메뉴 건너뛰기




Volumn 25, Issue 7 PART 2, 2010, Pages 5-27

A tutorial overview of anomaly detection in hyperspectral images

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM IMPLEMENTATION; ALGORITHM OPTIMIZATION; ANOMALY DETECTION; ANOMALY DETECTOR; ELECTRO-OPTICAL SYSTEMS; GEOMETRIC CONCEPTS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL; PRACTICAL RECOMMENDATION; RESEARCH TOPICS; RESEARCH TRENDS; STATISTICAL FRAMEWORK; STATISTICAL MODELS; SURVEILLANCE APPLICATIONS;

EID: 77955682014     PISSN: 08858985     EISSN: None     Source Type: Journal    
DOI: 10.1109/MAES.2010.5546306     Document Type: Article
Times cited : (442)

References (84)
  • 1
    • 17644426369 scopus 로고    scopus 로고
    • Experimental performance analysis of hyperspectral anomaly detectors
    • Acito, N., Corsini, G., Diani, M., and Cini, A. Experimental performance analysis of hyperspectral anomaly detectors. In Proceedings of SPlE, vol.SS73, 2004, 41 -S1.
    • (2004) Proceedings of SPlE , vol.SS73
    • Acito, N.1    Corsini, G.2    Diani, M.3    Cini, A.4
  • 2
    • 29144503029 scopus 로고    scopus 로고
    • Adaptive detection algorithm for full-pixel targets in hyperspectral images
    • Acito, N., Corsini, G., and Diani, M. Adaptive detection algorithm for full-pixel targets in hyperspectral images. lEE Proceedings of Visual Image Signal Processing, 152, 6 (2008), 73 1-740.
    • (2008) IEE Proceedings of Visual Image Signal Processing , vol.152 , Issue.6 , pp. 731-740
    • Acito, N.1    Corsini, G.2    Diani, M.3
  • 4
    • 33748012768 scopus 로고    scopus 로고
    • Detection of subpixel anomalies in mUltispectral infrared imagery using an adaptive Bayesian classifier
    • Ashton, E. A. Detection of subpixel anomalies in mUltispectral infrared imagery using an adaptive Bayesian classifier. IEEE Transactions on Geoscience and Remote Sensing, 36, 2 (1998), S06-S17.
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.36 , Issue.2
    • Ashton, E.A.1
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2 (1998), 1 2 1 - 167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 13144306114 scopus 로고    scopus 로고
    • A cluster-based approach for detecting man-made objects and changes in imagery
    • Carlotto, M. J. A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Transactions on Geoscience and Remote Sensing, 43, 2 (2008), 374-387.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.2 , pp. 374-387
    • Carlotto, M.J.1
  • 11
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Chang, C-I., and Du, Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 42, 3 (2004), 608-6 19.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 12
    • 77955667639 scopus 로고    scopus 로고
    • Orthogonal subspace projection (OSP) revisited: A comprehensive study and analysis
    • Chang, C-I. Orthogonal subspace projection (OSP) revisited: A comprehensive study and analysis. IEEE Transactions on Geoscience and Remote Sensing, 433 (2008), S02-S18
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.433
    • Chang, C.-I.1
  • 17
    • 0037972137 scopus 로고    scopus 로고
    • Shape statistics in kernel space for variational image segmentation
    • Cremers, D., Kohlberg, T., and Schnorr, C. Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 36 (2003), 1929- 1943.
    • (2003) Pattern Recognition , vol.36 , pp. 1929-1943
    • Cremers, D.1    Kohlberg, T.2    Schnorr, C.3
  • 20
    • 38349168970 scopus 로고    scopus 로고
    • Automated target detection and discrimination using constrained kurtosis maximization
    • Du, Q., and Kopriva, I. Automated target detection and discrimination using constrained kurtosis maximization. IEEE Geoscience and Remote Sensing Letters, 5, I (2008), 3 8-42.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , Issue.1 , pp. 38-42
    • Du, Q.1    Kopriva, I.2
  • 21
  • 23
    • 36348959745 scopus 로고    scopus 로고
    • A time-efficient method for anomaly detection in hyperspectral images
    • Duran, O., and Petrou, M. A time-efficient method for anomaly detection in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 45, 1 2 (2007), 3 894-3904.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.1-2 , pp. 3894-3904
    • Duran, O.1    Petrou, M.2
  • 25
    • 0038259114 scopus 로고    scopus 로고
    • Classes of kernels for machine learning: A statistic perspective
    • Genton, M. G. Classes of kernels for machine learning: A statistic perspective. Journal of Machine Learning Research, 2 (200 1 ), 299-3 1 2.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 299-312
    • Genton, M.G.1
  • 26
    • 35348881574 scopus 로고    scopus 로고
    • Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery
    • Goldberg, H., Kwon, H., and Nasrabadi, N. M. Kernel eigenspace separation transform for subspace anomaly detection in hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 4, 4 (2007), 581-585.
