메뉴 건너뛰기




Volumn 51, Issue 5, 2013, Pages 2815-2826

Manifold regularized sparse NMF for hyperspectral unmixing

Author keywords

Hyperspectral unmixing; Manifold regularization; Mixed pixel; Nonnegative matrix factorization (NMF)

Indexed keywords

CONSTITUENT MATERIALS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL UNMIXING; MANIFOLD REGULARIZATIONS; MIXED PIXEL; NONNEGATIVE MATRIX FACTORIZATION; SPARSE NON-NEGATIVE MATRIX FACTORIZATIONS; STATE-OF-THE-ART APPROACH;

EID: 84885021995     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2012.2213825     Document Type: Article
Times cited : (371)

References (38)
  • 1
    • 0021892045 scopus 로고
    • Imaging spectrometry for earth remote sensing
    • Jun.
    • A. Goetz, G. Vane, J. Solomon, and B. Rock, "Imaging spectrometry for earth remote sensing," Science, vol. 228, no. 4704, pp. 1147-1153, Jun. 1985.
    • (1985) Science , vol.228 , Issue.4704 , pp. 1147-1153
    • Goetz, A.1    Vane, G.2    Solomon, J.3    Rock, B.4
  • 4
    • 80455176882 scopus 로고    scopus 로고
    • Foreword to the special issue on spectral unmixing of remotely sensed data
    • Nov.
    • A. Plaza, Q. Du, J. Bioucas-Dias, X. Jia, and A. Kruse, "Foreword to the special issue on spectral unmixing of remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 1-8, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 1-8
    • Plaza, A.1    Du, Q.2    Bioucas-Dias, J.3    Jia, X.4    Kruse, A.5
  • 7
    • 80455155181 scopus 로고    scopus 로고
    • Intercomparison and validation of techniques for spectral unmixing of hyperspectral images: A planetary case study
    • Nov.
    • X. Ceamanos, S. Douté, B. Luo, F. Schmidt, G. Jouannic, and J. Chanussot, "Intercomparison and validation of techniques for spectral unmixing of hyperspectral images: A planetary case study," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4341-4358, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4341-4358
    • Ceamanos, X.1    Douté, S.2    Luo, B.3    Schmidt, F.4    Jouannic, G.5    Chanussot, J.6
  • 8
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVRIS data using convex geometry concepts
    • R. O. Green, Ed.
    • J. Boardman, "Automating spectral unmixing of AVRIS data using convex geometry concepts," in Proc. Summ. 4th Annu. JPL Airborne Geosci. Workshop, R. O. Green, Ed., 1994, pp. 11-14.
    • (1994) Proc. Summ. 4th Annu. JPL Airborne Geosci. Workshop , pp. 11-14
    • Boardman, J.1
  • 9
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Conf. Imag. Spectrom. V, 1999, pp. 266-275.
    • Proc. SPIE Conf. Imag. Spectrom. V, 1999 , pp. 266-275
    • Winter, M.1
  • 10
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 11
    • 57649229726 scopus 로고    scopus 로고
    • Analyzing hyperspectral data with independent component analysis
    • J. Bayliss, J. Gualtieri, and R. Cromp, "Analyzing hyperspectral data with independent component analysis," in Proc. SPIE, 1997, vol. 3240, pp. 133-143.
    • Proc. SPIE, 1997 , vol.3240 , pp. 133-143
    • Bayliss, J.1    Gualtieri, J.2    Cromp, R.3
  • 12
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • DOI 10.1109/TGRS.2004.839806
    • J. Nascimento and J. Bioucas-Dias, "Does independent component analysis play a role in unmixing hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005. (Pubitemid 40162736)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 13
    • 79957650412 scopus 로고    scopus 로고
    • Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints
    • Jun.
    • W. Xia, X. Liu, B. Wang, and L. Zhang, "Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2165-2179, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2165-2179
    • Xia, W.1    Liu, X.2    Wang, B.3    Zhang, L.4
  • 14
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 15
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct.
    • D. Lee and H. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 16
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • DOI 10.1109/TGRS.2002.802494
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002. (Pubitemid 35458399)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 17
    • 34548036670 scopus 로고    scopus 로고
    • Integration of spatial-spectral information for the improved extraction of endmembers
    • DOI 10.1016/j.rse.2007.02.019, PII S0034425707000934
    • D. Rogge, B. Rivard, J. Zhang, A. Sanchez, J. Harris, and J. Feng, "Integration of spatial-spectral information for the improved extraction of endmembers," Remote Sens. Environ., vol. 110, no. 3, pp. 287-303, 2007. (Pubitemid 47285207)
    • (2007) Remote Sensing of Environment , vol.110 , Issue.3 , pp. 287-303
    • Rogge, D.M.1    Rivard, B.2    Zhang, J.3    Sanchez, A.4    Harris, J.5    Feng, J.6
  • 18
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug.
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 19
    • 33847703873 scopus 로고    scopus 로고
    • Unsupervised classification of remote sensing imagery with non-negative matrix factorization
    • C. Liou and K. Yang, "Unsupervised classification of remote sensing imagery with non-negative matrix factorization," in Proc. ICONIP, 2005, pp. 280-285.
    • Proc. ICONIP, 2005 , pp. 280-285
    • Liou, C.1    Yang, K.2
  • 21
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V. Pauca, J. Piper, and R. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, 2006. (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 22
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 23
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan.
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 26
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," Adv. Neural Inf. Process. Syst., vol. 14, pp. 585-591, 2001.
    • (2001) Adv. Neural Inf. Process. Syst. , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 27
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Cambridge, MA: MIT Press
    • D. Lee and H. Seung, "Algorithms for non-negative matrix factorization," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, pp. 556-562.
    • (2001) Advances in Neural Information Processing Systems , pp. 556-562
    • Lee, D.1    Seung, H.2
  • 28
    • 78049264379 scopus 로고    scopus 로고
    • Local manifold learning-based k-nearest-neighbor for hyperspectral image classification
    • Nov.
    • L. Ma, M. Crawford, and J. Tian, "Local manifold learning-based k-nearest-neighbor for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4099-4109, Nov. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4099-4109
    • Ma, L.1    Crawford, M.2    Tian, J.3
  • 29
    • 70350304576 scopus 로고    scopus 로고
    • Using diffusion geometric coordinates for hyperspectral imagery representation
    • Oct.
    • J. He, L. Zhang, Q. Wang, and Z. Li, "Using diffusion geometric coordinates for hyperspectral imagery representation," IEEE Trans. Geosci. Remote Sens., vol. 6, no. 4, pp. 767-771, Oct. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.6 , Issue.4 , pp. 767-771
    • He, J.1    Zhang, L.2    Wang, Q.3    Li, Z.4
  • 31
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. Tenenbaum, V. Silva, and J. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 32
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.1    Du, Q.2
  • 33
  • 34
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Dec.
    • P. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 37
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb.
    • X. Liu, W. Xia, B. Wang, and L. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.