A.3
  • 72
    • 0035368327 scopus 로고    scopus 로고
    • One-sensor electronic olfactometer for rapid sorting of fresh fruit juices
    • Mielle, P., and Marquis, F. 2001. One-sensor electronic olfactometer for rapid sorting of fresh fruit juices. Sens. Actuators B., 76:470-476.
    • (2001) Sens. Actuators B , vol.76 , pp. 470-476
    • Mielle, P.1    Marquis, F.2
  • 74
    • 0034033919 scopus 로고    scopus 로고
    • Pattern recognition of fruit shape based on the concept of chaos and neural networks
    • Morimoto, T., Takeuchi, T., Miyata, H., and Hashimoto, Y. 2000. Pattern recognition of fruit shape based on the concept of chaos and neural networks. Comput. Electron. Agri., 26:171-186.
    • (2000) Comput. Electron. Agri , vol.26 , pp. 171-186
    • Morimoto, T.1    Takeuchi, T.2    Miyata, H.3    Hashimoto, Y.4
  • 75
    • 0030093145 scopus 로고    scopus 로고
    • The neural network as a tool for multispectral interpretation
    • Munk, M.E., and Madison, M.S. 1996. The neural network as a tool for multispectral interpretation. J. Chem. Inf. Comput. Sci., 36:231-238.
    • (1996) J. Chem. Inf. Comput. Sci , vol.36 , pp. 231-238
    • Munk, M.E.1    Madison, M.S.2
  • 76
    • 0003494325 scopus 로고
    • Neural architectures and algorithms
    • Murry, A.F, Eds. Kluwer Academic Publisher, Dordrecht, Netherlands
    • Murray, A.F. 1995. Neural architectures and algorithms. In: Application of Neural Networks. Murry, A.F., Eds. Kluwer Academic Publisher, Dordrecht, Netherlands.
    • (1995) Application of Neural Networks
    • Murray, A.F.1
  • 77
    • 0031026194 scopus 로고    scopus 로고
    • Computational neural networks for predictive microbiology: I. Methodology
    • Najjar, Y.M., Basheer, I.A., and Hajmeer, M.N. 1997. Computational neural networks for predictive microbiology: I. Methodology. Int. J. Food Microbiol., 34:27-49.
    • (1997) Int. J. Food Microbiol , vol.34 , pp. 27-49
    • Najjar, Y.M.1    Basheer, I.A.2    Hajmeer, M.N.3
  • 81
    • 0035876006 scopus 로고    scopus 로고
    • Comparison and integration of different electronic noses for freshness evaluation of cod-fish fillets
    • Natale, C.D., Olafsdottir, G., Eninarsson, S., Martinelli, E., Paolesse, R., and D'Amico, A. 2001c. Comparison and integration of different electronic noses for freshness evaluation of cod-fish fillets. Sens. Actators B., 77:572-578.
    • (2001) Sens. Actators B , vol.77 , pp. 572-578
    • Natale, C.D.1    Olafsdottir, G.2    Eninarsson, S.3    Martinelli, E.4    Paolesse, R.5    D'Amico, A.6
  • 82
    • 0037123717 scopus 로고    scopus 로고
    • Outer product analysis of electronic nose and visible spectra: Application to the measurement of peach fruit characteristics
    • Natale, C.D., Zude-Sasse, M., Macagnano, A., Paolesse, R., Herold, B., and D'Amico, A. 2002. Outer product analysis of electronic nose and visible spectra: application to the measurement of peach fruit characteristics. Anal. Chim. Acta., 459:107-117.
    • (2002) Anal. Chim. Acta , vol.459 , pp. 107-117
    • Natale, C.D.1    Zude-Sasse, M.2    Macagnano, A.3    Paolesse, R.4    Herold, B.5    D'Amico, A.6
  • 83
    • 2442583334 scopus 로고    scopus 로고
    • Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine
    • Natale, C.D., Paolesse, R., Burgio, M., Martinelli, E., Pennazza, G., and D'Amico, A. 2004. Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine. Anal. Chim. Acta., 513:49-56.
    • (2004) Anal. Chim. Acta , vol.513 , pp. 49-56
    • Natale, C.D.1    Paolesse, R.2    Burgio, M.3    Martinelli, E.4    Pennazza, G.5    D'Amico, A.6
  • 84
    • 0001378286 scopus 로고    scopus 로고
    • Rapid gas sensor measurements to determine spoilage of capelin (Mallotus villosus)
    • Ólafsdóttir, G., Martinsdóttir, E., and Jónsson, E.H. 1997. Rapid gas sensor measurements to determine spoilage of capelin (Mallotus villosus). J. Agric. Food Chem., 45:2654-2659.
