메뉴 건너뛰기




Volumn 43, Issue 6, 2010, Pages 2068-2081

Supervised feature selection by clustering using conditional mutual information-based distances

Author keywords

Clustering; Conditional mutual information; Supervised feature selection

Indexed keywords

CLASS LABELS; CLASSIFICATION ACCURACY; CONDITIONAL MUTUAL INFORMATION; DISCRETE DATA; FEATURE SELECTION; HIER-ARCHICAL CLUSTERING; INFORMATION MEASURES; INFORMATION THEORETIC MEASURE; STATE-OF-ART METHODS;

EID: 76749129275     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.12.013     Document Type: Article
Times cited : (165)

References (30)
  • 1
    • 0032264186 scopus 로고    scopus 로고
    • Distributional clustering of words for text classification
    • ACM, August
    • L.D. Baker, A. McCallum, Distributional clustering of words for text classification, in: 21th Annual International ACM SIGIR, ACM, August 1998, pp. 96-103.
    • (1998) 21th Annual International ACM SIGIR , pp. 96-103
    • Baker, L.D.1    McCallum, A.2
  • 2
    • 0028468293 scopus 로고
    • Using mutual information for selection features in supervised neural net learning
    • Battiti R. Using mutual information for selection features in supervised neural net learning. IEEE Trans. Neural Networks 5 4 (1994) 537-550
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 3
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artif. Intell. 97 1-2 (1997) 245-271
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 5
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T., and Hart P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory IT-13 1 (1967) 21-27
    • (1967) IEEE Trans. Inf. Theory , vol.IT-13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 7
    • 84942213019 scopus 로고
    • The best two independent measurements are not the two best
    • Cover T.M. The best two independent measurements are not the two best. IEEE Trans. Syst. Man Cybern. 4 (1974) 116-117
    • (1974) IEEE Trans. Syst. Man Cybern. , vol.4 , pp. 116-117
    • Cover, T.M.1
  • 9
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • Dhillong I., Mallela S., and Kumar R. A divisive information-theoretic feature clustering algorithm for text classification. J. Mach. Learn. Res. 3 (2003) 1265-1287
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1265-1287
    • Dhillong, I.1    Mallela, S.2    Kumar, R.3
  • 10
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32 200 (1937) 675-701
    • (1937) J. Am. Stat. Assoc. , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 11
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection, Special issue on variable and feature selection
    • I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Special issue on variable and feature selection, J. Mach. Learn. Res. 3 (2003) 1157-1182.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 12
    • 33745891586 scopus 로고    scopus 로고
    • Eds, Series Studies in Fuzziness and Soft Computing, Physica-Verlag, Springer
    • I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh (Eds.), Feature extraction, foundations and applications, in: Series Studies in Fuzziness and Soft Computing, Physica-Verlag, Springer, 2006.
    • (2006) Feature extraction, foundations and applications
  • 15
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • Kohavi R., and John G.H. Wrapper for feature subset selection. Artif. Intell. 97 1-2 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 16
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 17
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on parzen window
    • Kwak N., and Choi C.-H. Input feature selection by mutual information based on parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24 12 (2002) 1667-1671
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.-H.2
  • 18
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., and Choi C.-H. Input feature selection for classification problems. IEEE Trans. Neural Networks 13 1 (2002) 143-159
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 19
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • [Online]. Available: 〈www.csie.ntu.edu.tw/∼cjlin/libsvm〉
    • Hsu C.W., and Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 13 (2002) 415-425. http://www.csie.ntu.edu.tw/~cjlin/libsvm [Online]. Available: 〈www.csie.ntu.edu.tw/∼cjlin/libsvm〉
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 20
    • 0025952277 scopus 로고
    • Divergence measures based on the Shannon entropy
    • Li J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37 1 (1991) 145-151
    • (1991) IEEE Trans. Inf. Theory , vol.37 , Issue.1 , pp. 145-151
    • Li, J.1
  • 21
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., and Liu H. Feature selection for classification. Intelligent Data Anal. 1 (1997) 131-156
    • (1997) Intelligent Data Anal. , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 22
    • 0003408496 scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • P.M. Murphy, UCI Repository of Machine Learning 〈http://archive.ics.uci.edu/ml/〉, Department of Information and Computer Science, University of California, Irvine, CA, 1995.
    • (1995) UCI Repository of Machine Learning
    • Murphy, P.M.1
  • 23
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundance
    • Peng H., Long F., and Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundance. IEEE Trans. Pattern Anal. Mach. Intell. 27 8 (2005) 1226-1238
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 25
    • 85115260483 scopus 로고
    • Floating search methods for feature selection with nonmonotonic criterion functions
    • Pudil P., Ferri F.J., Novovicova J., and Kittler J. Floating search methods for feature selection with nonmonotonic criterion functions. Pattern Recognition 2 (1994) 279-283
    • (1994) Pattern Recognition , vol.2 , pp. 279-283
    • Pudil, P.1    Ferri, F.J.2    Novovicova, J.3    Kittler, J.4
  • 26
    • 0029678894 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5
    • Quinlan J.R. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4 (1996) 77-90
    • (1996) J. Artif. Intell. Res. , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 28
    • 0001808038 scopus 로고    scopus 로고
    • The information bottleneck method
    • Hajek B., and Sreenivas R.S. (Eds), University of Illinois
    • Tishby N., Pereira F., and Bialek W. The information bottleneck method. In: Hajek B., and Sreenivas R.S. (Eds). 37th Annual Allerton Conference Urbana (1999), University of Illinois
    • (1999) 37th Annual Allerton Conference Urbana
    • Tishby, N.1    Pereira, F.2    Bialek, W.3
  • 29
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward J.H. Hierarchical grouping to optimize an objective function. Am. Stat. Assoc. 58 301 (1963) 236-244
    • (1963) Am. Stat. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.