메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1-285

Bayesian model selection and statistical modeling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85055391562     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/EBK1439836149     Document Type: Book
Times cited : (131)

References (296)
  • 1
    • 0040165567 scopus 로고    scopus 로고
    • The effects of demographics and maternal behavior on the distribution of birth outcomes
    • Abrevaya, J. 2001. The effects of demographics and maternal behavior on the distribution of birth outcomes. Empirical Economics 26: 247–257.
    • (2001) Empirical Economics , vol.26 , pp. 247-257
    • Abrevaya, J.1
  • 2
    • 0034413190 scopus 로고    scopus 로고
    • Bayesian dynamic factor models and variance matrix discounting for portfolio allocation
    • Aguilar, O. and West, M. 2000. Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. Journal of Business and Economic Statistics 18: 338–357.
    • (2000) Journal of Business and Economic Statistics , vol.18 , pp. 338-357
    • Aguilar, O.1    West, M.2
  • 4
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • ed. Petrov, B. N. and Csaki, F., Budapest: Akademiai Kiado
    • Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Proc. 2nd International Symposium on Information Theory, ed. Petrov, B. N. and Csaki, F., 267–281. Budapest: Akademiai Kiado.
    • (1973) In Proc. 2Nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 5
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 6
    • 85033517914 scopus 로고
    • A Bayesian extension of the minimum AIC procedure of autoregressive model fitting
    • Akaike, H. 1979. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 66: 237–242.
    • (1979) Biometrika , vol.66 , pp. 237-242
    • Akaike, H.1
  • 9
    • 0034872552 scopus 로고    scopus 로고
    • Sequential ordinal modeling with applications to survival data
    • Albert, J. H. and Chib, S. 2001. Sequential ordinal modeling with applications to survival data. Biometrics 57: 829–836.
    • (2001) Biometrics , vol.57 , pp. 829-836
    • Albert, J.H.1    Chib, S.2
  • 10
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh, A. A., Eisen, M. B., Davis, R. E., et al. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 403, 503–511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3
  • 11
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D. A., et al. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96: 6745–6750.
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3
  • 12
    • 22444454855 scopus 로고    scopus 로고
    • Cascading classifiers
    • Alpaydin, E. and Kaynak, C. 1998. Cascading classifiers, Kybernetika 34: 369– 374.
    • (1998) Kybernetika , vol.34 , pp. 369-374
    • Alpaydin, E.1    Kaynak, C.2
  • 14
    • 55549100321 scopus 로고    scopus 로고
    • Bayesian inference for nonlinear and non-Gaussian stochastic volatility model with leverage effect
    • Ando, T. 2006. Bayesian inference for nonlinear and non-Gaussian stochastic volatility model with leverage effect. Journal of the Japan Statistical Society 36: 173-197.
    • (2006) Journal of the Japan Statistical Society , vol.36 , pp. 173-197
    • Ando, T.1
  • 15
    • 34548388929 scopus 로고    scopus 로고
    • Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models
    • Ando, T. 2007. Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models, Biometrika 94: 443–458.
    • (2007) Biometrika , vol.94 , pp. 443-458
    • Ando, T.1
  • 17
    • 67349208088 scopus 로고    scopus 로고
    • Bayesian model averaging and Bayesian predictive information criterion for model selection
    • Ando, T. 2008b. Bayesian model averaging and Bayesian predictive information criterion for model selection. Journal of the Japan Statistical Society 38: 243–257.
    • (2008) Journal of the Japan Statistical Society , vol.38 , pp. 243-257
    • Ando, T.1
  • 18
    • 49049090541 scopus 로고    scopus 로고
    • Nonlinear regression modeling via regularized radial basis function networks
    • Ando, T., Konishi, S. and Imoto, S. 2008. Nonlinear regression modeling via regularized radial basis function networks Journal of Statistical Planning and Inference 138: 3616-3633.
    • (2008) Journal of Statistical Planning and Inference , vol.138 , pp. 3616-3633
    • Ando, T.1    Konishi, S.2    Imoto, S.3
  • 19
    • 67349234862 scopus 로고    scopus 로고
    • Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood
    • Ando, T. 2009a. Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood. Journal of Multivariate Analysis 100: 1717–1726.
    • (2009) Journal of Multivariate Analysis , vol.100 , pp. 1717-1726
    • Ando, T.1
  • 20
    • 67649742284 scopus 로고    scopus 로고
    • Bayesian portfolio selection using multifactor model and Bayesian predictive information criterion
    • Ando, T. 2009b. Bayesian portfolio selection using multifactor model and Bayesian predictive information criterion. International Journal of Forecasting 25: 550–566.
    • (2009) International Journal of Forecasting , vol.25 , pp. 550-566
    • Ando, T.1
  • 21
    • 61549125754 scopus 로고    scopus 로고
    • Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criterion
    • Ando, T. 2009c. Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criterion. Computational Statistics and Data Analysis 53: 1925–1939.
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 1925-1939
    • Ando, T.1
  • 22
    • 67349126855 scopus 로고    scopus 로고
    • Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data
    • Ando, T. and Konishi S. 2009. Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data. Annals of the Institute of Statistical Mathematics 61: 331–353.
    • (2009) Annals of the Institute of Statistical Mathematics , vol.61 , pp. 331-353
    • Ando, T.1    Konishi, S.2
  • 23
    • 85055368407 scopus 로고    scopus 로고
    • Predictive marginal likelihood for the Bayesian model selection and averaging
    • Ando, T. and Tsay, R. 2009. Predictive marginal likelihood for the Bayesian model selection and averaging. International Journal of Forecasting in press.
    • (2009) International Journal of Forecasting in Press
    • Ando, T.1    Tsay, R.2
  • 24
    • 0000211514 scopus 로고    scopus 로고
    • Robust full Bayesian learning for radial basis networks
    • Andrieu, C., de Freitas, N. and Doucet, A. 2001. Robust full Bayesian learning for radial basis networks. Neural Computation 13: 2359–2407.
    • (2001) Neural Computation , vol.13 , pp. 2359-2407
    • Andrieu, C.1    de Freitas, N.2    Doucet, A.3
  • 26
    • 70349978400 scopus 로고    scopus 로고
    • Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations
    • Ardia, D. 2009. Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations. Econometrics Journal 12: 105–126
    • (2009) Econometrics Journal , vol.12 , pp. 105-126
    • Ardia, D.1
  • 27
    • 0034557223 scopus 로고    scopus 로고
    • Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
    • Barnard, J., McCulloch, R. and Meng, X., 2000. Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica 10: 1281–1311.
