메뉴 건너뛰기




Volumn 11, Issue 4, 2018, Pages 1337-1347

Hyperspectral Imagery Semantic Interpretation Based on Adaptive Constrained Band Selection and Knowledge Extraction Techniques

Author keywords

Dimensionality reduction (DR); hyperspectral image (HSI) classification; knowledge extraction; semantic interpretation

Indexed keywords

CORRELATION METHODS; ELECTRIC CIRCUIT BREAKERS; EXTRACTION; FEATURE EXTRACTION; HYPERSPECTRAL IMAGING; IMAGE ENHANCEMENT; INDEPENDENT COMPONENT ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; SEMANTICS; SPECTROSCOPY; TENSILE STRESS;

EID: 85042122639     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2018.2798661     Document Type: Article
Times cited : (24)

References (44)
  • 1
    • 84897966232 scopus 로고    scopus 로고
    • Improved discriminant sparsity neighborhood preserving embedding for hyperspectral image classification
    • H. Huang and Y. Huang, "Improved discriminant sparsity neighborhood preserving embedding for hyperspectral image classification, " Neurocomputing, vol. 136, pp. 224-234, 2014.
    • (2014) Neurocomputing , vol.136 , pp. 224-234
    • Huang, H.1    Huang, Y.2
  • 2
    • 84896394026 scopus 로고    scopus 로고
    • Hyperspectral band selection based on trivariate mutual information and clonal selection
    • Jul
    • J. Feng, L. Jiao, X. Zhang, and T. Sun, "Hyperspectral band selection based on trivariate mutual information and clonal selection, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4092-4105, Jul. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.7 , pp. 4092-4105
    • Feng, J.1    Jiao, L.2    Zhang, X.3    Sun, T.4
  • 3
    • 85027948486 scopus 로고    scopus 로고
    • Semisupervised hyperspectral band selection via spectral-spatial hypergraph model
    • Jun
    • X. Bai, Z. Guo, Y. Wang, Z. Zhang, and J. Zhou, "Semisupervised hyperspectral band selection via spectral-spatial hypergraph model, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2774-2783, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.8 , Issue.6 , pp. 2774-2783
    • Bai, X.1    Guo, Z.2    Wang, Y.3    Zhang, Z.4    Zhou, J.5
  • 4
    • 84896390467 scopus 로고    scopus 로고
    • Sparse graph-based discriminant analysis for hyperspectral imagery
    • Jul
    • N. H. Ly, Q. Du, and J. E. Fowler, "Sparse graph-based discriminant analysis for hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 3872-3884, Jul. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.7 , pp. 3872-3884
    • Ly, N.H.1    Du, Q.2    Fowler, J.E.3
  • 5
    • 84942645474 scopus 로고    scopus 로고
    • Feature extraction of hyperspectral image using principal component analysis and folded-principal component analysis
    • P. Deepa and K. Thilagavathi, "Feature extraction of hyperspectral image using principal component analysis and folded-principal component analysis, " in Proc. 2nd Int. Conf. IEEE Electron. Commun. Syst., 2015, pp. 656-660.
    • (2015) Proc. 2nd Int. Conf IEEE Electron. Commun. Syst , pp. 656-660
    • Deepa, P.1    Thilagavathi, K.2
  • 6
    • 8644228268 scopus 로고    scopus 로고
    • Locality preserving projections
    • Cambridge, MA, USA MIT Press
    • X. He and P. Niyogi, "Locality preserving projections, " in Advances in Neural Information Processing Systems 16. Cambridge, MA, USA: MIT Press, 2003, pp. 153-160.
    • (2003) Advances in Neural Information Processing Systems , vol.16 , pp. 153-160
    • He, X.1    Niyogi, P.2
  • 7
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture
    • C. Jutten and J. Herault, "Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, " Signal Process., vol. 24, no. 1, pp. 1-10, 1991.
    • (1991) Signal Process , vol.24 , Issue.1 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 8
    • 85030791075 scopus 로고    scopus 로고
    • PCA-based edge-preserving features for hyperspectral image classification
    • Dec. 2017
    • X. Kang, X. Xiang, S. Li, and J. A. Benediktsson, "PCA-based edge-preserving features for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., 2017, vol. 55, no. 12, pp. 7140-7151, Dec. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , Issue.12 , pp. 7140-7151
