메뉴 건너뛰기




Volumn 9, Issue 1, 2019, Pages

Distribution of insulin in trigeminal nerve and brain after intranasal administration

Author keywords

[No Author keywords available]

Indexed keywords

FLUORESCEIN ISOTHIOCYANATE; INSULIN; INSULIN RECEPTOR; PHOSPHOTYROSINE;

EID: 85062011658     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-019-39191-5     Document Type: Article
Times cited : (80)

References (51)
  • 1
    • 85042632287 scopus 로고    scopus 로고
    • Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums
    • Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14, 168–181, 10.1038/nrneurol.2017.185 (2018).
    • (2018) Nat Rev Neurol , vol.14 , pp. 168-181
    • Arnold, S.E.1
  • 2
    • 84992383185 scopus 로고    scopus 로고
    • Insulin resistance and Parkinson’s disease: A new target for disease modification?
    • Athauda, D. & Foltynie, T. Insulin resistance and Parkinson’s disease: A new target for disease modification? Prog Neurobiol 145–146, 98–120, 10.1016/j.pneurobio.2016.10.001 (2016).
    • (2016) Prog Neurobiol , vol.145-146 , pp. 98-120
    • Athauda, D.1    Foltynie, T.2
  • 3
    • 85032878514 scopus 로고    scopus 로고
    • Insulin action in the brain: Roles in energy and glucose homeostasis
    • Dodd, G. T. & Tiganis, T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 29, https://doi.org/10.1111/jne.12513 (2017).
    • (2017) J Neuroendocrinol , vol.29
    • Dodd, G.T.1    Tiganis, T.2
  • 4
    • 84947614766 scopus 로고    scopus 로고
    • Impaired insulin action in the human brain: causes and metabolic consequences
    • Heni, M., Kullmann, S., Preissl, H., Fritsche, A. & Haring, H. U. Impaired insulin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol 11, 701–711, 10.1038/nrendo.2015.173 (2015).
    • (2015) Nat Rev Endocrinol , vol.11 , pp. 701-711
    • Heni, M.1    Kullmann, S.2    Preissl, H.3    Fritsche, A.4    Haring, H.U.5
  • 5
    • 84892780571 scopus 로고    scopus 로고
    • Brain insulin dysregulation: implication for neurological and neuropsychiatric disorders
    • Ghasemi, R. et al. Brain insulin dysregulation: implication for neurological and neuropsychiatric disorders. Mol Neurobiol 47, 1045–1065, 10.1007/s12035-013-8404-z (2013).
    • (2013) Mol Neurobiol , vol.47 , pp. 1045-1065
    • Ghasemi, R.1
  • 6
    • 84901835581 scopus 로고    scopus 로고
    • Mechanisms of action of brain insulin against neurodegenerative diseases
    • Ramalingam, M. & Kim, S. J. Mechanisms of action of brain insulin against neurodegenerative diseases. J Neural Transm (Vienna) 121, 611–626, 10.1007/s00702-013-1147-1 (2014).
    • (2014) J Neural Transm (Vienna) , vol.121 , pp. 611-626
    • Ramalingam, M.1    Kim, S.J.2
  • 7
    • 85028602938 scopus 로고    scopus 로고
    • Intranasal insulin treatment of an experimental model of moderate traumatic brain injury
    • Brabazon, F. et al. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. J Cereb Blood Flow Metab 37, 3203–3218, 10.1177/0271678X16685106 (2017).
    • (2017) J Cereb Blood Flow Metab , vol.37 , pp. 3203-3218
    • Brabazon, F.1
  • 8
    • 84888289180 scopus 로고    scopus 로고
    • Insulin, cognition, and dementia
    • Cholerton, B., Baker, L. D. & Craft, S. Insulin, cognition, and dementia. Eur J Pharmacol 719, 170–179, 10.1016/j.ejphar.2013.08.008 (2013).