    • (2000) Statistica Sinica , vol.10 , pp. 1281-1311
    • Barnard, J.1    McCulloch, R.2    Meng, X.3
  • 30
    • 0036012995 scopus 로고    scopus 로고
    • Econometric analysis of realised volatility and its use in estimating stochastic volatility models
    • Barndorff-Nielsen, O. E. and Shephard, N. 2001. Econometric analysis of realised volatility and its use in estimating stochastic volatility models, Journal of the Royal Statistical Society B 64: 253–280.
    • (2001) Journal of the Royal Statistical Society B , vol.64 , pp. 253-280
    • Barndorff-Nielsen, O.E.1    Shephard, N.2
  • 32
    • 0742271637 scopus 로고    scopus 로고
    • Deviance information criterion comparing stochastic volatility models
    • Berg, A., Meyer, R. and Yu, J. 2004. Deviance information criterion comparing stochastic volatility models. Journal of Business and Economic Statistics 22: 107–120.
    • (2004) Journal of Business and Economic Statistics , vol.22 , pp. 107-120
    • Berg, A.1    Meyer, R.2    Yu, J.3
  • 34
    • 0001809736 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for linear models
    • ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Oxford: Oxford University Press
    • Berger, J. O. and Pericchi, L. R. 1996. The intrinsic Bayes factor for linear models. In Bayesian Statistics 5, ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, 25–44. Oxford: Oxford University Press.
    • (1996) Bayesian Statistics , vol.5 , pp. 25-44
    • Berger, J.O.1    Pericchi, L.R.2
  • 35
    • 0009297427 scopus 로고    scopus 로고
    • Accurate and stable Bayesian model selection: The median intrinsic Bayes factor
    • Berger, J. O. and Pericchi, L. R. 1998a. Accurate and stable Bayesian model selection: the median intrinsic Bayes factor. Sankhyā B 60: 1–18.
    • (1998) Sankhyā B , vol.60 , pp. 1-18
    • Berger, J.O.1    Pericchi, L.R.2
  • 36
    • 0042107603 scopus 로고    scopus 로고
    • Objective Bayesian Methods for Model Selection: Introduction and Comparison
    • OH: Beachwood
    • Berger, J. O. and Pericchi, L. R. 1998b. Objective Bayesian Methods for Model Selection: Introduction and Comparison. In Model selection ed. P. Lahiri, 135–207. OH: Beachwood.
    • (1998) Model Selection Ed. P. Lahiri , pp. 135-207
    • Berger, J.O.1    Pericchi, L.R.2
  • 38
    • 0002183088 scopus 로고
    • Reference posterior distributions for Bayesian inference
    • Bernardo, J. M. 1979. Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society B 41: 113–147.
    • (1979) Journal of the Royal Statistical Society B , vol.41 , pp. 113-147
    • Bernardo, J.M.1
  • 40
    • 28344449679 scopus 로고
    • Bayesian image restoration, with two applications in spatial statistics (With discussion)
    • Besag, J. York, J. and Mollie, A. 1991. Bayesian image restoration, with two applications in spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics 43: 1–59.
    • (1991) Annals of the Institute of Statistical Mathematics , vol.43 , pp. 1-59
    • Besag, J.1    York, J.2    Mollie, A.3
  • 43
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–327.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 49
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • Candes, E. and Tao, T. 2007. The dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics 35: 2313–2351.
    • (2007) Annals of Statistics , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 50
    • 0000506629 scopus 로고
    • Bayesian Model choice via Markov chain Monte Carlo methods
    • Carlin, B. P. and Chib, S. 1995. Bayesian Model choice via Markov chain Monte Carlo methods. Journal of the Royal Statistical Society B 57: 473– 484.
    • (1995) Journal of the Royal Statistical Society B , vol.57 , pp. 473-484
    • Carlin, B.P.1    Chib, S.2
  • 54
    • 0039220849 scopus 로고    scopus 로고
    • Bayesian posterior distributions in limited information analysis of the simultaneous equation model using Jeffreys’ prior
    • Chao, J. C. and Phillips, P. C. B. 1998. Bayesian posterior distributions in limited information analysis of the simultaneous equation model using Jeffreys’ prior, Journal of Econometrics 87: 49–86.
    • (1998) Journal of Econometrics , vol.87 , pp. 49-86
    • Chao, J.C.1    Phillips, P.C.B.2
  • 58
    • 0011716069 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for stochastic volatility models
    • Chib, S., Nardari, F. and Shephard, N. 2002. Markov chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics 108: 281–316.
    • (2002) Journal of Econometrics , vol.108 , pp. 281-316
    • Chib, S.1    Nardari, F.2    Shephard, N.3
  • 59
    • 0032341958 scopus 로고    scopus 로고
    • An Empirical Investigation of the “Dynamic McFadden” Model of Purchase Timing and Brand Choice: Implications for Market Structure
    • Chintagunta, P. K. and Prasad, A. R. 1998. An Empirical Investigation of the “Dynamic McFadden” Model of Purchase Timing and Brand Choice: Implications for Market Structure. Journal of Business and Economic Statistics 16: 2–12.
    • (1998) Journal of Business and Economic Statistics , vol.16 , pp. 2-12
    • Chintagunta, P.K.1    Prasad, A.R.2
  • 60
    • 4644268492 scopus 로고    scopus 로고
    • Bayesian inference and state number determination for hidden Markov models: An application to the information content of the yield curve about inflation
    • Chopin, N. and Pelgrin, F. 2004. Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation. Journal of Econometrics 123: 327–344.
    • (2004) Journal of Econometrics , vol.123 , pp. 327-344
    • Chopin, N.1    Pelgrin, F.2
  • 62
    • 0000346734 scopus 로고
    • A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices
    • Clark. P. K. 1973. A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices. Econometrica 4: 135–156.
    • (1973) Econometrica , vol.4 , pp. 135-156
    • Clark, P.K.1
  • 63
  • 71
    • 34250263445 scopus 로고
    • Smoothing Noisy Data with Spline Functions
    • Craven, P. and Wahba, G. 1979. Smoothing Noisy Data with Spline Functions. Numerische Mathematik 31: 377–403.
    • (1979) Numerische Mathematik , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 72
    • 0002211373 scopus 로고
    • Approximate predictive likelihood
    • Davison, A. C. 1986. Approximate predictive likelihood. Biometrika 73: 323– 332.
