메뉴 건너뛰기




Volumn 51, Issue , 2016, Pages 295-309

Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images

Author keywords

Clonal selection algorithm; Hyperspectral images; Information theory; Maximum information and minimum redundancy; Unsupervised feature selection

Indexed keywords

IMAGE PROCESSING; INDEPENDENT COMPONENT ANALYSIS; INFORMATION THEORY; REDUNDANCY; SPECTROSCOPY;

EID: 84955757691     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.08.018     Document Type: Article
Times cited : (106)

References (40)
  • 2
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • L. Lei, S. Prasad, J.E. Fowler, and L.M. Bruce Locality-preserving dimensionality reduction and classification for hyperspectral image analysis IEEE Trans. Geosci. Remote Sens. 50 4 2012 1185 1198
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.4 , pp. 1185-1198
    • Lei, L.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 3
    • 63149143190 scopus 로고    scopus 로고
    • Kernel nonparametric weighted feature extraction for hyperspectral image classification
    • B.C. Kuo, C.H. Li, and J.M. Yang Kernel nonparametric weighted feature extraction for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 47 4 2009 1139 1155
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1139-1155
    • Kuo, B.C.1    Li, C.H.2    Yang, J.M.3
  • 4
    • 0034818997 scopus 로고    scopus 로고
    • A linear constrained distance-based discriminant analysis for hyperspectral image classification
    • Q. Du, and C.I. Chang A linear constrained distance-based discriminant analysis for hyperspectral image classification Pattern Recognit. 34 2 2001 361 373
    • (2001) Pattern Recognit. , vol.34 , Issue.2 , pp. 361-373
    • Du, Q.1    Chang, C.I.2
  • 5
    • 0036887602 scopus 로고    scopus 로고
    • Feature selection toolbox
    • P. Somol, and P. Pudil Feature selection toolbox Pattern Recognit. 35 12 2002 2749 2759
    • (2002) Pattern Recognit. , vol.35 , Issue.12 , pp. 2749-2759
    • Somol, P.1    Pudil, P.2
  • 6
    • 76749129275 scopus 로고    scopus 로고
    • Supervised feature selection by clustering using conditional mutual information-based distances
    • J.M. Sotoca, and F. Pla Supervised feature selection by clustering using conditional mutual information-based distances Pattern Recognit. 43 6 2010 2068 2081
    • (2010) Pattern Recognit. , vol.43 , Issue.6 , pp. 2068-2081
    • Sotoca, J.M.1    Pla, F.2
  • 7
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance and min-redundancy
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 8
    • 38349181507 scopus 로고    scopus 로고
    • A fast separability-based feature-selection method for high-dimensional remotely sensed image classification
    • B. Guo, R.I. Damper, S.R. Gunn, and J.D.B. Nelson A fast separability-based feature-selection method for high-dimensional remotely sensed image classification Pattern Recognit. 41 5 2008 1653 1662
    • (2008) Pattern Recognit. , vol.41 , Issue.5 , pp. 1653-1662
    • Guo, B.1    Damper, R.I.2    Gunn, S.R.3    Nelson, J.D.B.4
  • 9
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • H. Liu, J. Sun, L. Liu, and H. Zhang Feature selection with dynamic mutual information Pattern Recognit. 42 7 2009 1330 1339
    • (2009) Pattern Recognit. , vol.42 , Issue.7 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 10
    • 84860150282 scopus 로고    scopus 로고
    • A unified feature and instance selection framework using optimum experimental design
    • L. Zhang, C. Chen, J. Bu, and X. He A unified feature and instance selection framework using optimum experimental design IEEE Trans. Image Process. 21 5 2011 2379 2388
    • (2011) IEEE Trans. Image Process. , vol.21 , Issue.5 , pp. 2379-2388
    • Zhang, L.1    Chen, C.2    Bu, J.3    He, X.4
  • 11
    • 33744726231 scopus 로고    scopus 로고
    • Constrained feature selection for hyperspectral imagery