    • (2013) Eur J Pharmacol , vol.719 , pp. 170-179
    • Cholerton, B.1    Baker, L.D.2    Craft, S.3
  • 9
    • 84933678110 scopus 로고    scopus 로고
    • Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke
    • Lioutas, V. A. et al. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke. Transl Stroke Res 6, 264–275, 10.1007/s12975-015-0409-7 (2015).
    • (2015) Transl Stroke Res , vol.6 , pp. 264-275
    • Lioutas, V.A.1
  • 10
    • 84961297546 scopus 로고    scopus 로고
    • Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats
    • Pang, Y. et al. Intranasal insulin protects against substantia nigra dopaminergic neuronal loss and alleviates motor deficits induced by 6-OHDA in rats. Neuroscience 318, 157–165, 10.1016/j.neuroscience.2016.01.020 (2016).
    • (2016) Neuroscience , vol.318 , pp. 157-165
    • Pang, Y.1
  • 11
    • 84986208231 scopus 로고    scopus 로고
    • Intranasal insulin alleviates cognitive deficits and amyloid pathology in young adult APPswe/PS1dE9 mice
    • Mao, Y. F. et al. Intranasal insulin alleviates cognitive deficits and amyloid pathology in young adult APPswe/PS1dE9 mice. Aging Cell 15, 893–902, 10.1111/acel.12498 (2016).
    • (2016) Aging Cell , vol.15 , pp. 893-902
    • Mao, Y.F.1
  • 12
    • 84880555817 scopus 로고    scopus 로고
    • Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence
    • Freiherr, J. et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27, 505–514, 10.1007/s40263-013-0076-8 (2013).
    • (2013) CNS Drugs , vol.27 , pp. 505-514
    • Freiherr, J.1
  • 13
    • 3543142498 scopus 로고    scopus 로고
    • Intranasal insulin improves memory in humans
    • Benedict, C. et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29, 1326–1334, 10.1016/j.psyneuen.2004.04.003 (2004).
    • (2004) Psychoneuroendocrinology , vol.29 , pp. 1326-1334
    • Benedict, C.1
  • 14
    • 84855613853 scopus 로고    scopus 로고
    • Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial
    • Craft, S. et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69, 29–38, 10.1001/archneurol.2011.233 (2012).
    • (2012) Arch Neurol , vol.69 , pp. 29-38
    • Craft, S.1
  • 15
    • 84860193946 scopus 로고    scopus 로고
    • Intranasal delivery of biologics to the central nervous system
    • Lochhead, J. J. & Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64, 614–628, 10.1016/j.addr.2011.11.002 (2012).
    • (2012) Adv Drug Deliv Rev , vol.64 , pp. 614-628
    • Lochhead, J.J.1    Thorne, R.G.2
  • 16
    • 0026578922 scopus 로고
    • Intranasal administration of insulin with phospholipid as absorption enhancer: pharmacokinetics in normal subjects
    • COI: 1:STN:280:DyaK383ovFWqsA%3D%3D
    • Drejer, K. et al. Intranasal administration of insulin with phospholipid as absorption enhancer: pharmacokinetics in normal subjects. Diabet Med 9, 335–340 (1992).
    • (1992) Diabet Med , vol.9 , pp. 335-340
    • Drejer, K.1
  • 17
    • 84938691342 scopus 로고    scopus 로고
    • Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition
    • Salameh, T. S. et al. Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition. J Alzheimers Dis 47, 715–728, 10.3233/JAD-150307 (2015).
    • (2015) J Alzheimers Dis , vol.47 , pp. 715-728
    • Salameh, T.S.1
  • 18
    • 85044845956 scopus 로고    scopus 로고
    • Safety of intranasal human insulin: A review
    • Schmid, V. et al. Safety of intranasal human insulin: A review. Diabetes Obes Metab, 10.1111/dom.13279 (2018).