    • (1986) Biometrika , vol.73 , pp. 323-332
    • Davison, A.C.1
  • 76
    • 0001038826 scopus 로고
    • Covariance selection
    • Dempster, A. P. 1972. Covariance selection. Biometrics 28: 157–175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.P.1
  • 79
    • 33745891535 scopus 로고    scopus 로고
    • A flexible prior distribution for Markov switching autoregressions with Student-t Errors
    • Deschamps, P. J. 2006. A flexible prior distribution for Markov switching autoregressions with Student-t Errors. Journal of Econometrics 133: 153– 190.
    • (2006) Journal of Econometrics , vol.133 , pp. 153-190
    • Deschamps, P.J.1
  • 81
    • 0002467247 scopus 로고
    • The weighted likelihood ratio, linear hypotheses on normal location parameters
    • Dickey, J. 1971. The weighted likelihood ratio, linear hypotheses on normal location parameters. Annals of Statistics 42: 204–223.
    • (1971) Annals of Statistics , vol.42 , pp. 204-223
    • Dickey, J.1
  • 82
    • 0010045457 scopus 로고    scopus 로고
    • Bayesian curve-fitting with free-knot splines
    • DiMatteo, I. Genovese, C. R., Kass, R. E. 2001. Bayesian curve-fitting with free-knot splines. Biometrika 88: 1055–1071.
    • (2001) Biometrika , vol.88 , pp. 1055-1071
    • Dimatteo, I.1    Genovese, C.R.2    Kass, R.E.3
  • 83
    • 0000260057 scopus 로고
    • Piecewise pseudo-maximum likelihood estimation in empirical models of auctions
    • Donald, S. G. and Paarsch, H. J. 1993. Piecewise pseudo-maximum likelihood estimation in empirical models of auctions. International Economic Review 34: 121–148.
    • (1993) International Economic Review , vol.34 , pp. 121-148
    • Donald, S.G.1    Paarsch, H.J.2
  • 84
    • 15944403709 scopus 로고    scopus 로고
    • Model selection for Gaussian concentration graphs
    • Drton, M. and Perlman, M. D. 2004. Model selection for Gaussian concentration graphs. Biometrika 91: 591–602.
    • (2004) Biometrika , vol.91 , pp. 591-602
    • Drton, M.1    Perlman, M.D.2
  • 85
    • 23944455731 scopus 로고
    • Bayesian limited information analysis of the simultaneous equations model
    • Drèze, J. H. 1976. Bayesian limited information analysis of the simultaneous equations model. Econometrica 44: 1045–1075.
    • (1976) Econometrica , vol.44 , pp. 1045-1075
    • Drèze, J.H.1
  • 90
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties (With discussion)
    • Eilers, P. H. C. and Marx, B. D. 1996. Flexible smoothing with B-splines and penalties (with discussion). Statistical Science 11: 89–121.
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 91
  • 92
    • 33646865218 scopus 로고    scopus 로고
    • Forecast combination and model averaging using predictive measures
    • Eklund, J. and Karlsson, S. 2005. Forecast combination and model averaging using predictive measures. Sveriges Riksbank Working Paper, vol. 191.
    • (2005) Sveriges Riksbank Working Paper , vol.191
    • Eklund, J.1    Karlsson, S.2
  • 93
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
    • Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987– 1008.
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 94
    • 38549147867 scopus 로고
    • Common risk factors in the returns on stocks and bonds
    • Fama, E. and French, K. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33: 3–56.
    • (1993) Journal of Financial Economics , vol.33 , pp. 3-56
    • Fama, E.1    French, K.2
  • 95
    • 18044404766 scopus 로고    scopus 로고
    • Benchmark priors for Bayesian model averaging
    • Fernandez, C., Ley, E. and Steel, M. F. J. 2001. Benchmark priors for Bayesian model averaging. Journal of Econometrics 100: 381–427.
    • (2001) Journal of Econometrics , vol.100 , pp. 381-427
    • Fernandez, C.1    Ley, E.2    Steel, M.F.J.3
  • 96
    • 34247539569 scopus 로고    scopus 로고
    • SpBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models
    • Finley, A. O., Banerjee, S. and Carlin, B. P. 2007. spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. Journal of Statistical Software 19: 4.
    • (2007) Journal of Statistical Software , vol.19 , Issue.4
    • Finley, A.O.1    Banerjee, S.2    Carlin, B.P.3
  • 97
    • 0347724149 scopus 로고    scopus 로고
    • Markov chain Monte Carlo exact inference for binomial and multinomial logistic regression models
    • Forster, J. J., McDonald, J. W. and Smith, P. W. F. 2003. Markov chain Monte Carlo exact inference for binomial and multinomial logistic regression models. Statistics and Computing 13: 169–177
    • (2003) Statistics and Computing , vol.13 , pp. 169-177
    • Forster, J.J.1    McDonald, J.W.2    Smith, P.W.F.3
  • 98
    • 21844523862 scopus 로고
    • The risk ination criterion for multiple regression
    • Foster, D. P. and George, E. I. 1994. The risk ination criterion for multiple regression. Annals of Statistics 22: 1947–1975.
    • (1994) Annals of Statistics , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 99
    • 18044404635 scopus 로고    scopus 로고
    • Fully Bayesian analysis of switching Gaussian state space models
    • Fruhwirth-Schnatter 2001. Fully Bayesian analysis of switching Gaussian state space models. Annals of the Institute of Statistical Mathematics 53: 31–49.
    • (2001) Annals of the Institute of Statistical Mathematics , vol.53 , pp. 31-49
  • 100
    • 33748430178 scopus 로고    scopus 로고
    • Nonlinear regression modeling via regularized wavelets and smoothing parameter selection
    • Fujii, T. and Konishi, S. 2006. Nonlinear regression modeling via regularized wavelets and smoothing parameter selection. Journal of Multivariate Analysis 97: 2023–2033.
    • (2006) Journal of Multivariate Analysis , vol.97 , pp. 2023-2033
    • Fujii, T.1    Konishi, S.2
  • 103
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: A minimum posterior predictive loss approach
    • Gelfand, A. E. and Ghosh, S. K. 1998. Model choice: a minimum posterior predictive loss approach. Biometrika 85: 1–11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • Gelfand, A.E.1    Ghosh, S.K.2
  • 104
    • 20744444147 scopus 로고    scopus 로고
    • Spatial process modeling for univariate and multivariate dynamic spatial data
    • Gelfand, A. E., Banerjee, S. and Gamerman, D. 2005. Spatial process modeling for univariate and multivariate dynamic spatial data. Environmetrics 16: 465–479.