    • C.I. Chang, and S. Wang Constrained feature selection for hyperspectral imagery IEEE Trans. Geosci. Remote Sens. 44 6 2006 1575 1585
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.I.1    Wang, S.2
  • 12
    • 79151480230 scopus 로고    scopus 로고
    • Unsupervised feature selection using weighted principal components
    • S.B. Kim, and P. Rattakorn Unsupervised feature selection using weighted principal components Expert Syst. Appl. 38 5 2011 5704 5710
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 5704-5710
    • Kim, S.B.1    Rattakorn, P.2
  • 13
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • X. He, D. Cai, and P. Niyogi Laplacian score for feature selection NIPS 2006 507 514
    • (2006) NIPS , pp. 507-514
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 16
    • 82055168968 scopus 로고    scopus 로고
    • Unsupervised intrusion feature selection based genetic algorithm and FCM
    • W. Jian Unsupervised intrusion feature selection based genetic algorithm and FCM Lect. Notes Electr. Eng. 2012 1005 1012
    • (2012) Lect. Notes Electr. Eng. , pp. 1005-1012
    • Jian, W.1
  • 17
    • 78650291481 scopus 로고    scopus 로고
    • A unifying criterion for unsupervised clustering and feature selection
    • M. Breaban, and H. Luchian A unifying criterion for unsupervised clustering and feature selection Pattern Recognit. 44 4 2011 854 865
    • (2011) Pattern Recognit. , vol.44 , Issue.4 , pp. 854-865
    • Breaban, M.1    Luchian, H.2
  • 18
    • 4444334915 scopus 로고    scopus 로고
    • Maximum entropy formulation of the Kirkwood superposition approximation
    • A. Singer Maximum entropy formulation of the Kirkwood superposition approximation J. Chem. Phys. 121 8 2004 3657 3666
    • (2004) J. Chem. Phys. , vol.121 , Issue.8 , pp. 3657-3666
    • Singer, A.1
  • 19
    • 0034271164 scopus 로고    scopus 로고
    • Physical nature of higher-order mutual information: Intrinsic correlations and frustration
    • H. Matsuda Physical nature of higher-order mutual information: intrinsic correlations and frustration Phys. Rev. E 62 3 2000 3096 3102
    • (2000) Phys. Rev. e , vol.62 , Issue.3 , pp. 3096-3102
    • Matsuda, H.1
  • 21
    • 79959743865 scopus 로고    scopus 로고
    • Bag-of-visual-words based on clonal selection algorithm for SAR image classification
    • J. Feng, L. Jiao, X. Zhang, and D. Yang Bag-of-visual-words based on clonal selection algorithm for SAR image classification IEEE Geosci. Remote Sens. Lett. 8 4 2011 691 695
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 691-695
    • Feng, J.1    Jiao, L.2    Zhang, X.3    Yang, D.4
  • 22
    • 52349117985 scopus 로고    scopus 로고
    • Quantum-inspired immune clonal algorithm for global optimization
    • L. Jiao, Y. Li, M. Gong, and X. Zhang Quantum-inspired immune clonal algorithm for global optimization IEEE Trans. Syst. Man Cybern. B Cybern. 38 5 2008 1234 1253
    • (2008) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.38 , Issue.5 , pp. 1234-1253
    • Jiao, L.1    Li, Y.2    Gong, M.3    Zhang, X.4
  • 23
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principle
    • L.N. de Castro, and F.J. Von Zuben Learning and optimization using the clonal selection principle IEEE Trans. Evol. Comput. 6 3 2002 239 251
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.3 , pp. 239-251
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 25
    • 76349122004 scopus 로고    scopus 로고
    • Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas
    • S. Suri, and P. Reinartz Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas IEEE Trans. Geosci. Remote Sens. 48 2 2010 939 949
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.2 , pp. 939-949
    • Suri, S.1    Reinartz, P.2
  • 26
    • 34247484552 scopus 로고    scopus 로고
    • Robust multispectral image registration using mutual-information models
    • J.P. Kern, and M.S. Pattichis Robust multispectral image registration using mutual-information models IEEE Trans. Geosci. Remote Sens. 45 5 2007 1494 1505
