메뉴 건너뛰기




Volumn 36, Issue 1, 1996, Pages 69-81

Optimization of functional group prediction from infrared spectra using neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0002026478     PISSN: 00952338     EISSN: None     Source Type: Journal    
DOI: 10.1021/ci950102m     Document Type: Article
Times cited : (39)

References (72)
  • 2
    • 4243673189 scopus 로고
    • Computerized learning machines applied to chemical problems. Interpretation of infrared spectrometry data
    • Kowalski, B. R.; Jurs, P. C.; Isenhour, T. L.; Reilly, C. N. Computerized learning machines applied to chemical problems. Interpretation of infrared spectrometry data. Anal. Chem. 1969, 41, 1945-1953.
    • (1969) Anal. Chem. , vol.41 , pp. 1945-1953
    • Kowalski, B.R.1    Jurs, P.C.2    Isenhour, T.L.3    Reilly, C.N.4
  • 4
    • 0025732436 scopus 로고
    • Neural networks: A new method for solving chemical problems or just a passing phase?
    • Zupan, J.; Gasteiger, J. Neural networks: A new method for solving chemical problems or just a passing phase? Anal. Chim. Acta 1991, 248, 1-30.
    • (1991) Anal. Chim. Acta , vol.248 , pp. 1-30
    • Zupan, J.1    Gasteiger, J.2
  • 6
    • 0000803984 scopus 로고
    • Neural networks and modelling in chemistry
    • Tušar, M.; Zupan, J.; Gasteiger, J. Neural networks and modelling in chemistry. J. Chim. Phys. 1992, 89, 1517-1529.
    • (1992) J. Chim. Phys. , vol.89 , pp. 1517-1529
    • Tušar, M.1    Zupan, J.2    Gasteiger, J.3
  • 8
    • 0027159326 scopus 로고
    • Colored information from a black box? Validation and evaluation of neural networks
    • Kateman, G.; Smits, J. R. M. Colored information from a black box? Validation and evaluation of neural networks. Anal. Chim. Acta 1993, 277, 179-188.
    • (1993) Anal. Chim. Acta , vol.277 , pp. 179-188
    • Kateman, G.1    Smits, J.R.M.2
  • 9
    • 85022930601 scopus 로고
    • Neural networks: An overview
    • Jansson, P. A. Neural networks: An overview. Anal. Chem. 1991, 63, 357A-362A.
    • (1991) Anal. Chem. , vol.63
    • Jansson, P.A.1
  • 10
    • 34249961689 scopus 로고
    • A neural network approach to infrared spectrum interpretation
    • Robb, E. W.; Munk, M. E. A neural network approach to infrared spectrum interpretation. Mikrochim. Acta [Wien] 1990, I, 131-155.
    • (1990) Mikrochim. Acta [Wien] , vol.1 , pp. 131-155
    • Robb, E.W.1    Munk, M.E.2
  • 11
    • 34249927206 scopus 로고
    • Neural network models for infrared spectrum interpretation
    • Munk, M. E.; Madison, M. S.; Robb, E. W. Neural network models for infrared spectrum interpretation. Mikrochim. Acta [Wien] 1991, II, 505-514.
    • (1991) Mikrochim. Acta [Wien] , vol.2 , pp. 505-514
    • Munk, M.E.1    Madison, M.S.2    Robb, E.W.3
  • 12
    • 37049089451 scopus 로고
    • Identifying functional groups in IR spectra using an artificial neural network
    • Fessenden, R. J.; Györgyi, L. Identifying functional groups in IR spectra using an artificial neural network. J. Chem. Soc., Perkin Trans. 2 1991, 1755-1762.
    • (1991) J. Chem. Soc., Perkin Trans. 2 , pp. 1755-1762
    • Fessenden, R.J.1    Györgyi, L.2
  • 13
    • 33751391728 scopus 로고
    • Automatic interpretation of infrared spectra: Recognition of aromatic substitution patterns using neural networks
    • Weigel, U.-M.; Herges, R. Automatic interpretation of infrared spectra: Recognition of aromatic substitution patterns using neural networks. J. Chem. Inf. Comput. Sci. 1992, 32, 723-731.