    • (2005) Environmetrics , vol.16 , pp. 465-479
    • Gelfand, A.E.1    Banerjee, S.2    Gamerman, D.3
  • 108
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman, A. and Meng, X. L. 1998. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science 13: 163–185.
    • (1998) Statistical Science , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 109
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A. and Rubin, D. B. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7: 457–511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 112
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George, E. I. and McCulloch, R. E. 1997. Approaches for Bayesian variable selection. Statistica Sinica 7: 339–373.
    • (1997) Statistica Sinica , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 113
    • 31744446464 scopus 로고    scopus 로고
    • MCMC methods for comparing stochastic volatility and GARCH models
    • Gerlach, R. and Tuyl, F. 2006. MCMC methods for comparing stochastic volatility and GARCH models. International Journal of Forecasting 22: 91–107
    • (2006) International Journal of Forecasting , vol.22 , pp. 91-107
    • Gerlach, R.1    Tuyl, F.2
  • 114
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • Geweke, J. F. 1989a. Bayesian inference in econometric models using Monte Carlo integration, Econometrica 57: 1317–1339.
    • (1989) Econometrica , vol.57 , pp. 1317-1339
    • Geweke, J.F.1
  • 115
    • 38249026451 scopus 로고
    • Exact predictive densities for linear models with ARCH disturbances
    • Geweke, J. F. 1989b. Exact predictive densities for linear models with ARCH disturbances Journal of Econometrics 40: 63–86.
    • (1989) Journal of Econometrics , vol.40 , pp. 63-86
    • Geweke, J.F.1
  • 117
    • 84986088295 scopus 로고
    • Bayesian Treatment of the Independent Student-t Linear Model
    • Geweke, J. F. 1993. Bayesian Treatment of the Independent Student-t Linear Model. Journal of Applied Econometrics 8: 19–40.
    • (1993) Journal of Applied Econometrics , vol.8 , pp. 19-40
    • Geweke, J.F.1
  • 118
    • 0000647838 scopus 로고    scopus 로고
    • Variable Selection and Model Comparison in Regression
    • ed. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, Oxford: Oxford University Press
    • Geweke, J. F. 1996. Variable Selection and Model Comparison in Regression. In Bayesian Statistics 5, ed. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, 609–620 Oxford: Oxford University Press.
    • (1996) Bayesian Statistics , vol.5 , pp. 609-620
    • Geweke, J.F.1
  • 120
    • 0003057177 scopus 로고
    • Interpreting the likelihood ratio statistic in factor models when sample size is small
    • Geweke, J. F. and Singleton, K. J. 1980. Interpreting the likelihood ratio statistic in factor models when sample size is small. Journal of the American Statistical Association 75: 133–137.
    • (1980) Journal of the American Statistical Association , vol.75 , pp. 133-137
    • Geweke, J.F.1    Singleton, K.J.2
  • 122
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • Giudici, P. and Green, P. J. 1999. Decomposable graphical Gaussian model determination. Biometrika 86: 785–801.
    • (1999) Biometrika , vol.86 , pp. 785-801
    • Giudici, P.1    Green, P.J.2
  • 123
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub, T. R., Slonim, D. K., Tamayo, P. et al. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531–537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 124
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82: 711–732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 129
    • 0001342006 scopus 로고
    • A new approach to the economic analysis of nonstationary time series and the business cycle
    • Hamilton, J. D. 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57: 357–384.
    • (1989) Econometrica , vol.57 , pp. 357-384
    • Hamilton, J.D.1
  • 130
    • 0442312140 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for computing Bayes factors: A comparative review
    • Han, C. and Carlin, B. P. 2001. Markov chain Monte Carlo methods for computing Bayes factors: a comparative review. Journal of the American Statistical Association 96: 1122–1132.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1122-1132
    • Han, C.1    Carlin, B.P.2
  • 131
    • 34250303142 scopus 로고    scopus 로고
    • Least Squares Model Averaging
    • Hansen, B. E. 2007. Least Squares Model Averaging. Econometrica 75: 1175– 1189.
    • (2007) Econometrica , vol.75 , pp. 1175-1189
    • Hansen, B.E.1
  • 132
    • 53649099464 scopus 로고    scopus 로고
    • Least Squares Forecast Averaging
    • Hansen, B. E. 2008. Least Squares Forecast Averaging. Journal of Econometrics 146: 342–350.
    • (2008) Journal of Econometrics , vol.146 , pp. 342-350
    • Hansen, B.E.1
  • 136
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their application
    • Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their application. Biometrika 57: 97–100.
    • (1970) Biometrika , vol.57 , pp. 97-100
    • Hastings, W.K.1
  • 138
    • 0000840529 scopus 로고    scopus 로고
    • Bayesian radial basis functions of variable dimension
    • Holmes, C. C. and Mallick, B. K. 1998. Bayesian radial basis functions of variable dimension. Neural Computation 10: 1217–1233.
    • (1998) Neural Computation , vol.10 , pp. 1217-1233
    • Holmes, C.C.1    Mallick, B.K.2
  • 139
    • 0041743086 scopus 로고    scopus 로고
    • Generalized nonlinear modeling with multivariate free-knot regression splines
    • Holmes, C. C. and Mallick, B. K. 2003. Generalized nonlinear modeling with multivariate free-knot regression splines. Journal of the American Statistical Association 98: 352–368.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 352-368
    • Holmes, C.C.1    Mallick, B.K.2
  • 142
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
    • Hurvich, C. M., Simonoff, J. S. and Tsai, C.-L. 1998. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society B60: 271–293.
    • (1998) Journal of the Royal Statistical Society B , vol.60 , pp. 271-293
    • Hurvich, C.M.1    Simonoff, J.S.2    Tsai, C.-L.3
  • 144
    • 9644300955 scopus 로고    scopus 로고
    • A Bayesian analysis of the multinomial probit model using marginal data augmentation
    • Imai, K. and van Dyk, A. D. 2005. A Bayesian analysis of the multinomial probit model using marginal data augmentation. Journal of Econometrics 124: 311–334.