    • (2018) Diabetes Obes Metab
    • Schmid, V.1
  • 19
    • 85045553473 scopus 로고    scopus 로고
    • Pharmacokinetics of Intranasal versus Subcutaneous Insulin in the Mouse
    • Nedelcovych, M. T. et al. Pharmacokinetics of Intranasal versus Subcutaneous Insulin in the Mouse. ACS Chem Neurosci 9, 809–816, 10.1021/acschemneuro.7b00434 (2018).
    • (2018) ACS Chem Neurosci , vol.9 , pp. 809-816
    • Nedelcovych, M.T.1
  • 20
    • 3242740239 scopus 로고    scopus 로고
    • Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration
    • Thorne, R. G., Pronk, G. J., Padmanabhan, V. & Frey, W. H. 2nd Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127, 481–496, 10.1016/j.neuroscience.2004.05.029 (2004).
    • (2004) Neuroscience , vol.127 , pp. 481-496
    • Thorne, R.G.1    Pronk, G.J.2    Padmanabhan, V.3    Frey, W.H.4
  • 21
    • 84938529529 scopus 로고    scopus 로고
    • Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration
    • Lochhead, J. J., Wolak, D. J., Pizzo, M. E. & Thorne, R. G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab 35, 371–381, 10.1038/jcbfm.2014.215 (2015).
    • (2015) J Cereb Blood Flow Metab , vol.35 , pp. 371-381
    • Lochhead, J.J.1    Wolak, D.J.2    Pizzo, M.E.3    Thorne, R.G.4
  • 22
    • 85047698627 scopus 로고    scopus 로고
    • Sniffing neuropeptides: a transnasal approach to the human brain
    • Born, J. et al. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5, 514–516, 10.1038/nn849 (2002).
    • (2002) Nat Neurosci , vol.5 , pp. 514-516
    • Born, J.1
  • 23
    • 85015183743 scopus 로고    scopus 로고
    • Intranasal Insulin Transport is Preserved in Aged SAMP8 Mice and is Altered by Albumin and Insulin Receptor Inhibition
    • Rhea, E. M. et al. Intranasal Insulin Transport is Preserved in Aged SAMP8 Mice and is Altered by Albumin and Insulin Receptor Inhibition. J Alzheimers Dis 57, 241–252, 10.3233/JAD-161095 (2017).
    • (2017) J Alzheimers Dis , vol.57 , pp. 241-252
    • Rhea, E.M.1
  • 24
    • 84869089454 scopus 로고    scopus 로고
    • Intranasal delivery of insulin via the olfactory nerve pathway
    • Renner, D. B. et al. Intranasal delivery of insulin via the olfactory nerve pathway. J Pharm Pharmacol 64, 1709–1714, 10.1111/j.2042-7158.2012.01555.x (2012).
    • (2012) J Pharm Pharmacol , vol.64 , pp. 1709-1714
    • Renner, D.B.1
  • 25
    • 79953056812 scopus 로고    scopus 로고
    • Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies
    • Spitzer, N., Sammons, G. S. & Price, E. M. Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies. J Neurosci Methods 197, 48–55, 10.1016/j.jneumeth.2011.01.029 (2011).
    • (2011) J Neurosci Methods , vol.197 , pp. 48-55
    • Spitzer, N.1    Sammons, G.S.2    Price, E.M.3
  • 26
    • 13944272576 scopus 로고    scopus 로고
    • The role of insulin receptor signaling in the brain
    • Plum, L., Schubert, M. & Bruning, J. C. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 16, 59–65, 10.1016/j.tem.2005.01.008 (2005).
    • (2005) Trends Endocrinol Metab , vol.16 , pp. 59-65
    • Plum, L.1    Schubert, M.2    Bruning, J.C.3
  • 27
    • 84890634561 scopus 로고    scopus 로고
    • Stearic acid serves as a potent inhibitor of protein tyrosine phosphatase 1B
    • Tsuchiya, A., Kanno, T. & Nishizaki, T. Stearic acid serves as a potent inhibitor of protein tyrosine phosphatase 1B. Cell Physiol Biochem 32, 1451–1459, 10.1159/000356582 (2013).
