메뉴 건너뛰기




Volumn 129, Issue , 2019, Pages 246-259

Hyperspectral imagery classification based on semi-supervised 3-D deep neural network and adaptive band selection

Author keywords

Adaptive dimensionality reduction; Convolutional neural network (CNN); Deep learning; Hyperspectral imagery classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; NEURAL NETWORKS; REMOTE SENSING; SAMPLING; SPECTROSCOPY;

EID: 85064135871     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2019.04.006     Document Type: Article
Times cited : (115)

References (66)
  • 6
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P., Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing 54:10 (2016), 6232–6251.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 9
    • 85033675724 scopus 로고    scopus 로고
    • Hyperspectral images classification with Gabor filtering and convolutional neural network
    • Chen, Y., Zhu, L., Ghamisi, P., Jia, X., Li, G., Tang, L., Hyperspectral images classification with Gabor filtering and convolutional neural network. IEEE Geoscience and Remote Sensing Letters 14:12 (2017), 2355–2359.
    • (2017) IEEE Geoscience and Remote Sensing Letters , vol.14 , Issue.12 , pp. 2355-2359
    • Chen, Y.1    Zhu, L.2    Ghamisi, P.3    Jia, X.4    Li, G.5    Tang, L.6
  • 14
    • 84921030733 scopus 로고    scopus 로고
    • Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy
    • Feng, J., Jiao, L., Liu, F., Sun, T., Zhang, X., Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy. IEEE Transactions on Geoscience and Remote Sensing 53:5 (2015), 2956–2969.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.5 , pp. 2956-2969
    • Feng, J.1    Jiao, L.2    Liu, F.3    Sun, T.4    Zhang, X.5
  • 15
    • 84955757691 scopus 로고    scopus 로고
    • Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images
    • Feng, J., Jiao, L., Liu, F., Sun, T., Zhang, X., Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images. Pattern Recognition 51 (2016), 295–309.
    • (2016) Pattern Recognition , vol.51 , pp. 295-309
    • Feng, J.1    Jiao, L.2    Liu, F.3    Sun, T.4    Zhang, X.5
  • 16
    • 84896394026 scopus 로고    scopus 로고
    • Hyperspectral band selection based on trivariate mutual information and clonal selection
    • Feng, J., Jiao, L., Zhang, X., Sun, T., Hyperspectral band selection based on trivariate mutual information and clonal selection. IEEE Transactions on Geoscience and Remote Sensing 52:7 (2014), 4092–4105.
    • (2014) IEEE Transactions on Geoscience and Remote Sensing , vol.52 , Issue.7 , pp. 4092-4105
    • Feng, J.1    Jiao, L.2    Zhang, X.3    Sun, T.4
  • 17
    • 84982237011 scopus 로고    scopus 로고
    • A self-improving convolution neural network for the classification of hyperspectral data
    • Ghamisi, P., Chen, Y., Zhu, X.X., A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geoscience and Remote Sensing Letters 13:10 (2016), 1537–1541.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.10 , pp. 1537-1541
    • Ghamisi, P.1    Chen, Y.2    Zhu, X.X.3
  • 19
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer, P.O., Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5:Nov (2004), 1457–1469.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.Nov , pp. 1457-1469
    • Hoyer, P.O.1
  • 20
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015, 2015.
    • (2015) Journal of Sensors , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 21
    • 80052812614 scopus 로고    scopus 로고
    • Enhanced semi-supervised local fisher discriminant analysis for face recognition
    • Huang, H., Li, J., Liu, J., Enhanced semi-supervised local fisher discriminant analysis for face recognition. Future Generation Computer Systems 28:1 (2012), 244–253.
    • (2012) Future Generation Computer Systems , vol.28 , Issue.1 , pp. 244-253
    • Huang, H.1    Li, J.2    Liu, J.3
  • 22
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G., On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory 14:1 (1968), 55–63.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 27
    • 79957491414 scopus 로고    scopus 로고
    • Noise reduction of hyperspectral images using kernel non-negative tucker decomposition
    • Karami, A., Yazdi, M., Asli, A.Z., Noise reduction of hyperspectral images using kernel non-negative tucker decomposition. IEEE Journal of Selected Topics in Signal Processing 5:3 (2011), 487–493.
