-
1
-
-
84898956124
-
Viewpoint invariant face recognition using independent component analysis and attractor networks
-
chapter MIT Press, Cambridge, MA
-
M. S. Bartlett and T. J. Sejnowski. Viewpoint invariant face recognition using independent component analysis and attractor networks, chapter Neural Information Processing Systems-Natural and Synthetic 9, pages 817-823. MIT Press, Cambridge, MA, 1997.
-
(1997)
Neural Information Processing Systems-Natural and Synthetic
, vol.9
, pp. 817-823
-
-
Bartlett, M.S.1
Sejnowski, T.J.2
-
2
-
-
0036821665
-
Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction
-
October
-
L. Bruce, C. Koger, and J. Li. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 40(10):2331-2338, October 2002.
-
(2002)
IEEE Transactions on Geoscience and Remote Sensing
, vol.40
, Issue.10
, pp. 2331-2338
-
-
Bruce, L.1
Koger, C.2
Li, J.3
-
3
-
-
0033341402
-
A noise subspace projection approach to determination of intrinsic dimensionality for hyperspectral imagery
-
Florence, Italy, Sep 20-24
-
C.-I. Chang and Q. Du. A noise subspace projection approach to determination of intrinsic dimensionality for hyperspectral imagery. In EOS/SPIE Symosium on Remote Sensing, Conference on Image and Signal Processing for Remote Sensing V., volume 3871, pages 34-44, Florence, Italy, Sep 20-24 1999.
-
(1999)
EOS/SPIE Symosium on Remote Sensing, Conference on Image and Signal Processing for Remote Sensing V
, vol.3871
, pp. 34-44
-
-
Chang, C.-I.1
Du, Q.2
-
4
-
-
0033224770
-
A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification
-
November
-
C.-I. Chang, Q. Du, T.-L. Sun, and M. Althouse. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 37(6):2631-2641, November 1999.
-
(1999)
IEEE Transactions on Geoscience and Remote Sensing
, vol.37
, Issue.6
, pp. 2631-2641
-
-
Chang, C.-I.1
Du, Q.2
Sun, T.-L.3
Althouse, M.4
-
5
-
-
0034543937
-
Unsupervised hyperspectral image analysis using independent component analysis
-
Honolulu, HI, USA, 24-28 July IEEE
-
S. Chiang, C. Chang, and I. W. Ginsberg. Unsupervised hyperspectral image analysis using independent component analysis. In Geoscience and Remote Sensing Symposium, Proc. IGARSS 2000, volume 4, pages 3136-3138, Honolulu, HI, USA, 24-28 July 2000. IEEE.
-
(2000)
Geoscience and Remote Sensing Symposium, Proc. IGARSS 2000
, vol.4
, pp. 3136-3138
-
-
Chiang, S.1
Chang, C.2
Ginsberg, I.W.3
-
6
-
-
0028416938
-
Independent component analysis, a new concept?
-
April Special Issue on High-order Statistics
-
P. Common. Independent component analysis, a new concept? Signal Processing, 36(3):287-314, April 1994. Special Issue on High-order Statistics.
-
(1994)
Signal Processing
, vol.36
, Issue.3
, pp. 287-314
-
-
Common, P.1
-
8
-
-
34547672308
-
Parallel and adaptive reduction of hyperspectral data to intrinsic dimensionality
-
Newport Beach, CA, Oct 8-11
-
T. El-ghazawi, S. Kaewpijit, and J. Le Moigne. Parallel and adaptive reduction of hyperspectral data to intrinsic dimensionality. In Proceeding, 3rd IEEE International Conference on Cluster Computing CLUSTER'01, pages 102-109, Newport Beach, CA, Oct 8-11 2001.
-
(2001)
Proceeding, 3rd IEEE International Conference on Cluster Computing CLUSTER'01
, pp. 102-109
-
-
El-Ghazawi, T.1
Kaewpijit, S.2
Le Moigne, J.3
-
9
-
-
0346307721
-
A fast fixed-point algorithm for independent component analysis
-
A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9:1483-1492, 1997.
-
(1997)
Neural Computation
, vol.9
, pp. 1483-1492
-
-
Hyvärinen, A.1
Oja, E.2
-
10
-
-
0042826822
-
Independent component analysis: Algorithms and applications
-
A. Hyvärunen and E. Oja. Independent component analysis: Algorithms and applications. Neural Networks, 13(4-5):411-430, 2000.