    • (1992) J. Chem. Inf. Comput. Sci. , vol.32 , pp. 723-731
    • Weigel, U.-M.1    Herges, R.2
  • 14
    • 0026665783 scopus 로고
    • Interpretation of infrared spectra by artificial neural networks
    • Meyer, M.; Weigelt, T. Interpretation of infrared spectra by artificial neural networks. Anal. Chim. Acta 1992, 265, 183-190.
    • (1992) Anal. Chim. Acta , vol.265 , pp. 183-190
    • Meyer, M.1    Weigelt, T.2
  • 15
    • 0000036853 scopus 로고
    • Neural network approach to structure feature recognition from infrared spectra
    • Ricard, D.; Cachet, C.; Cabrol-Bass, D. Neural network approach to structure feature recognition from infrared spectra. J. Chem. Inf. Comput. Sci. 1993, 33, 202-210.
    • (1993) J. Chem. Inf. Comput. Sci. , vol.33 , pp. 202-210
    • Ricard, D.1    Cachet, C.2    Cabrol-Bass, D.3
  • 17
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning representations by back-propagating errors. Nature 1986, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 18
    • 0028463965 scopus 로고
    • A novel algorithm for local minimum escape in back-propagation neural networks: Application to the interpretation of matrix isolation infrared spectra
    • Klawun, C.; Wilkins, C. L. A novel algorithm for local minimum escape in back-propagation neural networks: Application to the interpretation of matrix isolation infrared spectra. J. Chem. Inf. Comput. Sci. 1994, 34, 984-993.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 984-993
    • Klawun, C.1    Wilkins, C.L.2
  • 19
    • 0029204748 scopus 로고
    • Neural network assisted rapid screening of large infrared spectral databases
    • Klawun, C.; Wilkins, C. L. Neural network assisted rapid screening of large infrared spectral databases. Anal. Chem. 1995, 67, 374-378.
    • (1995) Anal. Chem. , vol.67 , pp. 374-378
    • Klawun, C.1    Wilkins, C.L.2
  • 20
    • 85033848435 scopus 로고    scopus 로고
    • Joint neural network interpretation of infrared and mass spectra
    • In press
    • Klawun, C.; Wilkins, C. L. Joint neural network interpretation of infrared and mass spectra. J. Chem. Inf. Comput. Sci. In press.
    • J. Chem. Inf. Comput. Sci.
    • Klawun, C.1    Wilkins, C.L.2
  • 21
    • 0028232831 scopus 로고
    • Ajay: On better generalization by combining two or more models: a quantitative structure-activity relationship example using neural networks
    • Ajay: On better generalization by combining two or more models: a quantitative structure-activity relationship example using neural networks. Chemom. Intell. Lab. Syst. 1994, 24, 19-30.
    • (1994) Chemom. Intell. Lab. Syst. , vol.24 , pp. 19-30
  • 22
    • 0000526832 scopus 로고
    • Applications of neural networks in chemistry. 1. Prediction of electrophilic aromatic substitution reactions
    • Elrod, D. W.; Maggiora, G.; Trenary, R. G. Applications of neural networks in chemistry. 1. Prediction of electrophilic aromatic substitution reactions. J. Chem. Inf. Comput. Sci. 1990, 30, 477-484.
    • (1990) J. Chem. Inf. Comput. Sci. , vol.30 , pp. 477-484
    • Elrod, D.W.1    Maggiora, G.2    Trenary, R.G.3
  • 23
    • 0025884827 scopus 로고
    • Reconstruction of weight matrices in neural networks - A method of correlating outputs with inputs
    • Aoyama, T.; Ichikawa, H. Reconstruction of weight matrices in neural networks - A method of correlating outputs with inputs. Chem. Pharm. Bull. 1991, 39, 1222-1228.