    • Kang, X.1    Xiang, X.2    Li, S.3    Benediktsson, J.A.4
  • 9
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • Apr
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185-1198, Apr. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.4 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 10
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • May
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis, " J. Mach. Learn. Res., vol. 8 pp. 1027-1061, May 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 11
    • 84880258880 scopus 로고    scopus 로고
    • A novel method for hyperspectral image classification based on Laplacian eigenmap pixels distributionflow
    • Jun
    • B. Hou, X. Zhang, Q. Ye, and Y. Zheng, "A novel method for hyperspectral image classification based on Laplacian eigenmap pixels distributionflow, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1602-1618, Jun. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.6 , Issue.3 , pp. 1602-1618
    • Hou, B.1    Zhang, X.2    Ye, Q.3    Zheng, Y.4
  • 12
    • 39049167126 scopus 로고    scopus 로고
    • Kernel principal component analysis for feature reduction in hyperspectrale images analysis
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Kernel principal component analysis for feature reduction in hyperspectrale images analysis, " in Proc. IEEE 7th Nordic Signal Process. Symp., 2006, pp. 238-241.
    • (2006) Proc IEEE 7th Nordic Signal Process. Symp , pp. 238-241
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 13
    • 84906303790 scopus 로고    scopus 로고
    • Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification
    • Feb
    • Y. Zhou, J. Peng, and C. P. Chen, "Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 2, pp. 1082-1095, Feb. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , Issue.2 , pp. 1082-1095
    • Zhou, Y.1    Peng, J.2    Chen, C.P.3
  • 14
    • 84988375097 scopus 로고    scopus 로고
    • Random-walker-based collaborative learning for hyperspectral image classification
    • Jan
    • B. Sun, X. Kang, S. Li, and J. A. Benediktsson, "Random-walker-based collaborative learning for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 1, pp. 212-222, Jan. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , Issue.1 , pp. 212-222
    • Sun, B.1    Kang, X.2    Li, S.3    Benediktsson, J.A.4
  • 15
    • 84878161661 scopus 로고    scopus 로고
    • Hyperspectral image processing by jointly filtering wavelet component tensor
    • Jun
    • T. Lin and S. Bourennane, "Hyperspectral image processing by jointly filtering wavelet component tensor, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 6, pp. 3529-3541, Jun. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.6 , pp. 3529-3541
    • Lin, T.1    Bourennane, S.2
  • 16
    • 84867399355 scopus 로고    scopus 로고
    • Classification of hyperspectral images by tensor modeling and additive morphological decomposition
    • S. Velasco-Forero and J. Angulo, "Classification of hyperspectral images by tensor modeling and additive morphological decomposition, " Pattern Recog., vol. 46, no. 2, pp. 566-577, 2013.
    • (2013) Pattern Recog , vol.46 , Issue.2 , pp. 566-577
    • Velasco-Forero, S.1    Angulo, J.2
  • 17
    • 63149112633 scopus 로고    scopus 로고
    • Dimensionality reduction based on tensor modeling for classification methods
    • Apr
    • N. Renard and S. Bourennane, "Dimensionality reduction based on tensor modeling for classification methods, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1123-1131, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.4 , pp. 1123-1131
    • Renard, N.1    Bourennane, S.2
  • 18
    • 84959312273 scopus 로고    scopus 로고
    • High-level hyperspectral image classification based on spectro-spatial dimensionality reduction
    • A. Sellami and I. R. Farah, "High-level hyperspectral image classification based on spectro-spatial dimensionality reduction, " Spatial Statist., vol. 16, pp. 103-117, 2016.
    • (2016) Spatial Statist , vol.16 , pp. 103-117
    • Sellami, A.1    Farah, I.R.2
  • 19
    • 84981717828 scopus 로고    scopus 로고
    • Dimensionality reduction based on groupbased tensor model for hyperspectral image classification