-
(2000)
Neural Networks
, vol.13
, Issue.4-5
, pp. 411-430
-
-
Hyvärunen, A.1
Oja, E.2
-
11
-
-
0034841883
-
Best bands selection for detection in hyperspectral processing
-
N. Keshava. Best bands selection for detection in hyperspectral processing. In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, volume 5, pages 3149-3152, 2001.
-
(2001)
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing
, vol.5
, pp. 3149-3152
-
-
Keshava, N.1
-
12
-
-
85032751896
-
Hyperspectral image data analysis as a high dimensional signal processing problem
-
January
-
D. Landgrebe. Hyperspectral image data analysis as a high dimensional signal processing problem. Special Issue of the IEEE Signal Processing Magazine, 19(1):17-28, January 2002.
-
(2002)
Special Issue of the IEEE Signal Processing Magazine
, vol.19
, Issue.1
, pp. 17-28
-
-
Landgrebe, D.1
-
13
-
-
3543109539
-
Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images
-
Toulouse, France, Sept 19-21
-
M. Lennon, G. Mercier, M. C. Mouchot, and L. Hubert-Moy. Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images. In SPIE Remote Sensing, volume 4541, pages 2893-2895, Toulouse, France, Sept 19-21 2001.
-
(2001)
SPIE Remote Sensing
, vol.4541
, pp. 2893-2895
-
-
Lennon, M.1
Mercier, G.2
Mouchot, M.C.3
Hubert-Moy, L.4
-
14
-
-
0031997059
-
Supervised classification in high dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data
-
February
-
J. Luis and D. Landgrebe. Supervised classification in high dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. on System, Man, and Cybernetics, 28, Part C(1):39-54, February 1998.
-
(1998)
IEEE Trans. on System, Man, and Cybernetics
, vol.28
, Issue.1
, pp. 39-54
-
-
Luis, J.1
Landgrebe, D.2
-
17
-
-
0033352261
-
Band selection for viewing underwater objects using hyperspectral sensors
-
Denver, Colorado, July
-
D. Stein, S. Stewart, G. Gilbert, and J. Schoonmaker. Band selection for viewing underwater objects using hyperspectral sensors. In SPIE Conference on Airborne and In-Water Underwater Imaging, volume 3761, pages 50-61, Denver, Colorado, July 1999.
-
(1999)
SPIE Conference on Airborne and In-Water Underwater Imaging
, vol.3761
, pp. 50-61
-
-
Stein, D.1
Stewart, S.2
Gilbert, G.3
Schoonmaker, J.4
-
18
-
-
0015744443
-
Two effective feature selection criteria for multispectral remote sensing
-
Washington, DC, November LARS Technical Note 042673
-
P. Swain and R. King. Two effective feature selection criteria for multispectral remote sensing. In International Joint Conference On Pattern Recognition, Washington, DC, November 1973. LARS Technical Note 042673.
-
(1973)
International Joint Conference on Pattern Recognition
-
-
Swain, P.1
King, R.2
-
19
-
-
0035691645
-
Nonlinear blind source separation using higher order statistics and a genetic algorithm
-
Y. Tan and J. Wang. Nonlinear blind source separation using higher order statistics and a genetic algorithm. IEEE Transactions on Evolutionary Computation, 5(6):600-612, 2001.
-
(2001)
IEEE Transactions on Evolutionary Computation
, vol.5
, Issue.6
, pp. 600-612
-
-
Tan, Y.1
Wang, J.2
-
20
-
-
0033706732
-
Comparison of matrix factorization algorithms for band selection in hyperspectral imagery
-
Orlando, Florida, April 2000
-
M. Velez-Reyes, L. O. Jimenez, D. M. Linares, and H. T. Velazquez. Comparison of matrix factorization algorithms for band selection in hyperspectral imagery. In SPIE 14th Annual Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls, volume 4049(2000), pages 288-297, Orlando, Florida, April 2000.
-
(2000)
SPIE 14th Annual Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls
, vol.4049
, pp. 288-297
-
-
Velez-Reyes, M.1
Jimenez, L.O.2
Linares, D.M.3
Velazquez, H.T.4
-
21
-
-
0033346141
-
Adaptive subspace decomposition for hyperspectral data dimensionality reduction
-
Oct 24-28
-
Y. Zhang, M. Desai, J. Zhang, and M. Jin. Adaptive subspace decomposition for hyperspectral data dimensionality reduction. In Proceedings, International Conference on Image Processing (ICIP 99), volume 2, pages 326-329, Oct 24-28 1999.
-
(1999)
Proceedings, International Conference on Image Processing (ICIP 99)
, vol.2
, pp. 326-329
-
-
Zhang, Y.1
Desai, M.2
Zhang, J.3
Jin, M.4
|