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 581-585
    • Goldberg, H.1    Kwon, H.2    Nasrabadi, N.M.3
  • 27
    • 35948987265 scopus 로고    scopus 로고
    • A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery
    • Goldberg, H., and Nasrabadi, N. M. A comparative study of linear and nonlinear anomaly detectors for hyperspectral imagery. In Proceedings of SPlE, vol.6565 , 2007 , 656504- 1 - 17.
    • (2007) Proceedings of SPlE , vol.6565 , pp. 6565041-6565047
    • Goldberg, H.1    Nasrabadi, N.M.2
  • 29
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
    • Harsanyi, I. c., and Chang, C-I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing, 32, 4 (1994), 779-785.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, I.C.1    Chang, C.-I.2
  • 30
    • 77955677117 scopus 로고    scopus 로고
    • Support vector novelty detection applied to jet engine vibration spectra, Advances in neural information processing systemS13
    • Hayton, P., Tarassenko, L., Scholkopf, B., and Anuzis, P. Support vector novelty detection applied to jet engine vibration spectra, Advances in neural information processing systemS13. I n Proceedings of the 2000 Conference, 200 1 , 946-952.
    • (2001) I N Proceedings of the 2000 Conference , pp. 946-952
    • Hayton, P.1    Tarassenko, L.2    Scholkopf, B.3    Anuzis, P.4
  • 31
    • 0033716413 scopus 로고    scopus 로고
    • Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection
    • Hazel, G. H. Multivariate Gaussian MRF for multispectral scene segmentation and anomaly detection. IEEE Transactions on Geoscience and Remote Sensing, 38, 3 (2000), 1199- 1 2 11.
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , Issue.3 , pp. 1199-1211
    • Hazel, G.H.1
  • 32
    • 0033225639 scopus 로고    scopus 로고
    • Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions
    • Healey, G., and Slater, D. Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions. IEEE Transactions on Geoscience and Remote Sensing, 37, I I (1999), 2706-2717.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.2 , pp. 2706-2717
    • Healey, G.1    Slater, D.2
  • 33
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber, P. J. Projection pursuit. Annals on Statistics, 13, 2 (1985), 435-475.
    • (1985) Annals on Statistics , vol.13 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 35
    • 35948983049 scopus 로고    scopus 로고
    • Anomaly detection in hyperspectral imagery: A comparison of methods using seasonal data
    • Hytla, P., Hardie, R. C., Eismann, M. T., and Meola, I. Anomaly detection in hyperspectral imagery: A comparison of methods using seasonal data. In Proceedings of SPIE, vol.6565 , 2007, 656506- 1 - 11.
    • (2007) Proceedings of SPIE , vol.6565 , pp. 65650601-65650611
    • Hytla, P.1    Hardie, R.C.2    Eismann, M.T.3    Meola, I.4
  • 36
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
    • Hyviirinen, A., and Oja, E. Independent component analysis : Algorithms and applications. Neural Networks, 13, 4-5 (2000), 411-430. (Pubitemid 30447427)
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 40
    • 0347603473 scopus 로고    scopus 로고
    • Adaptive anomaly detection using subspace separation for hyperspectral imagery
    • Kwon, H., Der, S. Z., and Nasrabadi, N. M. Adaptive anomaly detection using subspace separation for hyperspectral imagery. Optical Engineering, 42, 11 (2003), 3342-335 1.
    • (2003) Optical Engineering , vol.42 , Issue.11 , pp. 3342-3351
    • Kwon, H.1    Der, S.Z.2    Nasrabadi, N.M.3
  • 41
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • Kwon, H., and Nasrabadi, N. M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 43, 2 (2005), 388-397.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.2 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2
  • 44
    • 33846606857 scopus 로고    scopus 로고
    • Optimizing the area under a receiver operating characteristic curve with application to landmine detection
    • Lee, W-H., Gader, P. D., and Wilson, J. N. Optimizing the area under a receiver operating characteristic curve with application to landmine detection. IEEE Transactions on Geoscience and Remote Sensing, 45, 2 (2007), 3 89-397.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.2 , pp. 389-397
    • Lee, W.-H.1    Gader, P.D.2    Wilson, J.N.3
  • 45
    • 0034247885 scopus 로고    scopus 로고
    • Sequential-Karhunen-Loeve basis extraction and its application to images
    • Levy, A., and Lindenbaum, M. Sequential-Karhunen-Loeve basis extraction and its application to images. IEEE Transactions on Geoscience and Remote Sensing, 9, 8(2000), 1371 - 1374.