    • (2005) Journal of Econometrics , vol.124 , pp. 311-334
    • Imai, K.1    van Dyk, A.D.2
  • 145
    • 3242876379 scopus 로고    scopus 로고
    • Selection of smoothing parameters in B-spline nonparametric regression models using information criteria
    • Imoto, S. and Konishi, S. 2003. Selection of smoothing parameters in B-spline nonparametric regression models using information criteria. Annals of the Institute of Statistical Mathematics 55: 671–687.
    • (2003) Annals of the Institute of Statistical Mathematics , vol.55 , pp. 671-687
    • Imoto, S.1    Konishi, S.2
  • 146
    • 3042777110 scopus 로고    scopus 로고
    • Bayesian Analysis of Stochastic Volatility Models with Fat-tails and Correlated Errors
    • Jacquier, E., Nicholas, G. P. and Rossi, P. E. 2004. Bayesian Analysis of Stochastic Volatility Models with Fat-tails and Correlated Errors. Journal of Econometrics 122: 185–212.
    • (2004) Journal of Econometrics , vol.122 , pp. 185-212
    • Jacquier, E.1    Nicholas, G.P.2    Rossi, P.E.3
  • 147
    • 0033464820 scopus 로고    scopus 로고
    • Asymptotic normality of the maximum likelihood estimator in state space models
    • Jensen, J. L. and Petersen, N. V. 1999. Asymptotic normality of the maximum likelihood estimator in state space models. Annals of Statistics 27: 514–535.
    • (1999) Annals of Statistics , vol.27 , pp. 514-535
    • Jensen, J.L.1    Petersen, N.V.2
  • 148
    • 84873751778 scopus 로고
    • An Invariant Form for the Prior Probability in Estimation Problems
    • Jeffreys, H. 1946. An Invariant Form for the Prior Probability in Estimation Problems. Proceedings of the Royal Society of London A 196: 453–461.
    • (1946) Proceedings of the Royal Society of London A , vol.196 , pp. 453-461
    • Jeffreys, H.1
  • 151
    • 0006624318 scopus 로고
    • Bayesian decision theory and the simplification of models
    • ed. Kmenta, J. and Ramsey, J., New York: Academic Press
    • Kadane, J. B. and Dickey, J.M. 1980. Bayesian decision theory and the simplification of models. In Evaluation of Econometric Models ed. Kmenta, J. and Ramsey, J., 245-268. New York: Academic Press.
    • (1980) Evaluation of Econometric Models , pp. 245-268
    • Kadane, J.B.1    Dickey, J.M.2
  • 153
    • 33646874644 scopus 로고    scopus 로고
    • Forecasting using predictive likelihood model averaging
    • Kapetanios, G., Labhard, V. and Price, S. 2006. Forecasting using predictive likelihood model averaging. Economics Letters 91: 373–379.
    • (2006) Economics Letters , vol.91 , pp. 373-379
    • Kapetanios, G.1    Labhard, V.2    Price, S.3
  • 154
    • 0003100767 scopus 로고
    • The validity of posterior expansions based on Laplace’s method
    • ed. S. Geisser, J. S. Hodges, S. J. Press and A. Zellner, Amsterdam: North-Holland
    • Kass, R. E., Tierney, L. and Kadane, J. B. 1990. The validity of posterior expansions based on Laplace’s method. In Essays in Honor of George Barnard, ed. S. Geisser, J. S. Hodges, S. J. Press and A. Zellner, 473– 488. Amsterdam: North-Holland.
    • (1990) Essays in Honor of George Barnard , pp. 473-488
    • Kass, R.E.1    Tierney, L.2    Kadane, J.B.3
  • 156
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • Kass, R. E. and Wasserman, L. 1995. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the American Statistical Association 90: 928–934.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 157
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan, J., Wei, J. S., Ringner, M., et al. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7: 673–679.
    • (2001) Nature Medicine , vol.7 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringner, M.3
  • 158
    • 0039573714 scopus 로고    scopus 로고
    • Business cycle turning points: A new coincident index, and tests of duration dependence based on a dynamic factor model with regime switching
    • Kim, C. J. and Nelson, C. R. 1998. Business cycle turning points: a new coincident index, and tests of duration dependence based on a dynamic factor model with regime switching. Review of Economics and Statistics 80: 188–201.
    • (1998) Review of Economics and Statistics , vol.80 , pp. 188-201
    • Kim, C.J.1    Nelson, C.R.2
  • 160
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference comparison with ARCH models
    • Kim, S., Shephard, N. and Chib, S. 1998. Stochastic volatility: likelihood inference comparison with ARCH models. Review of Economic Studies 65: 361–393.
    • (1998) Review of Economic Studies , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 161
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modeling of nonstationary time series
    • Kitagawa, G. 1987. Non-Gaussian state-space modeling of nonstationary time series. Journal of the American Statistical Association 82: 1032–1063.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 1032-1063
    • Kitagawa, G.1
  • 162
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for Gaussian nonlinear state space models
    • Kitagawa, G. 1996. Monte Carlo filter and smoother for Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 5: 1–25.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 164
    • 0347354941 scopus 로고    scopus 로고
    • Bayesian and classical approaches to instrumental variable regression
    • Kleibergen, F. R., Zivot, E. 2003. Bayesian and classical approaches to instrumental variable regression. Journal of Econometrics 114: 29–72.
    • (2003) Journal of Econometrics , vol.114 , pp. 29-72
    • Kleibergen, F.R.1    Zivot, E.2
  • 165
    • 0032275194 scopus 로고    scopus 로고
    • Bayesian simultaneous equations analysis using reduced rank structures
    • Kleibergen, F. R., Van Dijk, H.K. 1998. Bayesian simultaneous equations analysis using reduced rank structures. Econometric Theory 14: 701–743.
    • (1998) Econometric Theory , vol.14 , pp. 701-743
    • Kleibergen, F.R.1    van Dijk, H.K.2
  • 166
    • 0036900109 scopus 로고    scopus 로고
    • On block updating in Markov random field models for disease mapping
    • Knorr-Held, L. and Rue, H. 2002. On block updating in Markov random field models for disease mapping. Scandinavian Journal of Statistics 29: 597– 614.
    • (2002) Scandinavian Journal of Statistics , vol.29 , pp. 597-614
    • Knorr-Held, L.1    Rue, H.2
  • 168
  • 169
    • 1542784241 scopus 로고    scopus 로고
    • Reappraising medfly longevity: A quantile regression survival analysis
    • Koenker, R. and Geling, O. 2001. Reappraising medfly longevity: A quantile regression survival analysis. Journal of the American Statistical Association 96: 458–468.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 458-468
    • Koenker, R.1    Geling, O.2
  • 170
    • 0000512689 scopus 로고    scopus 로고
    • Generalised information criteria in model selection
    • Konishi, S. and Kitagawa, G. 1996. Generalised information criteria in model selection. Biometrika 83: 875–890.