    • (2013) Cell Physiol Biochem , vol.32 , pp. 1451-1459
    • Tsuchiya, A.1    Kanno, T.2    Nishizaki, T.3
  • 28
    • 84920818024 scopus 로고    scopus 로고
    • Oleic acid stimulates glucose uptake into adipocytes by enhancing insulin receptor signaling
    • Tsuchiya, A., Nagaya, H., Kanno, T. & Nishizaki, T. Oleic acid stimulates glucose uptake into adipocytes by enhancing insulin receptor signaling. J Pharmacol Sci 126, 337–343, 10.1254/jphs.14182FP (2014).
    • (2014) J Pharmacol Sci , vol.126 , pp. 337-343
    • Tsuchiya, A.1    Nagaya, H.2    Kanno, T.3    Nishizaki, T.4
  • 29
    • 84896761223 scopus 로고    scopus 로고
    • Thermodynamics of formation of the insulin hexamer: metal-stabilized proton-coupled assembly of quaternary structure
    • Carpenter, M. C. & Wilcox, D. E. Thermodynamics of formation of the insulin hexamer: metal-stabilized proton-coupled assembly of quaternary structure. Biochemistry 53, 1296–1301, 10.1021/bi4016567 (2014).
    • (2014) Biochemistry , vol.53 , pp. 1296-1301
    • Carpenter, M.C.1    Wilcox, D.E.2
  • 30
    • 84964484011 scopus 로고    scopus 로고
    • Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin
    • Hjorth, C. F. et al. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin. J Pharm Sci 105, 1376–1386, 10.1016/j.xphs.2016.01.003 (2016).
    • (2016) J Pharm Sci , vol.105 , pp. 1376-1386
    • Hjorth, C.F.1
  • 31
    • 84978538965 scopus 로고    scopus 로고
    • A simple practice guide for dose conversion between animals and human
    • Nair, A. B. & Jacob, S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 27–31, 10.4103/0976-0105.177703 (2016).
    • (2016) J Basic Clin Pharm , vol.7 , pp. 27-31
    • Nair, A.B.1    Jacob, S.2
  • 32
    • 0031456345 scopus 로고    scopus 로고
    • Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays
    • COI: 1:CAS:528:DyaK2sXntleqsrk%3D
    • Banks, W. A., Jaspan, J. B. & Kastin, A. J. Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays. Peptides 18, 1257–1262 (1997).
    • (1997) Peptides , vol.18 , pp. 1257-1262
    • Banks, W.A.1    Jaspan, J.B.2    Kastin, A.J.3
  • 33
    • 0022569099 scopus 로고
    • Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain
    • COI: 1:CAS:528:DyaL28Xht1Kjsrs%3D
    • Baskin, D. G. et al. Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain. Diabetes 35, 246–249 (1986).
    • (1986) Diabetes , vol.35 , pp. 246-249
    • Baskin, D.G.1
  • 34
    • 85020623612 scopus 로고    scopus 로고
    • Unravelling the regulation of insulin transport across the brain endothelial cell
    • Gray, S. M., Aylor, K. W. & Barrett, E. J. Unravelling the regulation of insulin transport across the brain endothelial cell. Diabetologia 60, 1512–1521, 10.1007/s00125-017-4285-4 (2017).
    • (2017) Diabetologia , vol.60 , pp. 1512-1521
    • Gray, S.M.1    Aylor, K.W.2    Barrett, E.J.3
  • 35
    • 85052807657 scopus 로고    scopus 로고
    • The insulin receptor is expressed and functional in cultured blood-brain barrier endothelial cells, but does not mediate insulin entry from blood-to-brain
    • Hersom, M. et al. The insulin receptor is expressed and functional in cultured blood-brain barrier endothelial cells, but does not mediate insulin entry from blood-to-brain. Am J Physiol Endocrinol Metab, 10.1152/ajpendo.00350.2016 (2018).