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.9 , Issue.8 , pp. 1371-1374
    • Levy, A.1    Lindenbaum, M.2
  • 46
    • 44949088729 scopus 로고    scopus 로고
    • Hyperspectral anomaly detection based on minimum generalized variance method
    • Lo, E., and Ingram, J. Hyperspectral anomaly detection based on minimum generalized variance method. In Proceedings of SPIE, vol.6966, 2008, 696603 - 1-7.
    • (2008) Proceedings of SPIE , vol.6966 , pp. 6966031-6966037
    • Lo, E.1    Ingram, J.2
  • 47
    • 0035168125 scopus 로고    scopus 로고
    • On the statistics of hyperspectral imaging data
    • Manolakis, D., Marden, D., Kerekes, J., and Shaw, G. On the statistics of hyperspectral imaging data. In Proceedings of SPIE, vol.4381 , 200 1 , 308-3 16.
    • (2001) Proceedings of SPIE , vol.438 , Issue.1 , pp. 308-316
    • Manolakis, D.1    Marden, D.2    Kerekes, J.3    Shaw, G.4
  • 49
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • Manolakis, D., Marden, D., and Shaw, G. A. Hyperspectral image processing for automatic target detection applications. IEEE Signal Processing Magazine, 14, I (2003), 79- 116.
    • (2003) IEEE Signal Processing Magazine , vol.14 , Issue.1 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 50
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • Manolakis, D., and Shaw, G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine, (2002), 29-43.
    • (2002) IEEE Signal Processing Magazine , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 51
    • 24344479204 scopus 로고    scopus 로고
    • Taxonomy of detection algorithms for hyperspectral imaging applications
    • Manolakis, D. Taxonomy of detection algorithms for hyperspectral imaging applications. Optical Engineering, 44, 6 (2005), 066403- 1-11.
    • (2005) Optical Engineering , vol.44 , Issue.6 , pp. 06640301-06640311
    • Manolakis, D.1
  • 52
    • 1642515081 scopus 로고    scopus 로고
    • Modeling hyperspectral imaging data
    • Marden, D., and Manolakis, D. Modeling hyperspectral imaging data. In Proceedings of SPlE, vol.5093 , 2003, 253-262.
    • (2003) Proceedings of SPlE , vol.5093 , pp. 253-262
    • Marden, D.1    Manolakis, D.2
  • 54
    • 0027591549 scopus 로고
    • SEM algorithm and unsupervised statistical segmentation of satellite images
    • Masson, P., and Pieczynski, W. SEM algorithm and unsupervised statistical segmentation of satellite images. IEEE Transactions on Geoscience and Remote Sensing, 31, 3 (1993), 6 18-633.
    • (1993) IEEE Transactions on Geoscience and Remote Sensing , vol.31 , Issue.3 , pp. 618-633
    • Masson, P.1    Pieczynski, W.2
  • 55
    • 42449156759 scopus 로고    scopus 로고
    • Comparative analysis of hyperspectral anomaly detection strategies on a new high spatial and spectral resolution data set
    • Matteoli, S. , Carnesecchi, F., Diani, M., Corsini, G., and Chiarantini, L. Comparative analysis of hyperspectral anomaly detection strategies on a new high spatial and spectral resolution data set. In Proceedings of SPlE, vol.6748, 2007, 6748.
    • (2007) Proceedings of SPlE , vol.6748 , pp. 6748
    • Matteoli, S.1    Carnesecchi, F.2    Diani, M.3    Corsini, G.4    Chiarantini, L.5
  • 59
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and mode
    • Parzen, E. On the estimation of a probability density function and mode. Annals of Mathematical Statistics, 33 (1962), 1065-1076.
    • (1962) Annals of Mathematical Statistics , vol.33 , Issue.1 , pp. 1065-1076
    • Parzen, E.1
  • 60
    • 18144383997 scopus 로고    scopus 로고
    • Using self-organizing maps for anomaly detection in hyperspectral imagery
    • Penn, B. Using self-organizing maps for anomaly detection in hyperspectral imagery. In Proceedings of IEEE Aerospace Conference, vol.3 , 2002, 15 3 1 - 1535.