    • (1996) Biometrika , vol.83 , pp. 875-890
    • Konishi, S.1    Kitagawa, G.2
  • 171
    • 0037409147 scopus 로고    scopus 로고
    • Asymptotic theory for information criteria in model selection — functional approach
    • Konishi, S. and Kitagawa, G. 2003. Asymptotic theory for information criteria in model selection — functional approach. Journal of Statistical Planning and Inference 114: 45–61.
    • (2003) Journal of Statistical Planning and Inference , vol.114 , pp. 45-61
    • Konishi, S.1    Kitagawa, G.2
  • 173
    • 3242882795 scopus 로고    scopus 로고
    • Bayesian information criteria and smoothing parameter selection in radial basis function networks
    • Konishi, S., Ando, T. and Imoto, S. 2004. Bayesian information criteria and smoothing parameter selection in radial basis function networks. Biometrika 91: 27-43.
    • (2004) Biometrika , vol.91 , pp. 27-43
    • Konishi, S.1    Ando, T.2    Imoto, S.3
  • 179
    • 0035413539 scopus 로고    scopus 로고
    • Schwarz, Wallace, and Rissanen: Intertwining themes in theories of model selection
    • Lanterman, A. D. 2001. Schwarz, Wallace, and Rissanen: Intertwining themes in theories of model selection. International Statistical Review 69: 185–212.
    • (2001) International Statistical Review , vol.69 , pp. 185-212
    • Lanterman, A.D.1
  • 183
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Lee, Y. and Lee, C. K. 2003. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19: 1132–1139.
    • (2003) Bioinformatics , vol.19 , pp. 1132-1139
    • Lee, Y.1    Lee, C.K.2
  • 184
    • 0037706986 scopus 로고    scopus 로고
    • The finite sample distribution of post-model-selection estimators and uniform versus non-uniform approximations
    • Leeb, H. and Potscher, B.M. 2003. The finite sample distribution of post-model-selection estimators and uniform versus non-uniform approximations. Econometric Theory 19: 100–142.
    • (2003) Econometric Theory , vol.19 , pp. 100-142
    • Leeb, H.1    Potscher, B.M.2
  • 185
    • 15744376883 scopus 로고    scopus 로고
    • Model selection and inference: Facts and fiction
    • Leeb, H. and Potscher, B.M. 2005. Model selection and inference: facts and fiction. Econometric Theory 21: 21–59.
    • (2005) Econometric Theory , vol.21 , pp. 21-59
    • Leeb, H.1    Potscher, B.M.2
  • 186
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator
    • Lewis, S. M. and Raftery, A. E. 1997. Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator. Journal of the American Statistical Association 92: 648–655.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 648-655
    • Lewis, S.M.1    Raftery, A.E.2
  • 187
    • 0347666339 scopus 로고    scopus 로고
    • Automatic Bayesian model averaging for linear regression and applications in Bayesian curve fitting
    • Liang, F., Truong, Y. and Wong, W. 2001. Automatic Bayesian model averaging for linear regression and applications in Bayesian curve fitting. Statistica Sinica 11: 1005–1029.
    • (2001) Statistica Sinica , vol.11 , pp. 1005-1029
    • Liang, F.1    Truong, Y.2    Wong, W.3
  • 191
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes, H. F. and West, M. 2004. Bayesian model assessment in factor analysis. Statistica Sinica 14: 41–67.
    • (2004) Statistica Sinica , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 192
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D. J. C. 1992. A practical Bayesian framework for backpropagation networks. Neural Computation 4: 448–72.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 193
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam’s window
    • Madigan, D. and Raftery, A. E. 1994. Model selection and accounting for model uncertainty in graphical models using Occam’s window, Journal of the American Statistical Association 89: 1535–1546.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 194
  • 195
    • 84995186518 scopus 로고
    • Portfolio selection
    • Markowitz, H. 1952. Portfolio selection. Journal of Finance 7: 77–91.
    • (1952) Journal of Finance , vol.7 , pp. 77-91
    • Markowitz, H.1
  • 196
    • 84882580105 scopus 로고    scopus 로고
    • Multivariate regression modeling for functional data
    • Matsui, S., Araki, Y. and Konishi, S. 2008. Multivariate regression modeling for functional data, Journal of Data Science 6: 313–331.
    • (2008) Journal of Data Science , vol.6 , pp. 313-331
    • Matsui, S.1    Araki, Y.2    Konishi, S.3
  • 199
    • 0000868003 scopus 로고
    • Bayes factors for nonlinear hypotheses and likelihood distributions
    • McCulloch, R. E. and Rossi, P. E. 1992. Bayes factors for nonlinear hypotheses and likelihood distributions, Biometrika 79: 663–676.
    • (1992) Biometrika , vol.79 , pp. 663-676
    • McCulloch, R.E.1    Rossi, P.E.2
  • 200
    • 43949158952 scopus 로고
    • An exact likelihood analysis of the multinomial probit model
    • McCulloch, R. E. and Rossi, P. E. 1994. An exact likelihood analysis of the multinomial probit model. Journal of Econometrics 64: 207–240.
    • (1994) Journal of Econometrics , vol.64 , pp. 207-240
    • McCulloch, R.E.1    Rossi, P.E.2
  • 201
    • 0001434493 scopus 로고    scopus 로고
    • A Bayesian analysis of the multinomial probit model with fully identified parameters
    • McCulloch, R. E., Polson, N. G., Rossi, P. E. 2000. A Bayesian analysis of the multinomial probit model with fully identified parameters. Journal of Econometrics 99: 173–193.
    • (2000) Journal of Econometrics , vol.99 , pp. 173-193
    • McCulloch, R.E.1    Polson, N.G.2    Rossi, P.E.3
  • 202
    • 21444451325 scopus 로고    scopus 로고
    • Simulating ratios of normalizing constants via a simple identity: A theoretical exploration
    • Meng, X. L. and Wong, W. H. 1996. Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Statistica Sinica 6: 831–860.
