-
1
-
-
84905852052
-
Dynamic linear classifier system for hyperspectral image classification for land cover mapping
-
Jun.
-
B. Damodaran and R. Nidamanuri, "Dynamic linear classifier system for hyperspectral image classification for land cover mapping," IEEE J. Sel. Topics Appl. Earth Observ.. Remote Sens., vol. 7, no. 6, pp. 2080-2093, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ.. Remote Sens.
, vol.7
, Issue.6
, pp. 2080-2093
-
-
Damodaran, B.1
Nidamanuri, R.2
-
2
-
-
85027938149
-
Robust hyperspectral image target detection using an inequality constraint
-
Jun.
-
S. Yang, Z. Shi, and W. Tang, "Robust hyperspectral image target detection using an inequality constraint," IEEE Trans.Geosci. Remote Sens., vol. 53, no. 6, pp. 3389-3404, Jun. 2015.
-
(2015)
IEEE Trans.Geosci. Remote Sens.
, vol.53
, Issue.6
, pp. 3389-3404
-
-
Yang, S.1
Shi, Z.2
Tang, W.3
-
3
-
-
84896316743
-
Hyperspectral remote sensing image subpixel target detection based on supervised metric learning
-
Aug.
-
L. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, "Hyperspectral remote sensing image subpixel target detection based on supervised metric learning," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4955-4965, Aug. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.8
, pp. 4955-4965
-
-
Zhang, L.1
Zhang, L.2
Tao, D.3
Huang, X.4
Du, B.5
-
4
-
-
0037903234
-
Remote sensing for crop management
-
P. Pinter, J. Hatfield, J. Schespers, E. Barnes, and M. Moran, "Remote sensing for crop management," Photogramm. Eng. Remote Sens., vol. 69, pp. 647-664, 2003.
-
(2003)
Photogramm. Eng. Remote Sens.
, vol.69
, pp. 647-664
-
-
Pinter, P.1
Hatfield, J.2
Schespers, J.3
Barnes, E.4
Moran, M.5
-
5
-
-
84880258880
-
A novel method for hyperspectral image classification based on Laplacian eigenmap pixels distributionflow
-
Jun.
-
B. Hou, X. Zhang, Q. Ye, and Y. Zheng, "A novel method for hyperspectral image classification based on Laplacian eigenmap pixels distributionflow," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1602-1618, Jun. 2013.
-
(2013)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.6
, Issue.3
, pp. 1602-1618
-
-
Hou, B.1
Zhang, X.2
Ye, Q.3
Zheng, Y.4
-
6
-
-
84883858085
-
A short survey of hyperspectral remote sensing applications in agriculture
-
M. Teke, H. S. Deveci, O. Haliloǧlu, S. Zübeyde Gürbüz, and U. Sakarya, "A short survey of hyperspectral remote sensing applications in agriculture," in Proc. 6th Int. Conf. Recent Adv. Space Technol., 2013, pp. 171-176.
-
(2013)
Proc. 6th Int. Conf. Recent Adv. Space Technol.
, pp. 171-176
-
-
Teke, M.1
Deveci, H.S.2
Haliloǧlu, O.3
Zübeyde Gürbüz, S.4
Sakarya, U.5
-
7
-
-
33744726231
-
Constrained band selection for hyperspectral imagery
-
Jun.
-
C. l Chang and S. Wang, "Constrained band selection for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, Jun. 2006.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, Issue.6
, pp. 1575-1585
-
-
Chang, C.L.1
Wang, S.2
-
8
-
-
80052333825
-
Unsupervised hyperspectral band selection using graphics processing units
-
Sep.
-
H. Yang, Q. Du, and G. Chen, "Unsupervised hyperspectral band selection using graphics processing units," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pp. 660-668, Sep. 2011.
-
(2011)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.4
, Issue.3
, pp. 660-668
-
-
Yang, H.1
Du, Q.2
Chen, G.3
-
9
-
-
85027956778
-
Semisupervised affinity propagation based on normalized trivariable mutual information for hyperspectral band selection
-
Jun.
