메뉴 건너뛰기




Volumn 124, Issue , 2017, Pages 54-69

Multi-objective based spectral unmixing for hyperspectral images

Author keywords

Binary coding; Hyperspectral image; l0 problem; Multi objective optimization; Sparse unmixing

Indexed keywords

BINARY CODES; BINS; IMAGE CODING; INDEPENDENT COMPONENT ANALYSIS; OPTIMIZATION; SPECTROSCOPY;

EID: 85007499680     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2016.12.010     Document Type: Review
Times cited : (74)

References (52)
  • 1
    • 0001395470 scopus 로고
    • Spectralmixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site
    • Adams, J.B., Smith, M.O., Johnson, P.E., Spectralmixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site. J. Geophys. Res. 91 (1986), 8098–8112.
    • (1986) J. Geophys. Res. , vol.91 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2    Johnson, P.E.3
  • 8
    • 57049122980 scopus 로고    scopus 로고
    • Algorithms for subset selection in linear regression
    • Das, A., Kempe, D., Algorithms for subset selection in linear regression. Proc. STOC, 2008, 45–54.
    • (2008) Proc. STOC , pp. 45-54
    • Das, A.1    Kempe, D.2
  • 9
    • 80051723547 scopus 로고    scopus 로고
    • Submodular Meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection
    • Comput. Sci.
    • Das, A., Kempe, D., 2011. Submodular Meets Spectral: Greedy Algorithms for Subset Selection, Sparse Approximation and Dictionary Selection. Comput. Sci.
    • (2011)
    • Das, A.1    Kempe, D.2
  • 11
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6:2 (2002), 182–197.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 12
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery
    • Dobigeon, N., Tourneret, J., Chang, C., Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery. IEEE Trans. Signal Process. 56:7 (2008), 2684–2695.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.7 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.2    Chang, C.3
  • 13
    • 0033318858 scopus 로고    scopus 로고
    • Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach
    • Eckart, Z., Lothar, T., Multi-objective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3:4 (1999), 257–271.
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , Issue.4 , pp. 257-271
    • Eckart, Z.1    Lothar, T.2
  • 14
    • 84892329327 scopus 로고    scopus 로고
    • Sparse and Redundant Representations
    • Springer-Verlag New York, NY, USA
    • Elad, M., Sparse and Redundant Representations. 2010, Springer-Verlag, New York, NY, USA.
    • (2010)
    • Elad, M.1
  • 15
    • 73849109362 scopus 로고    scopus 로고
    • Average case analysis of multichannel sparse recovery using convex relaxation
    • Eldar, Y.C., Rauhut, H., Average case analysis of multichannel sparse recovery using convex relaxation. IEEE Trans. Inf. Theory 56:1 (2010), 505–519.
    • (2010) IEEE Trans. Inf. Theory , vol.56 , Issue.1 , pp. 505-519
    • Eldar, Y.C.1    Rauhut, H.2
  • 16
    • 77949275427 scopus 로고    scopus 로고
    • Applications of Lagrangian-based Alternating Direction Methods and Connections to Split Bregman
    • Univ. California Los Angeles, Los Angeles, CA, USA, CAM Rep. 9-31.
    • Esser, E., 2009. Applications of Lagrangian-based Alternating Direction Methods and Connections to Split Bregman. Univ. California Los Angeles, Los Angeles, CA, USA, CAM Rep. 9-31.
    • (2009)
    • Esser, E.1
  • 17
    • 84906831360 scopus 로고    scopus 로고
    • Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery
    • Feng, R.Y., Zhong, Y.F., Zhang, L.P., Adaptive non-local Euclidean medians sparse unmixing for hyperspectral imagery. ISPRS J. Photogram. Rem. Sens. 97 (2014), 9–24.
    • (2014) ISPRS J. Photogram. Rem. Sens. , vol.97 , pp. 9-24
    • Feng, R.Y.1    Zhong, Y.F.2    Zhang, L.P.3
  • 18
    • 84976509576 scopus 로고    scopus 로고
    • Adaptive spatial regularization sparse unmixing strategy based on joint MAP for hyperspectral remote sensing imagery
    • Feng, R.Y., Zhong, Y.F., Zhang, L.P., Adaptive spatial regularization sparse unmixing strategy based on joint MAP for hyperspectral remote sensing imagery. IEEE J. Sel. Topics Appl. Earth Observ. Rem. Sens. 9:12 (2016), 5791–5805.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Rem. Sens. , vol.9 , Issue.12 , pp. 5791-5805
    • Feng, R.Y.1    Zhong, Y.F.2    Zhang, L.P.3
  • 19
    • 84962524833 scopus 로고    scopus 로고