    • (1996) Statistica Sinica , vol.6 , pp. 831-860
    • Meng, X.L.1    Wong, W.H.2
  • 204
    • 0000518006 scopus 로고    scopus 로고
    • BUGS for a Bayesian Analysis of Stochastic Volatility Models
    • Meyer, R. and Yu, J. 2000. BUGS for a Bayesian Analysis of Stochastic Volatility Models. Econometrics Journal 3: 198–215.
    • (2000) Econometrics Journal , vol.3 , pp. 198-215
    • Meyer, R.1    Yu, J.2
  • 206
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • ed. J. E. Moody, S. J. Hanson and R. P. Lippmann, San Mateo: Morgan Kaufmann
    • Moody, J. 1992. The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In Advances in Neural Information Processing System 4, ed. J. E. Moody, S. J. Hanson and R. P. Lippmann, 847–854. San Mateo: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing System , vol.4 , pp. 847-854
    • Moody, J.1
  • 208
    • 0347318519 scopus 로고    scopus 로고
    • Bayesian Analysis of ARMA-GARCH Models: A Markov Chain Sampling Approach
    • Nakatsuma, T. 2000. Bayesian Analysis of ARMA-GARCH Models: A Markov Chain Sampling Approach. Journal of Econometrics 95: 57–69.
    • (2000) Journal of Econometrics , vol.95 , pp. 57-69
    • Nakatsuma, T.1
  • 211
    • 0003078723 scopus 로고
    • Approximate Bayesian inference by the weighted likelihood bootstrap (With discussion)
    • Newton, M. A. and Raftery, A. E. 1994. Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion). Journal of the Royal Statistical Society B 56: 3–48.
    • (1994) Journal of the Royal Statistical Society B , vol.56 , pp. 3-48
    • Newton, M.A.1    Raftery, A.E.2
  • 212
    • 0042725427 scopus 로고    scopus 로고
    • A hybrid Markov chain for the Bayesian analysis of the multinomial probit model
    • Nobile, A. 1998. A hybrid Markov chain for the Bayesian analysis of the multinomial probit model. Statistics and Computing 8: 229–242.
    • (1998) Statistics and Computing , vol.8 , pp. 229-242
    • Nobile, A.1
  • 213
    • 0001857092 scopus 로고
    • Fractional Bayes factors for model comparison (With discussion)
    • O’Hagan, A. 1995. Fractional Bayes factors for model comparison (with discussion). Journal of the Royal Statistical Society B 57: 99–138.
    • (1995) Journal of the Royal Statistical Society B , vol.57 , pp. 99-138
    • O’Hagan, A.1
  • 214
    • 0001709577 scopus 로고    scopus 로고
    • Properties of intrinsic and fractional Bayes factors
    • O’Hagan, A. 1997. Properties of intrinsic and fractional Bayes factors. Test 6: 101–118.
    • (1997) Test , vol.6 , pp. 101-118
    • O’Hagan, A.1
  • 217
    • 0038957681 scopus 로고    scopus 로고
    • Portfolio selection and asset pricing models
    • Pastor, L. 2000. Portfolio selection and asset pricing models. Journal of Finance 55: 179–223.
    • (2000) Journal of Finance , vol.55 , pp. 179-223
    • Pastor, L.1
  • 218
    • 0034195524 scopus 로고    scopus 로고
    • Comparing asset pricing models: An investment perspective
    • Pastor, L. and Stambaugh, R. F. 2000. Comparing asset pricing models: an investment perspective. Journal of Financial Economics 56: 335–381.
    • (2000) Journal of Financial Economics , vol.56 , pp. 335-381
    • Pastor, L.1    Stambaugh, R.F.2
  • 219
    • 0000541109 scopus 로고
    • An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples
    • Patrick, R. 1982. An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples, Applied Statistics 31: 115–124.
    • (1982) Applied Statistics , vol.31 , pp. 115-124
    • Patrick, R.1
  • 220
    • 0002648792 scopus 로고    scopus 로고
    • The Schwarz criterion and related methods for normal linear models
    • Pauler, D. 1998. The Schwarz criterion and related methods for normal linear models. Biometrika 85: 13–27.
    • (1998) Biometrika , vol.85 , pp. 13-27
    • Pauler, D.1
  • 221
  • 222
    • 23544470859 scopus 로고    scopus 로고
    • Expected-posterior prior distributions for model selection
    • Perez, J. M. and Berger, J. O. 2002. Expected-posterior prior distributions for model selection. Biometrika 89: 491–512.
    • (2002) Biometrika , vol.89 , pp. 491-512
    • Perez, J.M.1    Berger, J.O.2
  • 223
    • 0002013327 scopus 로고
    • Bayesian Model Comparison Via Jump Diffusions
    • ed. W.R. Gilks, S. Richardson and D.J. Spiegelhalter, London: Chapman & Hall
    • Phillips, D. B. and Smith, A. F. M. 1995. Bayesian Model Comparison Via Jump Diffusions. In Practical Markov Chain Monte Carlo in Practice ed. W.R. Gilks, S. Richardson and D.J. Spiegelhalter, 215–239. London: Chapman & Hall.
    • (1995) Practical Markov Chain Monte Carlo in Practice , pp. 215-239
    • Phillips, D.B.1    Smith, A.F.M.2
  • 225
    • 45849088346 scopus 로고    scopus 로고
    • Penalized loss functions for Bayesian model comparison
    • Plummer, M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics 9: 523–539.
    • (2008) Biostatistics , vol.9 , pp. 523-539
    • Plummer, M.1
  • 227
    • 0032823523 scopus 로고    scopus 로고
    • Genome-wide analysis of DNA copy-number changes using cDNA microarrays
    • Pollack, J. R., Perou, C. M., Alizadeh, A. A. et al. 1999. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics 23: 41–46.
    • (1999) Nature Genetics , vol.23 , pp. 41-46
    • Pollack, J.R.1    Perou, C.M.2    Alizadeh, A.A.3
  • 229
    • 0002314378 scopus 로고
    • Bayesian inference in factor analysis
    • ed. L. Gleser, M. Perleman, S.J. Press, A. Sampson, New York: Springer-Verlag
    • Press, S. J. and Shigemasu, K. 1989. Bayesian inference in factor analysis, In: Contributions to probability and statistics, ed. L. Gleser, M. Perleman, S.J. Press, A. Sampson, 271–287. New York: Springer-Verlag.