-
L. Jiao, J. Feng, F. Liu, T. Sun, and X. Zhang, "Semisupervised affinity propagation based on normalized trivariable mutual information for hyperspectral band selection," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2760-2773, Jun. 2015.
-
(2015)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.8
, Issue.6
, pp. 2760-2773
-
-
Jiao, L.1
Feng, J.2
Liu, F.3
Sun, T.4
Zhang, X.5
-
10
-
-
78650930212
-
An efficient method for supervised hyperspectral band selection
-
Jan.
-
H. Yang, Q. Du, H. Su, and Y. Sheng, "An efficient method for supervised hyperspectral band selection," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 1, pp. 138-142, Jan. 2011.
-
(2011)
IEEE Geosci. Remote Sens. Lett.
, vol.8
, Issue.1
, pp. 138-142
-
-
Yang, H.1
Du, Q.2
Su, H.3
Sheng, Y.4
-
11
-
-
61349199062
-
Classification of hyperspectral images with regularized linear discriminant analysis
-
Mar.
-
T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 862-873, Mar. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.5
, pp. 862-873
-
-
Bandos, T.V.1
Bruzzone, L.2
Camps-Valls, G.3
-
12
-
-
80052307660
-
Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification
-
Sep.
-
W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 5, pp. 894-898, Sep. 2011.
-
(2011)
IEEE Geosci. Remote Sens. Lett.
, vol.8
, Issue.5
, pp. 894-898
-
-
Li, W.1
Prasad, S.2
Fowler, J.E.3
Bruce, L.M.4
-
13
-
-
84905920772
-
(Semi-) supervised probabilistic principal component analysis for hyperspectral remote sensing image classification
-
Jun.
-
J. Xia, J. Chanussot, P. Du, and X. He, "(Semi-) supervised probabilistic principal component analysis for hyperspectral remote sensing image classification," IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., vol. 7, no. 6, pp. 2225-2237, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.6
, pp. 2225-2237
-
-
Xia, J.1
Chanussot, J.2
Du, P.3
He, X.4
-
14
-
-
84896391383
-
Semisupervised dual-geometric subspace projection for dimensionality reduction of hyperspectral image data
-
Jun.
-
S. Yang, P. Jin, B. Li, L. Yang, W. Xu, and L. Jiao, "Semisupervised dual-geometric subspace projection for dimensionality reduction of hyperspectral image data," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3587-3593, Jun. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.6
, pp. 3587-3593
-
-
Yang, S.1
Jin, P.2
Li, B.3
Yang, L.4
Xu, W.5
Jiao, L.6
-
15
-
-
84900818206
-
Semisupervised kernel feature extraction for remote sensing image analysis
-
Sep.
-
E. Izquierdo-Verdiguier, L. Gomez-Chova, L. Bruzzone, and G. Camps-Valls, "Semisupervised kernel feature extraction for remote sensing image analysis," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5567-5578, Sep. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.9
, pp. 5567-5578
-
-
Izquierdo-Verdiguier, E.1
Gomez-Chova, L.2
Bruzzone, L.3
Camps-Valls, G.4
-
16
-
-
85027923554
-
Semisupervised discriminnat analysis for hyperspectral imagery with block-sparse graph
-
Aug.
-
K. Tan, S. Zhou, and Q. Du, "Semisupervised discriminnat analysis for hyperspectral imagery with block-sparse graph," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 8, pp. 1765-1769, Aug. 2015.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.8
, pp. 1765-1769
-
-
Tan, K.1
Zhou, S.2
Du, Q.3
-
17
-
-
35348882054
-
Modified Fisher's linear discriminant analysis for hyperspectral imagery
-
Oct.
-
Q. Du, "Modified Fisher's linear discriminant analysis for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 503-507, Oct. 2007.
-
(2007)
IEEE Geosci. Remote Sens. Lett.
, vol.4
, Issue.4
, pp. 503-507
-
-
Du, Q.1
-
18
-
-
80052317866
-
Group and region based parallel compression method using signal subspace projection and band clustering for hyperspectral imagery
-
Sep.