    • (2018) Am J Physiol Endocrinol Metab
    • Hersom, M.1
  • 36
    • 85030221998 scopus 로고    scopus 로고
    • Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice
    • Konishi, M. et al. Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice. Proc Natl Acad Sci USA 114, E8478–E8487, 10.1073/pnas.1710625114 (2017).
    • (2017) Proc Natl Acad Sci USA , vol.114 , pp. E8478-E8487
    • Konishi, M.1
  • 37
    • 85052789026 scopus 로고    scopus 로고
    • Insulin transport across the blood-brain barrier can occur independently of the insulin receptor
    • Rhea, E. M., Rask-Madsen, C. & Banks, W. A. Insulin transport across the blood-brain barrier can occur independently of the insulin receptor. J Physiol 596, 4753–4765, 10.1113/JP276149 (2018).
    • (2018) J Physiol , vol.596 , pp. 4753-4765
    • Rhea, E.M.1    Rask-Madsen, C.2    Banks, W.A.3
  • 38
    • 84865123660 scopus 로고    scopus 로고
    • A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta
    • Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4, 147ra111, 10.1126/scitranslmed.3003748 (2012).
    • (2012) Sci Transl Med , vol.4 , pp. 147ra111
    • Iliff, J.J.1
  • 39
    • 85038086624 scopus 로고    scopus 로고
    • Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery
    • Pizzo, M. E. et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J Physiol 596, 445–475, 10.1113/JP275105 (2018).
    • (2018) J Physiol , vol.596 , pp. 445-475
    • Pizzo, M.E.1
  • 40
    • 84865575373 scopus 로고    scopus 로고
    • Insulin in the brain: there and back again
    • Banks, W. A., Owen, J. B. & Erickson, M. A. Insulin in the brain: there and back again. Pharmacol Ther 136, 82–93, 10.1016/j.pharmthera.2012.07.006 (2012).
    • (2012) Pharmacol Ther , vol.136 , pp. 82-93
    • Banks, W.A.1    Owen, J.B.2    Erickson, M.A.3
  • 41
    • 84914691722 scopus 로고    scopus 로고
    • Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury
    • Iliff, J. J. et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34, 16180–16193, 10.1523/JNEUROSCI.3020-14.2014 (2014).
    • (2014) J Neurosci , vol.34 , pp. 16180-16193
    • Iliff, J.J.1
  • 42
    • 84913582567 scopus 로고    scopus 로고
    • Impairment of paravascular clearance pathways in the aging brain
    • Kress, B. T. et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76, 845–861, 10.1002/ana.24271 (2014).
    • (2014) Ann Neurol , vol.76 , pp. 845-861
    • Kress, B.T.1
  • 43
    • 84973643437 scopus 로고    scopus 로고
    • Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease
    • Peng, W. et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 93, 215–225, 10.1016/j.nbd.2016.05.015 (2016).
    • (2016) Neurobiol Dis , vol.93 , pp. 215-225
    • Peng, W.1
  • 44
    • 85015265549 scopus 로고    scopus 로고
    • Focal Solute Trapping and Global Glymphatic Pathway Impairment in a Murine Model of Multiple Microinfarcts
    • Wang, M. et al. Focal Solute Trapping and Global Glymphatic Pathway Impairment in a Murine Model of Multiple Microinfarcts. J Neurosci 37, 2870–2877, 10.1523/JNEUROSCI.2112-16.2017 (2017).
    • (2017) J Neurosci , vol.37 , pp. 2870-2877
    • Wang, M.1
  • 45
    • 46249108210 scopus 로고    scopus 로고
    • The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting
    • Aldridge, G. M., Podrebarac, D. M., Greenough, W. T. & Weiler, I. J. The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172, 250–254, 10.1016/j.jneumeth.2008.05.003 (2008).