    • (1991) Chem. Pharm. Bull. , vol.39 , pp. 1222-1228
    • Aoyama, T.1    Ichikawa, H.2
  • 24
    • 0025708936 scopus 로고
    • Spectral peak verification and recognition using a multilayered neural network
    • Wythoff, B. J.; Levine, S. P.; Tomellini, S. A. Spectral peak verification and recognition using a multilayered neural network. Anal. Chem. 1990, 62, 2702-2709.
    • (1990) Anal. Chem. , vol.62 , pp. 2702-2709
    • Wythoff, B.J.1    Levine, S.P.2    Tomellini, S.A.3
  • 25
    • 0027196407 scopus 로고
    • Data processing using neural networks
    • Blank, T. B.; Brown, S. D. Data processing using neural networks. Anal. Chim. Acta 1993, 277, 273-287.
    • (1993) Anal. Chim. Acta , vol.277 , pp. 273-287
    • Blank, T.B.1    Brown, S.D.2
  • 26
    • 85075856478 scopus 로고
    • Application of a neural network to the identification of pesticides from their infrared spectra
    • Luinge, H. J.; Van der Maas, J. H.; Visser, T. Application of a neural network to the identification of pesticides from their infrared spectra. Proc. SPIE Int. Soc. Opt. Eng. 1991, 1575, 499-500.
    • (1991) Proc. SPIE Int. Soc. Opt. Eng. , vol.1575 , pp. 499-500
    • Luinge, H.J.1    Van Der Maas, J.H.2    Visser, T.3
  • 27
    • 33750455231 scopus 로고
    • Neural networks optimally trained with noisy data
    • Wong, K. Y. M.; Sherrington, D. Neural networks optimally trained with noisy data. Phys. Rev. E 1993, 47, 4465-4482.
    • (1993) Phys. Rev. E , vol.47 , pp. 4465-4482
    • Wong, K.Y.M.1    Sherrington, D.2
  • 28
    • 0000684468 scopus 로고
    • Temperature-constrained backpropagation neural networks
    • Harrington, P. B. Temperature-constrained backpropagation neural networks. Anal. Chem. 1994, 66, 802-807.
    • (1994) Anal. Chem. , vol.66 , pp. 802-807
    • Harrington, P.B.1
  • 29
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • Hornik, K. Some new results on neural network approximation. Neural Netw. 1993, 6, 1069-1072.
    • (1993) Neural Netw. , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 30
    • 0028224830 scopus 로고
    • Feature extraction of polysaccharides by low-dimensional internal representation neural networks and infrared spectroscopy
    • Jacobsson, S. P. Feature extraction of polysaccharides by low-dimensional internal representation neural networks and infrared spectroscopy. Anal. Chim. Acta 1994, 291, 19-27.
    • (1994) Anal. Chim. Acta , vol.291 , pp. 19-27
    • Jacobsson, S.P.1
  • 31
    • 0000508643 scopus 로고
    • Sigmoid transfer functions in backpropagation neural networks
    • Harrington, P. B. Sigmoid transfer functions in backpropagation neural networks. Anal. Chem. 1993, 65, 2167-2168.
    • (1993) Anal. Chem. , vol.65 , pp. 2167-2168
    • Harrington, P.B.1
  • 32
    • 0024124324 scopus 로고
    • An algebraic projection analysis for optimal hidden units size and learning rates in back-propagation learning
    • IEEE San Diego Section, EEEE Technical Activities Board Neural Network Committee
    • Kung, S. Y.; Hwang, J. N. An algebraic projection analysis for optimal hidden units size and learning rates in back-propagation learning. IEEE International Conference on Neural Networks; IEEE San Diego Section, EEEE Technical Activities Board Neural Network Committee, 1988; pp 363-370.