-
L. Chang,Y.-L.Chang, Z. S. Tang, andB.Huang, "Group and region based parallel compression method using signal subspace projection and band clustering for hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens., vol. 4, no. 3, pp. 565-578, Sep. 2011.
-
(2011)
IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.
, vol.4
, Issue.3
, pp. 565-578
-
-
Changy, L.1
Chang, L.2
Tang, B.3
Huang, Z.S.4
-
19
-
-
79957511061
-
Statistical inference in PCA for hyperspectral images
-
Jun.
-
P. Bajorski, "Statistical inference in PCA for hyperspectral images," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 438-445, Jun. 2011.
-
(2011)
IEEE J. Sel. Topics Signal Process.
, vol.5
, Issue.3
, pp. 438-445
-
-
Bajorski, P.1
-
20
-
-
84859784358
-
Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
-
Apr.
-
W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, Apr. 2012.
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.4
, pp. 1185-1198
-
-
Li, W.1
Prasad, S.2
Fowler, J.E.3
Bruce, L.M.4
-
21
-
-
84880282493
-
Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification
-
Jun.
-
M. Cui, S. Prasad, W. Li, and L. M. Bruce, "Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1688-1697, Jun. 2013.
-
(2013)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.6
, Issue.3
, pp. 1688-1697
-
-
Cui, M.1
Prasad, S.2
Li, W.3
Bruce, L.M.4
-
22
-
-
84894515623
-
Nonlinear dimensionality reduction via the ENH-LTSA method for hyperspectral image classification
-
Feb.
-
W. Sun "Nonlinear dimensionality reduction via the ENH-LTSA method for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 2, pp. 375-388, Feb. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.2
, pp. 375-388
-
-
Sun, W.1
-
23
-
-
84901313744
-
Dimensionality reduction of hyperspectral image based on robust spatial information using locally linear embedding
-
Oct.
-
Y. Fang "Dimensionality reduction of hyperspectral image based on robust spatial information using locally linear embedding," IEEE Geosc. Remote Sens. Lett., vol. 11, no. 10, pp. 1712-1716, Oct. 2014.
-
(2014)
IEEE Geosc. Remote Sens. Lett.
, vol.11
, Issue.10
, pp. 1712-1716
-
-
Fang, Y.1
-
24
-
-
14644422171
-
Exploitingmanifold geometry in hyperspectral imagery
-
Mar.
-
C. M. Bachmann, T. L. Ainsworth, and R.A. Fusina, "Exploitingmanifold geometry in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 441-454, Mar. 2005.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.3
, pp. 441-454
-
-
Bachmann, C.M.1
Ainsworth, T.L.2
Fusina, R.A.3
-
25
-
-
85032751123
-
Manifold-learningbased feature extraction for classification of hyperspectral data: A review of advance in manifold learning
-
Jan.
-
D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, "Manifold-learningbased feature extraction for classification of hyperspectral data: a review of advance in manifold learning," IEEE Signal Process. Mag., vol. 31, no. 1, pp. 55-66, Jan. 2014.
-
(2014)
IEEE Signal Process. Mag.
, vol.31
, Issue.1
, pp. 55-66
-
-
Lunga, D.1
Prasad, S.2
Crawford, M.M.3
Ersoy, O.4
-
26
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
Jun.
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, Jun. 2003.
-
(2003)
Neural Comput.
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
27
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Dec.
-
J. B. Tenenbaum, V. D. Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
Silva, V.D.2
Langford, J.C.3
-
29
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Sep.
-
S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Sep. 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
30
-
-
14544307975
-
Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
-
Z. Zhang and H. Zha, "Principal manifolds and nonlinear dimensionality reduction via tangent space alignment," SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313-338, 2004.
-
(2004)
SIAM J. Sci. Comput.
, vol.26
, Issue.1
, pp. 313-338
-
-
Zhang, Z.1
Zha, H.2
-
31
-
-
33947194180
-
Graph embedding and extension: A general framework for dimensionality reduction
-
Jan.
-
S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, "Graph embedding and extension: A general framework for dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007.
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.-J.4
Yang, Q.5
Lin, S.6
-
32
-
-
79952022416
-
Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification
-
Mar.