    • (2011) IEEE Journal of Selected Topics in Signal Processing , vol.5 , Issue.3 , pp. 487-493
    • Karami, A.1    Yazdi, M.2    Asli, A.Z.3
  • 28
    • 84959526685 scopus 로고    scopus 로고
    • Joint group sparse pca for compressed hyperspectral imaging
    • Khan, Z., Shafait, F., Mian, A., Joint group sparse pca for compressed hyperspectral imaging. IEEE Transactions on Image Processing 24:12 (2015), 4934–4942.
    • (2015) IEEE Transactions on Image Processing , vol.24 , Issue.12 , pp. 4934-4942
    • Khan, Z.1    Shafait, F.2    Mian, A.3
  • 29
    • 79151480230 scopus 로고    scopus 로고
    • Unsupervised feature selection using weighted principal components
    • Kim, S.B., Rattakorn, P., Unsupervised feature selection using weighted principal components. Expert Systems with Applications 38:5 (2011), 5704–5710.
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 5704-5710
    • Kim, S.B.1    Rattakorn, P.2
  • 32
    • 85007011604 scopus 로고    scopus 로고
    • A spectral-spatial kernel-based method for hyperspectral imagery classification
    • Li, L., Ge, H., Gao, J., A spectral-spatial kernel-based method for hyperspectral imagery classification. Advances in Space Research 59:4 (2017), 954–967.
    • (2017) Advances in Space Research , vol.59 , Issue.4 , pp. 954-967
    • Li, L.1    Ge, H.2    Gao, J.3
  • 34
    • 84988038682 scopus 로고    scopus 로고
    • Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning
    • Ma, X., Wang, H., Wang, J., Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning. ISPRS Journal of Photogrammetry and Remote Sensing 120 (2016), 99–107.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.120 , pp. 99-107
    • Ma, X.1    Wang, H.2    Wang, J.3
  • 35
    • 0034271164 scopus 로고    scopus 로고
    • Physical nature of higher-order mutual information: Intrinsic correlations and frustration
    • Matsuda, H., Physical nature of higher-order mutual information: Intrinsic correlations and frustration. Physical Review E, 62(3), 2000, 3096.
    • (2000) Physical Review E , vol.62 , Issue.3 , pp. 3096
    • Matsuda, H.1
  • 37
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by svm
    • Pal, M., Foody, G.M., Feature selection for classification of hyperspectral data by svm. IEEE Transactions on Geoscience and Remote Sensing 48:5 (2010), 2297–2307.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 39
    • 85035749140 scopus 로고    scopus 로고
    • Collaborative learning for hyperspectral image classification
    • Pan, C., Li, J., Wang, Y., Gao, X., Collaborative learning for hyperspectral image classification. Neurocomputing 275 (2018), 2512–2524.
    • (2018) Neurocomputing , vol.275 , pp. 2512-2524
    • Pan, C.1    Li, J.2    Wang, Y.3    Gao, X.4
  • 41
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27:8 (2005), 1226–1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 42
    • 63149112633 scopus 로고    scopus 로고
    • Dimensionality reduction based on tensor modeling for classification methods
    • Renard, N., Bourennane, S., Dimensionality reduction based on tensor modeling for classification methods. IEEE Transactions on Geoscience and Remote Sensing 47:4 (2009), 1123–1131.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , Issue.4 , pp. 1123-1131
    • Renard, N.1    Bourennane, S.2
  • 44
    • 84959312273 scopus 로고    scopus 로고
    • High-level hyperspectral image classification based on spectro-spatial dimensionality reduction
    • Sellami, A., Farah, I.R., High-level hyperspectral image classification based on spectro-spatial dimensionality reduction. Spatial Statistics 16 (2016), 103–117.