    • Oct
    • J. An, X. Zhang, and L. Jiao, "Dimensionality reduction based on groupbased tensor model for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 10, pp. 1497-1501, Oct. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , Issue.10 , pp. 1497-1501
    • An, J.1    Zhang, X.2    Jiao, L.3
  • 20
    • 84874545698 scopus 로고    scopus 로고
    • Feature mining for hyperspectral image classification
    • Mar
    • X. Jia, B.-C. Kuo, andM.M. Crawford, "Feature mining for hyperspectral image classification, " Proc. IEEE, vol. 101, no. 3, pp. 676-697, Mar. 2013.
    • (2013) Proc IEEE , vol.101 , Issue.3 , pp. 676-697
    • Jia, X.1    Kuo, B.-C.2    Crawford, M.M.3
  • 21
    • 84891739734 scopus 로고    scopus 로고
    • Hyperspectral image classification using band selection and morphological profiles
    • Jan
    • K. Tan, E. Li, Q. Du, and P. Du, "Hyperspectral image classification using band selection and morphological profiles, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 40-48, Jan. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.1 , pp. 40-48
    • Tan, K.1    Li, E.2    Du, Q.3    Du, P.4
  • 22
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • Jun
    • C.-I. Chang and S. Wang, "Constrained band selection for hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575-1585, Jun. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 23
    • 84866291195 scopus 로고    scopus 로고
    • Discriminative gabor feature selection for hyperspectral image classification
    • Jan
    • L. Shen, Z. Zhu, S. Jia, J. Zhu, and Y. Sun, "Discriminative gabor feature selection for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 10, no. 1, pp. 29-33, Jan. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett , vol.10 , Issue.1 , pp. 29-33
    • Shen, L.1    Zhu, Z.2    Jia, S.3    Zhu, J.4    Sun, Y.5
  • 24
    • 36349016757 scopus 로고    scopus 로고
    • Dimensionality reduction based on clonal selection for hyperspectral imagery
    • Dec
    • L. Zhang, Y. Zhong, B. Huang, J. Gong, and P. Li, "Dimensionality reduction based on clonal selection for hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 4172-4186, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 4172-4186
    • Zhang, L.1    Zhong, Y.2    Huang, B.3    Gong, J.4    Li, P.5
  • 25
    • 84966577672 scopus 로고    scopus 로고
    • Band weighting viamaximizing interclass distance for hyperspectral image classification
    • Jul
    • C. Yan, X. Bai, P. Ren, L. Bai, W. Tang, and J. Zhou, "Band weighting viamaximizing interclass distance for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 7, pp. 922-925, Jul. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , Issue.7 , pp. 922-925
    • Yan, C.1    Bai, X.2    Ren, P.3    Bai, L.4    Tang, W.5    Zhou, J.6
  • 26
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM, " IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 27
    • 84905914071 scopus 로고    scopus 로고
    • A new band selection method for hyperspectral image based on data quality
    • Jun
    • K. Sun, X. Geng, L. Ji, and Y. Lu, "A new band selection method for hyperspectral image based on data quality, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2697-2703, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens , vol.7 , Issue.6 , pp. 2697-2703
    • Sun, K.1    Geng, X.2    Ji, L.3    Lu, Y.4
  • 28
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • Mar
    • P. Mitra, C. Murthy, and S. K. Pal, "Unsupervised feature selection using feature similarity, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 301-312, Mar. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C.2    Pal, S.K.3
  • 29
    • 55649124564 scopus 로고    scopus 로고
    • Similarity-based unsupervised band selection for hyperspectral image analysis
    • Oct
    • Q. Du and H. Yang, "Similarity-based unsupervised band selection for hyperspectral image analysis, " IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 564-568, Oct. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , Issue.4 , pp. 564-568
    • Du, Q.1    Yang, H.2
  • 30
    • 84892438392 scopus 로고    scopus 로고