    • (1997) J. Agric. Food Chem , vol.45 , pp. 2654-2659
    • Ólafsdóttir, G.1    Martinsdóttir, E.2    Jónsson, E.H.3
  • 85
    • 0037157267 scopus 로고    scopus 로고
    • Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils
    • Oliveros, M.C.C., Pavón, J.L.P., Pinto, C.G., Laespada, M.E.F., Cordero, B.M., and Forina, M. 2002. Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Anal. Chim. Acta., 459:219-228.
    • (2002) Anal. Chim. Acta , vol.459 , pp. 219-228
    • Oliveros, M.C.C.1    Pavón, J.L.P.2    Pinto, C.G.3    Laespada, M.E.F.4    Cordero, B.M.5    Forina, M.6
  • 86
    • 0032102526 scopus 로고    scopus 로고
    • Evaluations of fractal geometry and invariant moments for shape classification of corn germplasm
    • Panigrahi, S., Misra, M.K., and Willson, S. 1998. Evaluations of fractal geometry and invariant moments for shape classification of corn germplasm. Comput. Electron. Agri., 20:1-20.
    • (1998) Comput. Electron. Agri , vol.20 , pp. 1-20
    • Panigrahi, S.1    Misra, M.K.2    Willson, S.3
  • 88
    • 0000313653 scopus 로고
    • Neural-network modeling for beef sensory evaluation
    • Park, B., Chen, Y.R., Whittaker, A.D., Miller, R.K., and Hale, D.S. 1994. Neural-network modeling for beef sensory evaluation. Trans. ASAE, 37(5): 1547-1553.
    • (1994) Trans. ASAE , vol.37 , Issue.5 , pp. 1547-1553
    • Park, B.1    Chen, Y.R.2    Whittaker, A.D.3    Miller, R.K.4    Hale, D.S.5
  • 89
    • 0029800227 scopus 로고    scopus 로고
    • Multispectral image co-occurrence matrix analysis for poultry carcasses inspection
    • Park, B., and Chen, C.R. 1996. Multispectral image co-occurrence matrix analysis for poultry carcasses inspection. Trans. ASAE., 39(4): 1485-1491.
    • (1996) Trans. ASAE , vol.39 , Issue.4 , pp. 1485-1491
    • Park, B.1    Chen, C.R.2
  • 90
    • 0001454295 scopus 로고    scopus 로고
    • Multi-spectral image analysis using neural network algorithm for inspection of poultry carcasses
    • Park, B., Chen, Y.R., and Nguyen, M. 1998. Multi-spectral image analysis using neural network algorithm for inspection of poultry carcasses. J. Agri. Eng. Res., 69:351-363.
    • (1998) J. Agri. Eng. Res , vol.69 , pp. 351-363
    • Park, B.1    Chen, Y.R.2    Nguyen, M.3
  • 92
    • 0032698751 scopus 로고    scopus 로고
    • Sherry wine vinegars: Phenolic composition changes during aging
    • Parrilla, M.C.G., Heredia, F.J., and Troncoso, A.M. 1999. Sherry wine vinegars: phenolic composition changes during aging. Food Res. Int., 32:433-440.
    • (1999) Food Res. Int , vol.32 , pp. 433-440
    • Parrilla, M.C.G.1    Heredia, F.J.2    Troncoso, A.M.3
  • 93
    • 0033893226 scopus 로고    scopus 로고
    • Automated sorting of pistachio nuts with closed shells
    • Pearson, T., and Toyofuku, N. 2000. Automated sorting of pistachio nuts with closed shells. Appl. Eng. Agri., 16(1):91-94.
    • (2000) Appl. Eng. Agri , vol.16 , Issue.1 , pp. 91-94
    • Pearson, T.1    Toyofuku, N.2
  • 94
    • 0031730568 scopus 로고    scopus 로고
    • Near-infrared (NIR) spectrometric technique for nondestructive determination of soluble solids content in processing tomatoes
    • Peiris, K.H.S., Dull, G.G., Leffler, R.G., and Kays, S.J. 1998. Near-infrared (NIR) spectrometric technique for nondestructive determination of soluble solids content in processing tomatoes. J. Am. Soc. Hort. Sci., 123(6):1089-1093.