    • (2016) Spatial Statistics , vol.16 , pp. 103-117
    • Sellami, A.1    Farah, I.R.2
  • 46
    • 85029674202 scopus 로고    scopus 로고
    • Superpixel-based 3d deep neural networks for hyperspectral image classification
    • Shi, C., Pun, C.-M., Superpixel-based 3d deep neural networks for hyperspectral image classification. Pattern Recognition 74 (2018), 600–616.
    • (2018) Pattern Recognition , vol.74 , pp. 600-616
    • Shi, C.1    Pun, C.-M.2
  • 48
    • 77952557100 scopus 로고    scopus 로고
    • Business model innovation through trial-and-error learning: The naturhouse case
    • Sosna, M., Trevinyo-Rodríguez, R.N., Velamuri, S.R., Business model innovation through trial-and-error learning: The naturhouse case. Long range planning 43:2-3 (2010), 383–407.
    • (2010) Long range planning , vol.43 , Issue.2-3 , pp. 383-407
    • Sosna, M.1    Trevinyo-Rodríguez, R.N.2    Velamuri, S.R.3
  • 49
    • 76749129275 scopus 로고    scopus 로고
    • Supervised feature selection by clustering using conditional mutual information-based distances
    • Sotoca, J.M., Pla, F., Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recognition 43:6 (2010), 2068–2081.
    • (2010) Pattern Recognition , vol.43 , Issue.6 , pp. 2068-2081
    • Sotoca, J.M.1    Pla, F.2
  • 50
    • 80255133257 scopus 로고    scopus 로고
    • Semisupervised band clustering for dimensionality reduction of hyperspectral imagery
    • Su, H., Yang, H., Du, Q., Sheng, Y., Semisupervised band clustering for dimensionality reduction of hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters 8:6 (2011), 1135–1139.
    • (2011) IEEE Geoscience and Remote Sensing Letters , vol.8 , Issue.6 , pp. 1135-1139
    • Su, H.1    Yang, H.2    Du, Q.3    Sheng, Y.4
  • 52
    • 85030754131 scopus 로고    scopus 로고
    • Unsupervised band selection using block-diagonal sparsity for hyperspectral image classification
    • Wang, J., Zhang, K., Wang, P., Madani, K., Sabourin, C., Unsupervised band selection using block-diagonal sparsity for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters 14:11 (2017), 2062–2066.
    • (2017) IEEE Geoscience and Remote Sensing Letters , vol.14 , Issue.11 , pp. 2062-2066
    • Wang, J.1    Zhang, K.2    Wang, P.3    Madani, K.4    Sabourin, C.5
  • 53
    • 84979468690 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix factorization combining multiple features for spectral–spatial dimensionality reduction of hyperspectral imagery
    • Wen, J., Fowler, J.E., He, M., Zhao, Y.-Q., Deng, C., Menon, V., Orthogonal nonnegative matrix factorization combining multiple features for spectral–spatial dimensionality reduction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 54:7 (2016), 4272–4286.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.7 , pp. 4272-4286
    • Wen, J.1    Fowler, J.E.2    He, M.3    Zhao, Y.-Q.4    Deng, C.5    Menon, V.6
  • 54
    • 84997719738 scopus 로고    scopus 로고
    • Generalization of spectral fidelity with flexible measures for the sparse representation classification of hyperspectral images
    • Wu, B., Zhu, Y., Huang, X., Li, J., Generalization of spectral fidelity with flexible measures for the sparse representation classification of hyperspectral images. International Journal of Applied Earth Observation and Geoinformation 52 (2016), 275–283.