    • (1988) IEEE International Conference on Neural Networks , pp. 363-370
    • Kung, S.Y.1    Hwang, J.N.2
  • 33
    • 0024124741 scopus 로고
    • Improving the learning rate of back-propagation with the gradient reuse algorithm
    • IEEE San Diego Section, IEEE Technical Activities Board Neural Network Committee
    • Hush, D. R.; Salas, J. M. Improving the learning rate of back-propagation with the gradient reuse algorithm. IEEE International Conference on Neural Networks; IEEE San Diego Section, IEEE Technical Activities Board Neural Network Committee, 1988; pp 441-447.
    • (1988) IEEE International Conference on Neural Networks , pp. 441-447
    • Hush, D.R.1    Salas, J.M.2
  • 34
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • Huang, S.-C; Huang, Y.-F. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans. Neural Networks 1991, 2, 47-55.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 47-55
    • Huang, S.-C.1    Huang, Y.-F.2
  • 35
    • 0026190194 scopus 로고
    • A simple method to derive bounds on the size and to train multilayer neural networks
    • Sartori, M.; Antsaklis, P. J. A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Trans. Neural Networks 1991, 2, 467-471.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 467-471
    • Sartori, M.1    Antsaklis, P.J.2
  • 36
    • 0002703041 scopus 로고
    • Chemometric data analysis using artificial neural networks
    • Liu, Y.; Upadhyaya, B. R.; Naghedolfeizi, M. Chemometric data analysis using artificial neural networks. Appl. Spectrosc. 1993, 47, 12-23.
    • (1993) Appl. Spectrosc. , vol.47 , pp. 12-23
    • Liu, Y.1    Upadhyaya, B.R.2    Naghedolfeizi, M.3
  • 38
    • 44949269494 scopus 로고
    • MSnet: A neural network which classifies mass spectra
    • Curry, B.; Rumelhart, D. E. MSnet: A neural network which classifies mass spectra. Tetrahedron Comput. Methodol. 1990, 3, 213-237.
    • (1990) Tetrahedron Comput. Methodol. , vol.3 , pp. 213-237
    • Curry, B.1    Rumelhart, D.E.2
  • 39
    • 0029185114 scopus 로고
    • Use of a quasi-Newton method in a feedforward neural network construction algorithm
    • Setiono, R.; Hui, L. C. K. Use of a quasi-Newton method in a feedforward neural network construction algorithm. IEEE Trans. Neural Networks 1995, 6, 273-277.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 273-277
    • Setiono, R.1    Hui, L.C.K.2
  • 40
    • 0028423195 scopus 로고
    • A methodology using fuzzy logic to optimize feedforward artificial neural network configurations
    • Sharpe, R. N.; Chow, M.; Briggs, S.; Windingland, L. A methodology using fuzzy logic to optimize feedforward artificial neural network configurations. IEEE Trans. Syst. Man Cybern. 1994, 24, 760-768.
    • (1994) IEEE Trans. Syst. Man Cybern. , vol.24 , pp. 760-768
    • Sharpe, R.N.1    Chow, M.2    Briggs, S.3    Windingland, L.4
  • 41
    • 0028408806 scopus 로고
    • Rapid and quantitative analysis of the pyrolysis mass spectra of complex binary and tertiary mixtures using multivariate calibration and artificial neural networks
    • Goodacre, R.; Neal, M. J.; Kell, D. B. Rapid and quantitative analysis of the pyrolysis mass spectra of complex binary and tertiary mixtures using multivariate calibration and artificial neural networks. Anal. Chem. 1994, 66, 1070-1085.
    • (1994) Anal. Chem. , vol.66 , pp. 1070-1085
    • Goodacre, R.1    Neal, M.J.2    Kell, D.B.3
  • 42
    • 0005398066 scopus 로고
    • Practical implementation of neural networks for the interpretation of infrared spectra
    • Van Est, Q. C.; Schoenmakers, P. J.; Smits, J. R. M.; Nijssen, W. P. M. Practical implementation of neural networks for the interpretation of infrared spectra. Vib. Spectrosc. 1993, 4, 263-272.