    • (2008) J Neurosci Methods , vol.172 , pp. 250-254
    • Aldridge, G.M.1    Podrebarac, D.M.2    Greenough, W.T.3    Weiler, I.J.4
  • 46
    • 85045447453 scopus 로고    scopus 로고
    • Use of the REVERT((R)) total protein stain as a loading control demonstrates significant benefits over the use of housekeeping proteins when analyzing brain homogenates by Western blot: An analysis of samples representing different gonadal hormone states
    • Kirshner, Z. Z. & Gibbs, R. B. Use of the REVERT((R)) total protein stain as a loading control demonstrates significant benefits over the use of housekeeping proteins when analyzing brain homogenates by Western blot: An analysis of samples representing different gonadal hormone states. Mol Cell Endocrinol 473, 156–165, 10.1016/j.mce.2018.01.015 (2018).
    • (2018) Mol Cell Endocrinol , vol.473 , pp. 156-165
    • Kirshner, Z.Z.1    Gibbs, R.B.2
  • 47
    • 0026462158 scopus 로고
    • Multiple insulin-responsive elements regulate transcription of the GAPDH gene
    • COI: 1:CAS:528:DyaK38Xls1Gisbg%3D
    • Alexander-Bridges, M. et al. Multiple insulin-responsive elements regulate transcription of the GAPDH gene. Adv Enzyme Regul 32, 149–159 (1992).
    • (1992) Adv Enzyme Regul , vol.32 , pp. 149-159
    • Alexander-Bridges, M.1
  • 48
    • 0018953977 scopus 로고
    • Temporal changes in islet polymerized and depolymerized tubulin during biphasic insulin release
    • COI: 1:CAS:528:DyaL3cXkvFansL0%3D
    • McDaniel, M. L. et al. Temporal changes in islet polymerized and depolymerized tubulin during biphasic insulin release. Metabolism 29, 762–766 (1980).
    • (1980) Metabolism , vol.29 , pp. 762-766
    • McDaniel, M.L.1
  • 49
    • 0026636618 scopus 로고
    • Regulation of beta-actin gene transcription by insulin and phorbol esters
    • COI: 1:CAS:528:DyaK38XisV2js7g%3D
    • Messina, J. L. & Weinstock, R. S. Regulation of beta-actin gene transcription by insulin and phorbol esters. Exp Cell Res 200, 532–535 (1992).
    • (1992) Exp Cell Res , vol.200 , pp. 532-535
    • Messina, J.L.1    Weinstock, R.S.2
  • 50
    • 0033569673 scopus 로고    scopus 로고
    • Role of the actin cytoskeleton in insulin action
    • –, 79::AID-JEMT1 3.0.CO;2-S
    • Tsakiridis, T. et al. Role of the actin cytoskeleton in insulin action. Microsc Res Tech 47, 79–92, 10.1002/(SICI)1097-0029(19991015)47:2 79::AID-JEMT1 3.0.CO;2-S (1999).
    • (1999) Microsc Res Tech , vol.47 , pp. 79-92
    • Tsakiridis, T.1
  • 51
    • 0026559410 scopus 로고
    • Effects of insulin and insulin-like growth factors on neurofilament mRNA and tubulin mRNA content in human neuroblastoma SH-SY5Y cells
    • COI: 1:CAS:528:DyaK38Xkt1WisL4%3D
    • Wang, C., Li, Y., Wible, B., Angelides, K. J. & Ishii, D. N. Effects of insulin and insulin-like growth factors on neurofilament mRNA and tubulin mRNA content in human neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res 13, 289–300 (1992).
    • (1992) Brain Res Mol Brain Res , vol.13 , pp. 289-300
    • Wang, C.1    Li, Y.2    Wible, B.3    Angelides, K.J.4    Ishii, D.N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.