    • (1998) J. Am. Soc. Hort. Sci , vol.123 , Issue.6 , pp. 1089-1093
    • Peiris, K.H.S.1    Dull, G.G.2    Leffler, R.G.3    Kays, S.J.4
  • 95
    • 1542719129 scopus 로고    scopus 로고
    • Recognition of adulteration of Italian wines by thin-film multisensor array and artificial neural networks
    • Penza, M., and Cassano, G. 2004. Recognition of adulteration of Italian wines by thin-film multisensor array and artificial neural networks. Anal. Chim. Acta., 509:159-177.
    • (2004) Anal. Chim. Acta , vol.509 , pp. 159-177
    • Penza, M.1    Cassano, G.2
  • 96
    • 0036665377 scopus 로고    scopus 로고
    • Spectral image analysis for measuring ripeness of tomatoes
    • Polder, G., van der Heijden, G.A., and Young, I. 2002. Spectral image analysis for measuring ripeness of tomatoes. Trans. ASAE., 45(4): 1155-1161.
    • (2002) Trans. ASAE , vol.45 , Issue.4 , pp. 1155-1161
    • Polder, G.1    van der Heijden, G.A.2    Young, I.3
  • 97
    • 0343789644 scopus 로고    scopus 로고
    • Classification of aged wine distillates using fuzzy and neural network systems
    • Raptis, C.G., Siettos, C.I., Kiranoudis, C.T., and Bafas, G.V. 2000. Classification of aged wine distillates using fuzzy and neural network systems. J. Food Eng., 46:267-275.
    • (2000) J. Food Eng , vol.46 , pp. 267-275
    • Raptis, C.G.1    Siettos, C.I.2    Kiranoudis, C.T.3    Bafas, G.V.4
  • 98
    • 34249961689 scopus 로고
    • A neural network approach to infrared spectrum interpretation
    • Robb, E., and Munk, M.E. 1990. A neural network approach to infrared spectrum interpretation. Mikrochim. Acta., I:131-135.
    • (1990) Mikrochim. Acta , vol.1 , pp. 131-135
    • Robb, E.1    Munk, M.E.2
  • 99
    • 0001223496 scopus 로고
    • Prediction of dough Theological properties using neural networks
    • Ruan, R., Almaer, S., and Zhang, J. 1995. Prediction of dough Theological properties using neural networks. Cereal Chem., 72(3):308-311.
    • (1995) Cereal Chem , vol.72 , Issue.3 , pp. 308-311
    • Ruan, R.1    Almaer, S.2    Zhang, J.3
  • 100
    • 0031147678 scopus 로고    scopus 로고
    • Spectral analysis of mixing power curves for neural network prediction of dough rheological properties
    • Ruan, R., Almaer, S., Zou, C., and Chen, P.L. 1997. Spectral analysis of mixing power curves for neural network prediction of dough rheological properties. Trans. ASAE., 40(3):677-681.
    • (1997) Trans. ASAE , vol.40 , Issue.3 , pp. 677-681
    • Ruan, R.1    Almaer, S.2    Zou, C.3    Chen, P.L.4
  • 101
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • Rumelhart, D.E., Hinton, G.E., and Williams, R.J. 1986. Learning representations by back-propagation errors. Nature, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 102
    • 0029338784 scopus 로고
    • Snack quality evaluation method based on image features and neural network prediction
    • Sayeed, M.S., Whittaker, A.D., and Kehtarnavaz, N.D. 1995. Snack quality evaluation method based on image features and neural network prediction. Trans. ASAE., 38(4): 1239-1245.
    • (1995) Trans. ASAE , vol.38 , Issue.4 , pp. 1239-1245
    • Sayeed, M.S.1    Whittaker, A.D.2    Kehtarnavaz, N.D.3
  • 104
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • Sontag, E.D. 1992. Feedforward nets for interpolation and classification.J. Comput. Syst. Sci., 45(1):20-48.
    • (1992) J. Comput. Syst. Sci , vol.45 , Issue.1 , pp. 20-48
    • Sontag, E.D.1
  • 105
    • 0035263909 scopus 로고    scopus 로고
    • Implementing a computer vision system for corn kernel damage evaluation
    • Steenhoek, L.W., Misra, M.K., Hurburgh Jr., C.R., and Bern, C.J. 2001. Implementing a computer vision system for corn kernel damage evaluation. Appl. Eng. Agri., 17(2):35-240.