    • (1993) Vib. Spectrosc. , vol.4 , pp. 263-272
    • Van Est, Q.C.1    Schoenmakers, P.J.2    Smits, J.R.M.3    Nijssen, W.P.M.4
  • 44
    • 0001526276 scopus 로고
    • Improving the accuracy of an artificial neural network using multiple differentially trained networks
    • Baxt, W. G. Improving the accuracy of an artificial neural network using multiple differentially trained networks. Neural Comput. 1992, 4, 772-780.
    • (1992) Neural Comput. , vol.4 , pp. 772-780
    • Baxt, W.G.1
  • 45
    • 0002244266 scopus 로고
    • Near-infrared spectroscopy and neural networks for resin identification
    • Alam, M. K.; Stanton, S. L.; Hebner, G. A. Near-infrared spectroscopy and neural networks for resin identification. Spectroscopy (Springf., Or.) 1994, 9(2), 30-40.
    • (1994) Spectroscopy (Springf., Or.) , vol.9 , Issue.2 , pp. 30-40
    • Alam, M.K.1    Stanton, S.L.2    Hebner, G.A.3
  • 46
    • 0343017182 scopus 로고
    • Investigation of infrared spectra-structure correlation using Kohonen and counterpropagation neural networks
    • Novič, M.; Zupan, J. Investigation of infrared spectra-structure correlation using Kohonen and counterpropagation neural networks. J. Chem. Inf. Comput. Sci. 1995, 35, 454-466.
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , pp. 454-466
    • Novič, M.1    Zupan, J.2
  • 47
    • 0142033270 scopus 로고
    • Estimation of the performance of spectroscopic library search systems
    • Affolter, C.; Clerc, J. T. Estimation of the performance of spectroscopic library search systems. Fresenius J. Anal. Chem. 1992, 344, 136-139.
    • (1992) Fresenius J. Anal. Chem. , vol.344 , pp. 136-139
    • Affolter, C.1    Clerc, J.T.2
  • 48
    • 0028326815 scopus 로고
    • The wavelet transform for pre-processing IR spectra in the identification of mono- And di-substituted benzenes
    • Bos, M.; Vrielink, J. A. M. The wavelet transform for pre-processing IR spectra in the identification of mono- and di-substituted benzenes. Chemom. Intell. Lab. Syst. 1994, 23, 115-122.
    • (1994) Chemom. Intell. Lab. Syst. , vol.23 , pp. 115-122
    • Bos, M.1    Vrielink, J.A.M.2
  • 49
    • 0028132602 scopus 로고
    • Recognition of visual characteristics of infrared spectra by artificial neural networks and partial least squares regression
    • Visser, T.; Luinge, H. J.; Van der Maas, J. H. Recognition of visual characteristics of infrared spectra by artificial neural networks and partial least squares regression. Anal. Chim. Acta 1994, 296, 141-154.
    • (1994) Anal. Chim. Acta , vol.296 , pp. 141-154
    • Visser, T.1    Luinge, H.J.2    Van Der Maas, J.H.3
  • 50
    • 0027372403 scopus 로고
    • Neural networks for interpretation of infrared spectra using extremely reduced spectral data
    • Meyer, M.; Meyer, K.; Hobert, H. Neural networks for interpretation of infrared spectra using extremely reduced spectral data. Anal. Chim. Acta 1993, 282, 407-415.
    • (1993) Anal. Chim. Acta , vol.282 , pp. 407-415
    • Meyer, M.1    Meyer, K.2    Hobert, H.3
  • 51
    • 0001594118 scopus 로고
    • Nonlinear multivariate calibration using principal components regression and artificial neural networks
    • Gemperline, P. J.; Long, J. R.; Gregoriou, V. G. Nonlinear multivariate calibration using principal components regression and artificial neural networks. Anal. Chem. 1991, 63, 2313-2323.
    • (1991) Anal. Chem. , vol.63 , pp. 2313-2323
    • Gemperline, P.J.1    Long, J.R.2    Gregoriou, V.G.3
  • 52
    • 84976998771 scopus 로고
    • The application of electronic computers to factor analysis
    • Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141-151.