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.5 , pp. 1494-1505
    • Kern, J.P.1    Pattichis, M.S.2
  • 27
    • 70450162358 scopus 로고    scopus 로고
    • Mutual information-based stereo matching combined with SIFT descriptor in log-chromaticity color space
    • Y.S. Heo, K.M. Lee, S.U. Lee, Mutual information-based stereo matching combined with SIFT descriptor in log-chromaticity color space, in: Proceedings of CVPR, 2009, pp. 445-452.
    • (2009) Proceedings of CVPR , pp. 445-452
    • Heo, Y.S.1    Lee, K.M.2    Lee, S.U.3
  • 28
    • 37549015676 scopus 로고    scopus 로고
    • Stereo processing by semiglobal matching and mutual information
    • H. Hirschmuller Stereo processing by semiglobal matching and mutual information IEEE Trans. Pattern Anal. Mach. Intell. 30 2 2008 328 341
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.2 , pp. 328-341
    • Hirschmuller, H.1
  • 29
    • 84861715459 scopus 로고    scopus 로고
    • Low bias histogram-based estimation of mutual information for feature selection
    • A.H. Gharbi, P. Ravier, R. Harba, and T. Mohamadi Low bias histogram-based estimation of mutual information for feature selection Pattern Recognit. Lett. 33 10 2012 1302 1308
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.10 , pp. 1302-1308
    • Gharbi, A.H.1    Ravier, P.2    Harba, R.3    Mohamadi, T.4
  • 30
    • 84869507179 scopus 로고    scopus 로고
    • An effective feature selection method via mutual information estimation
    • J.B. Yang, and C.J. Ong An effective feature selection method via mutual information estimation IEEE Trans. Syst. Man Cybern. B Cybern. 42 6 2012 1550 1559
    • (2012) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.42 , Issue.6 , pp. 1550-1559
    • Yang, J.B.1    Ong, C.J.2
  • 31
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on parzen window
    • N. Kwak, and C.H. Choi Input feature selection by mutual information based on parzen window IEEE Trans. Pattern Anal. Mach. Intell. 24 12 2002 1667 1671
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.H.2
  • 32
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen On estimation of a probability density function and mode Ann. Math. Stat. 33 1962 1065 1076
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 35
    • 33747993652 scopus 로고    scopus 로고
    • A study on comparison of optimization performances between immune algorithm and other heuristic algorithms
    • J.S. Chun, H.K. Jung, and S.Y. Hahn A study on comparison of optimization performances between immune algorithm and other heuristic algorithms IEEE Trans. Magn. 34 5 1998 2972 2975
    • (1998) IEEE Trans. Magn. , vol.34 , Issue.5 , pp. 2972-2975
    • Chun, J.S.1    Jung, H.K.2    Hahn, S.Y.3
  • 36
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularization nonnegative matrix factorization for image representation
    • D. Cai, X. He, J. Han, and T.S. Huang Graph regularization nonnegative matrix factorization for image representation IEEE Trans. Pattern Anal. Mach. Intell. 33 8 2011 1548 1560
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.S.4
  • 37
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Y. Bazi, and F. Melgani Toward an optimal SVM classification system for hyperspectral remote sensing images IEEE Trans. Geosci. Remote Sens. 44 11 2006 3374 3385
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 38
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • G.M. Foody Status of land cover classification accuracy assessment Remote Sens. Environ. 80 2002 185 201
    • (2002) Remote Sens. Environ. , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 40
    • 84873174886 scopus 로고    scopus 로고
    • Online
    • Hyperspectral Remote Sensing Scenes, [Online], Available: (http://www.ehu.es/ccwintco/index.php/Hyperspectral-Remote-Sensing-Scenes).
    • Hyperspectral Remote Sensing Scenes


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.