    • Nonlocal total variation subpixel mapping for hyperspectral remote sensing imagery
    • Feng, R.Y., Zhong, Y.F., Wu, Y.Y., He, D., Xu, X., Zhang, L.P., Nonlocal total variation subpixel mapping for hyperspectral remote sensing imagery. Rem. Sens., 8(3), 2016, 250.
    • (2016) Rem. Sens. , vol.8 , Issue.3 , pp. 250
    • Feng, R.Y.1    Zhong, Y.F.2    Wu, Y.Y.3    He, D.4    Xu, X.5    Zhang, L.P.6
  • 20
    • 85007462072 scopus 로고    scopus 로고
    • A Multi-objective cooperative coevolutionary algorithm for hyperspectral sparse unmixing
    • Gong, M.G., Li, H., Luo, E.H., Liu, J., Liu, J., A Multi-objective cooperative coevolutionary algorithm for hyperspectral sparse unmixing. IEEE Trans. Evol. Comput., 99(PP), 2016.
    • (2016) IEEE Trans. Evol. Comput. , vol.99 , Issue.PP
    • Gong, M.G.1    Li, H.2    Luo, E.H.3    Liu, J.4    Liu, J.5
  • 24
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Iordache, M.D., Bioucas-Dias, J.M., Plaza, A., Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. Geosci. Rem. Sens. 50:11 (2012), 4484–4502.
    • (2012) IEEE Trans. Geosci. Rem. Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.D.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 27
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • Landgrebe, D., Hyperspectral image data analysis. IEEE Signal Process. Mag. 19:1 (2002), 17–28.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 28
    • 84880922726 scopus 로고    scopus 로고
    • A memetic evolutionary multi-objective optimization method for environmental power unit commitment
    • Li, Y.F., Pedroni, N., Zio, E., A memetic evolutionary multi-objective optimization method for environmental power unit commitment. IEEE Trans. Power Syst. 28:3 (2013), 2660–2669.
    • (2013) IEEE Trans. Power Syst. , vol.28 , Issue.3 , pp. 2660-2669
    • Li, Y.F.1    Pedroni, N.2    Zio, E.3
  • 29
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • Lu, X., Wu, H., Yuan, Y., Yan, P., Li, X., Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Rem. Sens. 51:5 (2013), 2815–2826.
    • (2013) IEEE Trans. Geosci. Rem. Sens. , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 31
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: a fast algorithm to unmix hyperspectral data
    • Nascimento, J.M.P., Bioucas-Dias, J.M., Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 43:4 (2005), 898–910.
    • (2005) IEEE Trans. Geosci. Rem. Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 32
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • Nascimento, J., Bioucas-Dias, J., Does independent component analysis play a role in unmixing hyperspectral data?. IEEE Trans. Geosci. Rem. Sens. 43:1 (2005), 175–187.
    • (2005) IEEE Trans. Geosci. Rem. Sens. , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 34
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • Pauca, V.P., Piper, J., Plemmons, R.J., Nonnegative matrix factorization for spectral data analysis. Linear Algebra Appl. 416:1 (2006), 29–47.
    • (2006) Linear Algebra Appl. , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 35
    • 0032710687 scopus 로고    scopus 로고
    • Confidence in linear spectral unmixing of single pixels
    • Petrou, M., Foschi, P.G., Confidence in linear spectral unmixing of single pixels. IEEE Trans. Geosci. Rem. Sens. 37:1 (1999), 624–626.
    • (1999) IEEE Trans. Geosci. Rem. Sens. , vol.37 , Issue.1 , pp. 624-626
    • Petrou, M.1    Foschi, P.G.2
  • 38
    • 84896397988 scopus 로고    scopus 로고
    • Subspace matching pursuit for sparse unmixing of hyperspectral data
    • Shi, Z.W., Tang, W., Duren, Z., Jiang, Z.G., Subspace matching pursuit for sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 52:6 (2014), 3256–3274.
    • (2014) IEEE Trans. Geosci. Rem. Sens. , vol.52 , Issue.6 , pp. 3256-3274
    • Shi, Z.W.1    Tang, W.2    Duren, Z.3    Jiang, Z.G.4
  • 39
    • 4143076953 scopus 로고    scopus 로고
    • Why use hyperspectral imagery?
    • Shippert, P., Why use hyperspectral imagery?. Photogramm. Eng. Rem. Sens. 70:4 (2004), 377–396.
    • (2004) Photogramm. Eng. Rem. Sens. , vol.70 , Issue.4 , pp. 377-396
    • Shippert, P.1
  • 40
    • 0000852513 scopus 로고
    • Multi-objective optimization using nondominated sorting in genetic algorithms
    • Siinivas, N., Deb, K., Multi-objective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2:3 (1994), 221–248.
    • (1994) Evol. Comput. , vol.2 , Issue.3 , pp. 221-248
    • Siinivas, N.1    Deb, K.2