    • (2002) Proceedings of IEEE Aerospace Conference , vol.3 , pp. 1531-1535
    • Penn, B.1
  • 62
    • 33746641760 scopus 로고    scopus 로고
    • Hyperspectral anomaly detection within the signal subspace
    • DOI 10.1109/LGRS.2006.870833, 1657995
    • Ranney, K. I. and Soumekh, M. Hyperspectral anomaly detection within the signal subspace. IEEE Geoscience and Remote Sensing Letters, 3, 3 (2006), 3 1 2-3 16. (Pubitemid 44150314)
    • (2006) IEEE Geoscience and Remote Sensing Letters , vol.3 , Issue.3 , pp. 312-316
    • Ranney, K.I.1    Soumekh, M.2
  • 63
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Reed, I. S., and Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38, 10 (1990), 1760- 1770.
    • (1990) IEEE Transactions on Acoustics Speech and Signal Processing , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 65
    • 0021466584 scopus 로고
    • Universal coding, information, prediction, and estimation
    • Rissanen, J. Universal coding, information, prediction, and estimation. IEEE Transactions on Iriformation Theory, 30, 4 (1984), 629-636.
    • (1984) IEEE Transactions on Iriformation Theory , vol.30 , Issue.4 , pp. 629-636
    • Rissanen, J.1
  • 66
    • 0035111818 scopus 로고    scopus 로고
    • Nonlinear kernel-based statistical pattern analysis
    • Ruiz A., and Lopez-de Teruel, E. Nonlinear kernel-based statistical pattern analysis. IEEE Transactions on Neural Networks, 12, 1 (200 1 ), 16-32.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.1 , pp. 16-32
    • Ruiz, A.1    Lopez-De, T.E.2
  • 68
    • 0004094721 scopus 로고    scopus 로고
    • Learning with kernels: Support vector machines
    • Cambridge, MA: MIT Press. Also available at
    • Scholkopf, B., and Smola, A. J. Learning with kernels: Support vector machines. Regularization, Optimization, and Beyond, Cambridge, MA: MIT Press, 200 1. Also available at http://www.learning-with-kernels.orgl.
    • (2001) Regularization, Optimization, and beyond
    • Scholkopf, B.1    Smola, A.J.2
  • 74
    • 85032762613 scopus 로고    scopus 로고
    • Model-order selection: A review of information criterion rules
    • Stoica, P., and Selen, Y. Model-order selection: A review of information criterion rules. IEEE Signal Processing Magazine, 21, 4 (2004), 36-47.
    • (2004) IEEE Signal Processing Magazine , vol.21 , Issue.4 , pp. 36-47
    • Stoica, P.1    Selen, Y.2
  • 75
    • 0035392090 scopus 로고    scopus 로고
    • The impact of viewing geometry on material discriminability in hyperspectral images
    • Suen, P-H., Healey, G., and Slater, D. The impact of viewing geometry on material discriminability in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 39, 7 (200 1 ), 352-358.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 352-358
    • Suen, P.-H.1    Healey, G.2    Slater, D.3
  • 78
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. M. J., and Duin, R. P. W. Support vector data description. Machine Learning, 54, 1 (2004), 45-66.
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 80
    • 0032939250 scopus 로고    scopus 로고
    • The eigen space transform for neural-network classifiers
    • Torrieri, D. The eigen space transform for neural-network classifiers. Neural Networks, 12 (1999), 419-427
    • (1999) Neural Networks , vol.12 , pp. 419-427
    • Torrieri, D.1
  • 82
    • 0034432355 scopus 로고    scopus 로고
    • Comparison of approaches for determining end-members in hyperspectral data
    • Winter, M. E. Comparison of approaches for determining end-members in hyperspectral data. In Proceedings of IEEE A erospace Conference, vol.3 , 2000, 305-3 13.
    • (2000) Proceedings of IEEE A Erospace Conference , vol.3 , pp. 305-13
    • Winter, M.E.1
  • 84
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung, K. Y., Fraley, C., Murua, A., Rafery, A. E., and Ruzzo, W. L. Model-based clustering and data transformations for gene expression data. Bioinformatics, 17, 10 (200 1 ), 977-987.
    • (2001) Bioinformatics , vol.17 , Issue.10 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Rafery, A.E.4    Ruzzo, W.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.