    • (2001) Appl. Eng. Agri , vol.17 , Issue.2 , pp. 35-240
    • Steenhoek, L.W.1    Misra, M.K.2    Hurburgh Jr., C.R.3    Bern, C.J.4
  • 109
    • 0036524158 scopus 로고    scopus 로고
    • Kernel handling performance of an automatic grain quality inspection system
    • Wan, Y.N. 2002. Kernel handling performance of an automatic grain quality inspection system. Trans. ASAE., 45(2):369-377.
    • (2002) Trans. ASAE , vol.45 , Issue.2 , pp. 369-377
    • Wan, Y.N.1
  • 110
    • 0036524159 scopus 로고    scopus 로고
    • Rice quality classification using an automatic grain quality inspection system
    • Wan, Y.N., Lin, C.N., and Chiou, J.F. 2002. Rice quality classification using an automatic grain quality inspection system. Trans. ASAE., 45(2):379-387.
    • (2002) Trans. ASAE , vol.45 , Issue.2 , pp. 379-387
    • Wan, Y.N.1    Lin, C.N.2    Chiou, J.F.3
  • 111
    • 0033029631 scopus 로고    scopus 로고
    • Single wheat kernel color classification using neural networks
    • Wang, D., Dowell, F.E., and Lacey, R.E. 1999. Single wheat kernel color classification using neural networks. Trans. ASAE., 42(1):233-240.
    • (1999) Trans. ASAE , vol.42 , Issue.1 , pp. 233-240
    • Wang, D.1    Dowell, F.E.2    Lacey, R.E.3
  • 112
    • 0035400832 scopus 로고    scopus 로고
    • Evaluation of functional properties of cheddar cheese using a computer vision method
    • Wang, H.H., and Sun, D.W. 2001. Evaluation of functional properties of cheddar cheese using a computer vision method. J. Food Eng., 49:49-53.
    • (2001) J. Food Eng , vol.49 , pp. 49-53
    • Wang, H.H.1    Sun, D.W.2
  • 113
    • 0036568130 scopus 로고    scopus 로고
    • Melting characteristics of cheese: Analysis of effect of cheese dimensions using computer vision technique
    • Wang, H.H, and Sun, D.W. 2002. Melting characteristics of cheese: analysis of effect of cheese dimensions using computer vision technique. J. Food Eng., 52:279-284.
    • (2002) J. Food Eng , vol.52 , pp. 279-284
    • Wang, H.H.1    Sun, D.W.2
  • 114
    • 0242287220 scopus 로고    scopus 로고
    • Determining wheat vitreousness using image processing and a neural network
    • Wang, N., Dowell, F.E., and Zhang, N. 2003. Determining wheat vitreousness using image processing and a neural network. Trans. ASAE., 46(4): 1143-1150.
    • (2003) Trans. ASAE , vol.46 , Issue.4 , pp. 1143-1150
    • Wang, N.1    Dowell, F.E.2    Zhang, N.3
  • 115
    • 0034163586 scopus 로고    scopus 로고
    • Dual-camera NIR/MIR imaging for stem-end/calyx identification in apple defect sorting
    • Wen, Z., and Tan, Y. 2000. Dual-camera NIR/MIR imaging for stem-end/calyx identification in apple defect sorting. Trans. ASAE., 43(2):449-452.
    • (2000) Trans. ASAE , vol.43 , Issue.2 , pp. 449-452
    • Wen, Z.1    Tan, Y.2
  • 116
    • 0027538427 scopus 로고
    • Backpropagation neural networks: A tutorial
    • Wythoff, B.J. 1993. Backpropagation neural networks: A tutorial. Chemom, Intell. Lab. Syst., 18(2): 115-155.
    • (1993) Chemom, Intell. Lab. Syst , vol.18 , Issue.2 , pp. 115-155
    • Wythoff, B.J.1
  • 117
    • 0033082716 scopus 로고    scopus 로고
    • Application of multilayer feed-forward neural networks to automated compound identification in low-resolution open-path FT-IR spectrometry
    • Yang, H., and Griffiths, P.R. 1999. Application of multilayer feed-forward neural networks to automated compound identification in low-resolution open-path FT-IR spectrometry. Anal. Chem., 71:751-761.
    • (1999) Anal. Chem , vol.71 , pp. 751-761
    • Yang, H.1    Griffiths, P.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.