  • 41
    • 84881162971 scopus 로고    scopus 로고
    • A hybrid framework for evolutionary multi-objective optimization
    • Sindhya, K., Miettinen, K., Deb, K., A hybrid framework for evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 17:4 (2013), 495–511.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.4 , pp. 495-511
    • Sindhya, K.1    Miettinen, K.2    Deb, K.3
  • 42
    • 84898602204 scopus 로고    scopus 로고
    • Regularized simultaneous forward-backward greedy algorithm for sparse unmixing of hyperspectral data
    • Tang, W., Shi, Z.W., Wu, Y., Regularized simultaneous forward-backward greedy algorithm for sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 52:9 (2014), 5271–5288.
    • (2014) IEEE Trans. Geosci. Rem. Sens. , vol.52 , Issue.9 , pp. 5271-5288
    • Tang, W.1    Shi, Z.W.2    Wu, Y.3
  • 43
    • 84906315751 scopus 로고    scopus 로고
    • Sparse unmixing of hyperspectral data using spectral a priori information
    • Tang, W., Shi, Z., Wu, Y., Zhang, C., Sparse unmixing of hyperspectral data using spectral a priori information. IEEE Trans. Geosci. Rem. Sens. 53:2 (2015), 770–783.
    • (2015) IEEE Trans. Geosci. Rem. Sens. , vol.53 , Issue.2 , pp. 770-783
    • Tang, W.1    Shi, Z.2    Wu, Y.3    Zhang, C.4
  • 44
    • 84855912794 scopus 로고    scopus 로고
    • A novel hierarchical Bayesian approach for sparse semi-supervised hyperspectral unmixing
    • Themelis, K.E., Rontogiannis, A.A., Koutroumbas, K.D., A novel hierarchical Bayesian approach for sparse semi-supervised hyperspectral unmixing. IEEE Trans. Signal Process. 60:2 (2012), 585–599.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.2 , pp. 585-599
    • Themelis, K.E.1    Rontogiannis, A.A.2    Koutroumbas, K.D.3
  • 45
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: algorithmic results for sparse approximation
    • Tropp, J.A., Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50:10 (2004), 2231–2242.
    • (2004) IEEE Trans. Inf. Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 46
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II: convex relaxation
    • Tropp, J.A., Algorithms for simultaneous sparse approximation. Part II: convex relaxation. EURASIP J. Signal Process. 86:3 (2006), 589–602.
    • (2006) EURASIP J. Signal Process. , vol.86 , Issue.3 , pp. 589-602
    • Tropp, J.A.1
  • 47
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: greedy pursuit
    • Tropp, J.A., Gilbert, A.C., Strauss, M.J., Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. EURASIP J. Signal Process. 86:3 (2006), 572–588.
    • (2006) EURASIP J. Signal Process. , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 48
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • Winter, M.E., N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. Proc. SPIE Imaging Spectrometry V. 3753, 2003, 266–275.
    • (2003) Proc. SPIE Imaging Spectrometry V. 3753 , pp. 266-275
    • Winter, M.E.1
  • 49
    • 84908253961 scopus 로고    scopus 로고
    • Multi-objective dynamic VAR planning against short-term voltage instability using a decomposition-based evolutionary algorithm
    • Xu, Y., Dong, Z.Y., Meng, K., Yao, W.F., Zhang, R., Wong, K.P., Multi-objective dynamic VAR planning against short-term voltage instability using a decomposition-based evolutionary algorithm. IEEE Trans. Power Syst. 29:6 (2014), 2813–2822.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.6 , pp. 2813-2822
    • Xu, Y.1    Dong, Z.Y.2    Meng, K.3    Yao, W.F.4    Zhang, R.5    Wong, K.P.6
  • 50
    • 78149351664 scopus 로고    scopus 로고
    • Alternating Direction Algorithms for l1-problems in Compressive Sensing, Rice Univ
    • Houston, TX, USA, Tech. Rep. CAAM TR09-37.
    • Yang, J., Zhang, Y., 2010. Alternating Direction Algorithms for l1-problems in Compressive Sensing, Rice Univ., Houston, TX, USA, Tech. Rep. CAAM TR09-37.
    • (2010)
    • Yang, J.1    Zhang, Y.2
  • 51
    • 84973663811 scopus 로고    scopus 로고
    • Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery
    • Zhong, Y.F., Wang, X.Y., Zhao, L., Feng, R.Y., Zhang, L.P., Xu, Y.Y., Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery. ISPRS J. Photogram. Rem. Sens. 119 (2016), 49–63.
    • (2016) ISPRS J. Photogram. Rem. Sens. , vol.119 , pp. 49-63
    • Zhong, Y.F.1    Wang, X.Y.2    Zhao, L.3    Feng, R.Y.4    Zhang, L.P.5    Xu, Y.Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.