    • Progressive band selection of spectral unmixing for hyperspectral imagery
    • Apr
    • C.-I. Chang and K.-H. Liu, "Progressive band selection of spectral unmixing for hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4, pp. 2002-2017, Apr. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , Issue.4 , pp. 2002-2017
    • Chang, C.-I.1    Liu, K.-H.2
  • 32
    • 72149111677 scopus 로고    scopus 로고
    • Band selection for hyperspectral imagery using affinity propagation
    • Y. Qian, F. Yao, and S. Jia, "Band selection for hyperspectral imagery using affinity propagation, " IET Comput. Vis., vol. 3, no. 4, pp. 213-222, 2009.
    • (2009) IET Comput. Vis , vol.3 , Issue.4 , pp. 213-222
    • Qian, Y.1    Yao, F.2    Jia, S.3
  • 34
    • 84946491665 scopus 로고    scopus 로고
    • Support vector machines for decision support in electricity markets strategic bidding
    • T. Pinto, T. M. Sousa, I. Praça, Z. Vale, and H. Morais, "Support vector machines for decision support in electricity markets strategic bidding, " Neurocomputing, vol. 172, pp. 438-445, 2016.
    • (2016) Neurocomputing , vol.172 , pp. 438-445
    • Pinto, T.1    Sousa, T.M.2    Praça, I.3    Vale, Z.4    Morais, H.5
  • 37
    • 84942368799 scopus 로고    scopus 로고
    • Feature weighting algorithms for classification of hyperspectral images using a support vector machine
    • B. Qi, C. Zhao, and G. Yin, "Feature weighting algorithms for classification of hyperspectral images using a support vector machine, " Appl. Opt., vol. 53, no. 13, pp. 2839-2846, 2014.
    • (2014) Appl. Opt , vol.53 , Issue.13 , pp. 2839-2846
    • Qi, B.1    Zhao, C.2    Yin, G.3
  • 38
    • 85027949644 scopus 로고    scopus 로고
    • Feature extraction using weighted training samples
    • Jul
    • M. Imani and H. Ghassemian, "Feature extraction using weighted training samples, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 7, pp. 1387-1391, Jul. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , Issue.7 , pp. 1387-1391
    • Imani, M.1    Ghassemian, H.2
  • 39
    • 0030313214 scopus 로고    scopus 로고
    • The probabilistic basis of Jaccards index of similarity
    • R. Real and J. M. Vargas, "The probabilistic basis of Jaccards index of similarity, " Syst. Biol., vol. 45, no. 3, pp. 380-385, 1996.
    • (1996) Syst. Biol , vol.45 , Issue.3 , pp. 380-385
    • Real, R.1    Vargas, J.M.2
  • 40
    • 85031732177 scopus 로고    scopus 로고
    • A stability index for feature selection
    • New York, NY, USA: Springer-Verlag
    • L. I. Kuncheva, "A stability index for feature selection." in Artificial Intelligence and Applications. New York, NY, USA: Springer-Verlag, 2007, pp. 421-427.
    • (2007) Artificial Intelligence and Applications , pp. 421-427
    • Kuncheva, L.I.1
  • 41
    • 77249122077 scopus 로고    scopus 로고
    • Cluster validation using information stability measures
    • D. Pascual, F. Pla, and J. S. Śanchez, "Cluster validation using information stability measures, " Pattern Recognit. Lett., vol. 31, no. 6, pp. 454-461, 2010.
    • (2010) Pattern Recognit. Lett , vol.31 , Issue.6 , pp. 454-461
    • Pascual, D.1    Pla, F.2    Śanchez, J.S.3
  • 43
    • 77954623833 scopus 로고    scopus 로고
    • Remote sensing feature selection by Kernel dependence measures
    • Jul
    • G. Camps-Valls, J. Mooij, and B. Scholkopf, "Remote sensing feature selection by Kernel dependence measures, " IEEE Geosci. Remote Sens. Lett., vol. 7, no. 3, pp. 587-591, Jul. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , Issue.3 , pp. 587-591
    • Camps-Valls, G.1    Mooij, J.2    Scholkopf, B.3
  • 44
    • 85010203568 scopus 로고    scopus 로고
    • Sparse hilbert schmidt independence criterion and Surrogate-Kernel-based feature selection for hyperspectral image classification
    • Apr
    • B. B. Damodaran, N. Courty, and S. Lefèvre, "Sparse hilbert schmidt independence criterion and Surrogate-Kernel-based feature selection for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 4, pp. 2385-2398, Apr. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , Issue.4 , pp. 2385-2398
    • Damodaran, B.B.1    Courty, N.2    Lefèvre, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.