-
S. Chen and D. Zhang, "Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 369-373, Mar. 2011.
-
(2011)
IEEE Geosci. Remote Sens. Lett.
, vol.8
, Issue.2
, pp. 369-373
-
-
Chen, S.1
Zhang, D.2
-
33
-
-
84921027673
-
Class-dependent sparse representation classifier for robust hyperspectral image classification
-
May
-
M. Cui and S. Prasad, "Class-dependent sparse representation classifier for robust hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2683-2695, May 2015.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, Issue.5
, pp. 2683-2695
-
-
Cui, M.1
Prasad, S.2
-
34
-
-
84903270810
-
Manifold-based sparse representation for hyperspectral image classification
-
Dec.
-
Y. Tang, H. Yuan, and L. Li, "Manifold-based sparse representation for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7606-7618, Dec. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.12
, pp. 7606-7618
-
-
Tang, Y.1
Yuan, H.2
Li, L.3
-
35
-
-
69049112203
-
Sparsity preserving projections with applications to face recognition
-
Jan.
-
L. Qiao, S. Chen, and X. Tan, "Sparsity preserving projections with applications to face recognition," Pattern Recogn., vol. 43, pp. 331-341, Jan. 2010.
-
(2010)
Pattern Recogn.
, vol.43
, pp. 331-341
-
-
Qiao, L.1
Chen, S.2
Tan, X.3
-
36
-
-
77949722130
-
Learning with l1-graph for image analysis
-
Apr.
-
B. Cheng, J. Yang, S. Yan, Y. Fu, and T. S. Huang, "Learning with l1-graph for image analysis," IEEE Trans. Image Process, vol. 19, no. 4, pp. 858-866, Apr. 2010.
-
(2010)
IEEE Trans. Image Process
, vol.19
, Issue.4
, pp. 858-866
-
-
Cheng, B.1
Yang, J.2
Yan, S.3
Fu, Y.4
Huang, T.S.5
-
37
-
-
84896390467
-
Sparse graph-based discriminant analysis for hyperspectral imagery
-
Jul.
-
N. H. Ly, Q. Du, and J. E. Fowler, "Sparse graph-based discriminant analysis for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 3872-3884, Jul. 2014.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.7
, pp. 3872-3884
-
-
Ly, N.H.1
Du, Q.2
Fowler, J.E.3
-
38
-
-
57349174008
-
Enhancing sparsity by reweighted l1 minimization
-
E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Anal. Appl., vol. 14, pp. 877-905, 2008.
-
(2008)
J. Fourier Anal. Appl.
, vol.14
, pp. 877-905
-
-
Candes, E.J.1
Wakin, M.B.2
Boyd, S.P.3
-
39
-
-
84899411681
-
Adaptive andweighted collaborative representation for image classification
-
R. Timofte and L.V. Gool, "Adaptive andweighted collaborative representation for image classification," Pattern Recognit. Lett., vol. 43, pp. 127-135, 2014.
-
(2014)
Pattern Recognit. Lett.
, vol.43
, pp. 127-135
-
-
Timofte, R.1
Gool, L.V.2
-
40
-
-
85027510040
-
A weighted l1-minimization approach for sparse polynomial chaos expansions
-
J. Peng, J. Hampton, and A. Doostan, "A weighted l1-minimization approach for sparse polynomial chaos expansions," J. Vis. Commun. Image Represent., vol. 28, pp. 15-20, 2015.
-
(2015)
J. Vis. Commun. Image Represent.
, vol.28
, pp. 15-20
-
-
Peng, J.1
Hampton, J.2
Doostan, A.3
-
41
-
-
85027931104
-
Simultaneous sparse graph embedding for hyperspectral image classification
-
Nov.
-
Z. Xue, P. Du, J. Li, and H. Su, "Simultaneous sparse graph embedding for hyperspectral image classification," IEEE Trans.Geosci. Remote Sens., vol. 53, no. 11, pp. 6114-6133, Nov. 2015.
-
(2015)
IEEE Trans.Geosci. Remote Sens.