    • (2016) International Journal of Applied Earth Observation and Geoinformation , vol.52 , pp. 275-283
    • Wu, B.1    Zhu, Y.2    Huang, X.3    Li, J.4
  • 55
    • 85027954351 scopus 로고    scopus 로고
    • Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles
    • Xia, J., Dalla Mura, M., Chanussot, J., Du, P., He, X., Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles. IEEE Transactions on Geoscience and Remote Sensing 53:9 (2015), 4768–4786.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.9 , pp. 4768-4786
    • Xia, J.1    Dalla Mura, M.2    Chanussot, J.3    Du, P.4    He, X.5
  • 56
    • 85034408594 scopus 로고    scopus 로고
    • Regional clustering-based spatial preprocessing for hyperspectral unmixing
    • Xu, X., Li, J., Wu, C., Plaza, A., Regional clustering-based spatial preprocessing for hyperspectral unmixing. Remote Sensing of Environment 204 (2018), 333–346.
    • (2018) Remote Sensing of Environment , vol.204 , pp. 333-346
    • Xu, X.1    Li, J.2    Wu, C.3    Plaza, A.4
  • 57
    • 85007499680 scopus 로고    scopus 로고
    • Multi-objective based spectral unmixing for hyperspectral images
    • Xu, X., Shi, Z., Multi-objective based spectral unmixing for hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing 124 (2017), 54–69.
    • (2017) ISPRS Journal of Photogrammetry and Remote Sensing , vol.124 , pp. 54-69
    • Xu, X.1    Shi, Z.2
  • 58
    • 84966577672 scopus 로고    scopus 로고
    • Band weighting via maximizing interclass distance for hyperspectral image classification
    • Yan, C., Bai, X., Ren, P., Bai, L., Tang, W., Zhou, J., Band weighting via maximizing interclass distance for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters 13:7 (2016), 922–925.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.7 , pp. 922-925
    • Yan, C.1    Bai, X.2    Ren, P.3    Bai, L.4    Tang, W.5    Zhou, J.6
  • 61
    • 85050646353 scopus 로고    scopus 로고
    • Comparison assessment of low rank sparse-pca based-clustering/classification for automatic mineral identification in long wave infrared hyperspectral imagery
    • Yousefi, B., Sojasi, S., Castanedo, C.I., Maldague, X.P., Beaudoin, G., Chamberland, M., Comparison assessment of low rank sparse-pca based-clustering/classification for automatic mineral identification in long wave infrared hyperspectral imagery. Infrared Physics & Technology 93 (2018), 103–111.
    • (2018) Infrared Physics & Technology , vol.93 , pp. 103-111
    • Yousefi, B.1    Sojasi, S.2    Castanedo, C.I.3    Maldague, X.P.4    Beaudoin, G.5    Chamberland, M.6
  • 62
    • 84979492674 scopus 로고    scopus 로고
    • Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Zhao, W., Du, S., Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing 54:8 (2016), 4544–4554.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 64
    • 84899887971 scopus 로고    scopus 로고
    • A support vector conditional random fields classifier with a mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery
    • Zhong, Y., Lin, X., Zhang, L., A support vector conditional random fields classifier with a mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7:4 (2014), 1314–1330.
    • (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.7 , Issue.4 , pp. 1314-1330
    • Zhong, Y.1    Lin, X.2    Zhang, L.3
  • 65
    • 85003666734 scopus 로고    scopus 로고
    • Deep learning with grouped features for spatial spectral classification of hyperspectral images
    • Zhou, X., Li, S., Tang, F., Qin, K., Hu, S., Liu, S., Deep learning with grouped features for spatial spectral classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters 14:1 (2017), 97–101.
    • (2017) IEEE Geoscience and Remote Sensing Letters , vol.14 , Issue.1 , pp. 97-101
    • Zhou, X.1    Li, S.2    Tang, F.3    Qin, K.4    Hu, S.5    Liu, S.6
  • 66
    • 84906303790 scopus 로고    scopus 로고
    • Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification
    • Zhou, Y., Peng, J., Chen, C.P., Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 53:2 (2015), 1082–1095.
    • (2015) IEEE Transactions on Geoscience and Remote Sensing , vol.53 , Issue.2 , pp. 1082-1095
    • Zhou, Y.1    Peng, J.2    Chen, C.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.