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 141-151
    • Kaiser, H.F.1
  • 53
    • 0001561629 scopus 로고
    • Determination of the number of factors and the experimental error in a data matrix
    • Malinowski, E. R. Determination of the number of factors and the experimental error in a data matrix. Anal. Chem. 1977, 49, 612-617.
    • (1977) Anal. Chem. , vol.49 , pp. 612-617
    • Malinowski, E.R.1
  • 54
    • 0028874010 scopus 로고
    • Using prior knowledge in artificial neural network classification with a minimal training set
    • Foody, G. M. Using prior knowledge in artificial neural network classification with a minimal training set. Int. J. Remote Sens. 1995, 16, 301-312.
    • (1995) Int. J. Remote Sens. , vol.16 , pp. 301-312
    • Foody, G.M.1
  • 55
    • 2842533279 scopus 로고
    • Nonlinear multivariate mapping of chemical data using feed-forward neural networks
    • Blank, T. B.; Brown, S. D. Nonlinear multivariate mapping of chemical data using feed-forward neural networks. Anal. Chem. 1993, 65, 3081-3089.
    • (1993) Anal. Chem. , vol.65 , pp. 3081-3089
    • Blank, T.B.1    Brown, S.D.2
  • 56
    • 0021180554 scopus 로고
    • Computer-assisted multicomponent spectral analysis with fuzzy data sets
    • Blaffert, T. Computer-assisted multicomponent spectral analysis with fuzzy data sets. Anal. Chim. Acta 1984, 161, 135-148.
    • (1984) Anal. Chim. Acta , vol.161 , pp. 135-148
    • Blaffert, T.1
  • 68
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least squares procedures
    • Savitzky, A.; Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627-1639.
    • (1964) Anal. Chem. , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 69
    • 84916532584 scopus 로고
    • Signal-to-noise ratio enhancement by least-squares polynomial smoothing
    • Enke, C. G.; Nieman, T. A. Signal-to-noise ratio enhancement by least-squares polynomial smoothing. Anal. Chem. 1976, 48, 705A-712A.
    • (1976) Anal. Chem. , vol.48
    • Enke, C.G.1    Nieman, T.A.2
  • 70
    • 0026652599 scopus 로고
    • The use of principal component analysis for the structural interpretation of mid-infrared spectra
    • Perkins, J. H.; Hasenoehrl, E. J.; Griffiths, P. R. The use of principal component analysis for the structural interpretation of mid-infrared spectra. Chemom. Intell. Lab. Syst. 1992, 15, 75-86.
    • (1992) Chemom. Intell. Lab. Syst. , vol.15 , pp. 75-86
    • Perkins, J.H.1    Hasenoehrl, E.J.2    Griffiths, P.R.3
  • 71
    • 0000750411 scopus 로고
    • Rapid functional group characterization of gas chromatography/Fourier transform infrared spectra by a principal component analysis based expert system
    • Hasenoehrl, E. J.; Perkins, J. H.; Griffiths, P. R. Rapid functional group characterization of gas chromatography/Fourier transform infrared spectra by a principal component analysis based expert system. Anal. Chem. 1992, 64, 705-710.
    • (1992) Anal. Chem. , vol.64 , pp. 705-710
    • Hasenoehrl, E.J.1    Perkins, J.H.2    Griffiths, P.R.3
  • 72
    • 5244376389 scopus 로고
    • Vibrational absorption intensities in chemical analysis. Part 7. on the extraction of group spectra
    • Emmence, R. S.; Parker, M. E.; Smith, M. J. C.; Steele, D. Vibrational absorption intensities in chemical analysis. Part 7. On the extraction of group spectra. J. Mol. Struct. 1993, 292, 295-312.
    • (1993) J. Mol. Struct. , vol.292 , pp. 295-312
    • Emmence, R.S.1    Parker, M.E.2    Smith, M.J.C.3    Steele, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.