, vol.53
, Issue.11
, pp. 6114-6133
-
-
Xue, Z.1
Du, P.2
Li, J.3
Su, H.4
-
42
-
-
0027842081
-
Matching pursuits with time-frequency dictionary
-
Dec.
-
S. G. Mallat and Z. Zhang, "Matching pursuits with time-frequency dictionary," IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
-
(1993)
IEEE Trans. Signal Process.
, vol.41
, Issue.12
, pp. 3397-3415
-
-
Mallat, S.G.1
Zhang, Z.2
-
43
-
-
5444237123
-
Greed is good: Algorithmic results for sparse approximation
-
Oct.
-
J. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242, Oct. 2004.
-
(2004)
IEEE Trans. Inf. Theory
, vol.50
, Issue.10
, pp. 2231-2242
-
-
Tropp, J.1
-
44
-
-
33646365077
-
For most large underdetermined systems of linear equations the minimal-norm solution is also the sparsest solution
-
D. Donoho, "For most large underdetermined systems of linear equations the minimal-norm solution is also the sparsest solution," Commun. Pure Appl. Math., vol. 59, no. 7, pp. 797-829, 2004.
-
(2004)
Commun. Pure Appl. Math.
, vol.59
, Issue.7
, pp. 797-829
-
-
Donoho, D.1
-
45
-
-
0035273106
-
Atomic decomposition by basis pursuit
-
S. Chen, D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," Soc. Ind. Appl. Math. Rev., vol. 43, no. 1, pp. 129-159, 2001.
-
(2001)
Soc. Ind. Appl. Math. Rev.
, vol.43
, Issue.1
, pp. 129-159
-
-
Chen, S.1
Donoho, D.2
Saunders, M.3
-
46
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Statist. Soc. Ser. B (Method), vol. 58, no. 1, pp. 267-288, 1996.
-
(1996)
J. Roy. Statist. Soc. Ser. B (Method)
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
47
-
-
77049116966
-
Graph-optimized locality preserving projections
-
June
-
L. Zhang, L. Qiao, and S. Chen, "Graph-optimized locality preserving projections," Pattern Recognit., vol. 43, no. 6, pp. 1993-2002, June 2010.
-
(2010)
Pattern Recognit.
, vol.43
, Issue.6
, pp. 1993-2002
-
-
Zhang, L.1
Qiao, L.2
Chen, S.3
-
48
-
-
45949123735
-
Principal component analysis
-
Aug.
-
S. Wold, K. Esbensen, and P. Geladi, "Principal component analysis," Chemometr. Intell. Lab. Syst., vol. 2, no. 1, pp. 37-52, Aug. 1987.
-
(1987)
Chemometr. Intell. Lab. Syst.
, vol.2
, Issue.1
, pp. 37-52
-
-
Wold, S.1
Esbensen, K.2
Geladi, P.3
-
49
-
-
13444286179
-
Locality preserving projections
-
X. He and P. Niyogi, "Locality preserving projections," Neural Inf. Process. Syst., vol. 45, no. 1, pp. 186-197, 2004.
-
(2004)
Neural Inf. Process. Syst.
, vol.45
, Issue.1
, pp. 186-197
-
-
He, X.1
Niyogi, P.2
-
50
-
-
33745881038
-
Neighborhood preserving embedding
-
X. He,D. Cai, S.Yan, and H.-J. Zhang, "Neighborhood preserving embedding," in Proc. 10th IEEE Int. Conf. Comput. Vis, 2005, pp. 1208-1213.
-
(2005)
Proc. 10th IEEE Int. Conf. Comput. Vis
, pp. 1208-1213
-
-
He, X.1
Cai, D.2
Yan, S.3
Zhang, H.-J.4
-
51
-
-
34247356156
-
Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images
-
Apr.
-
A. Mohan, G. Sapiro, and E. Bosch, "Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 206-210, Apr. 2007.
-
(2007)
IEEE Geosci. Remote Sens. Lett.
, vol.4
, Issue.2
, pp. 206-210
-
-
Mohan, A.1
Sapiro, G.2
Bosch, E.3
|