    • (1989) Contributions to Probability and Statistics , pp. 271-287
    • Press, S.J.1    Shigemasu, K.2
  • 231
    • 0041415811 scopus 로고    scopus 로고
    • An Integrated Computational Model of Multiparty Electoral Competition
    • Quinn, K. M. and Martin, A. D. 2002. An Integrated Computational Model of Multiparty Electoral Competition. Statistical Science 17: 405–419.
    • (2002) Statistical Science , vol.17 , pp. 405-419
    • Quinn, K.M.1    Martin, A.D.2
  • 232
    • 84972518066 scopus 로고
    • One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo
    • Raftery, A. E. and Lewis, S. M. 1992. One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo. Statistical Science 7: 493–497.
    • (1992) Statistical Science , vol.7 , pp. 493-497
    • Raftery, A.E.1    Lewis, S.M.2
  • 235
    • 15344338513 scopus 로고    scopus 로고
    • On model selection (With Discussion), In Model Selection ed. by P.Lahiri 1–64 IMS
    • Rao, C. R. and Wu, Y., 2001. On model selection (with Discussion), In Model Selection ed. by P.Lahiri 1–64 IMS Lecture Notes-Monograph Series 38.
    • (2001) Lecture Notes-Monograph Series , vol.38
    • Rao, C.R.1    Wu, Y.2
  • 236
    • 38249032650 scopus 로고
    • Bayesian analysis of systems of seemingly unrelated regression equations under a recursive extended natural conjugate prior density
    • Richard J.F. and Steel M.F.J. 1988. Bayesian analysis of systems of seemingly unrelated regression equations under a recursive extended natural conjugate prior density. Journal of Econometrics 38: 7–37.
    • (1988) Journal of Econometrics , vol.38 , pp. 7-37
    • Richard, J.F.1    Steel, M.F.J.2
  • 237
    • 0001224911 scopus 로고    scopus 로고
    • Feedforward neural networks for nonparametric regression
    • ed. D. K. Dey, P. Müller and D. Sinha, New York: Springer Verlag
    • Rios Insua, D. and Müller, P. 1998. Feedforward neural networks for nonparametric regression. In Practical Nonparametric and Semiparametric Bayesian Statistics, ed. D. K. Dey, P. Müller and D. Sinha, 181–191. New York: Springer Verlag.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 181-191
    • Rios Insua, D.1    Müller, P.2
  • 243
    • 0035995077 scopus 로고    scopus 로고
    • Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models
    • Roverato, A. 2002. Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scandinavian journal of statistics 29: 391–411.
    • (2002) Scandinavian Journal of Statistics , vol.29 , pp. 391-411
    • Roverato, A.1
  • 245
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461–464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 247
    • 4444239427 scopus 로고    scopus 로고
    • Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage
    • Sha, N., Vannucci, M., Tadesse, M. G., et al. 2004. Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 60: 812–819.
    • (2004) Biometrics , vol.60 , pp. 812-819
    • Sha, N.1    Vannucci, M.2    Tadesse, M.G.3
  • 248
    • 84980092818 scopus 로고
    • Capital asset prices: A theory of market equilibrium under conditions of risk
    • Sharpe, W. F. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19: 425–442.
    • (1964) Journal of Finance , vol.19 , pp. 425-442
    • Sharpe, W.F.1
  • 249
    • 0001268552 scopus 로고
    • A reliable data-based bandwidth selection method for kernel density estimation
    • Sheather, S. J. and Jones, M. C. 1991. A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society B 53: 683–690.
    • (1991) Journal of the Royal Statistical Society B , vol.53 , pp. 683-690
    • Sheather, S.J.1    Jones, M.C.2
  • 251
    • 77950798733 scopus 로고    scopus 로고
    • Bayesian analysis of a Markov switching stochastic volatility model
    • Shibata, M. and Watanabe, T. 2005. Bayesian analysis of a Markov switching stochastic volatility model, Journal of Japan Statistical Society 35: 205– 219.
    • (2005) Journal of Japan Statistical Society , vol.35 , pp. 205-219
    • Shibata, M.1    Watanabe, T.2
  • 252
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to nonparametric regression curve fitting (With Discussion)
    • Silverman, B. W. 1985. Some aspects of the spline smoothing approach to nonparametric regression curve fitting (with Discussion). Journal of the Royal Statistical Society B 47: 1–52.
    • (1985) Journal of the Royal Statistical Society B , vol.47 , pp. 1-52
    • Silverman, B.W.1
  • 254
    • 0001308646 scopus 로고    scopus 로고
    • Information criteria for selecting possibly misspecified parametric models
    • Sin, C.-Y. and White, H. 1996. Information criteria for selecting possibly misspecified parametric models. Journal of Econometrics 71: 207–225.
    • (1996) Journal of Econometrics , vol.71 , pp. 207-225
    • Sin, C.-Y.1    White, H.2
  • 256
    • 0000824232 scopus 로고    scopus 로고
    • Nonparametric regression using Bayesian variable selection
    • Smith, M. and Kohn, R. 1996. Nonparametric regression using Bayesian variable selection. Journal of Econometrics 75: 317–343.
    • (1996) Journal of Econometrics , vol.75 , pp. 317-343
    • Smith, M.1    Kohn, R.2
  • 257
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: A sampling-resampling perspective
    • Smith, A. F. M. and Gelfand, A. E. 1992. Bayesian statistics without tears: a sampling-resampling perspective. American Statistician 46: 84–88.
    • (1992) American Statistician , vol.46 , pp. 84-88
    • Smith, A.F.M.1    Gelfand, A.E.2
  • 261
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (With discussion)
    • Stone, C. J. 1974. Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society Series B36: 111–147.
    • (1974) Journal of the Royal Statistical Society Series B , vol.36 , pp. 111-147
    • Stone, C.J.1
  • 262
    • 0001588455 scopus 로고
    • Comments on model selection criteria of Akaike and Schwarz
    • Stone, M. 1979. Comments on model selection criteria of Akaike and Schwarz. Journal of the Royal Statistical Society B 41 276–278.
    • (1979) Journal of the Royal Statistical Society B , vol.41 , pp. 276-278
    • Stone, M.1
  • 263
    • 0001930912 scopus 로고
    • Distribution of information statistics and criteria for adequacy of models
    • Japanese
    • Takeuchi, K. 1976. Distribution of information statistics and criteria for adequacy of models (in Japanese). Mathematical Sciences 153: 12–18.
    • (1976) Mathematical Sciences , vol.153 , pp. 12-18
    • Takeuchi, K.1
  • 264
    • 85055381141 scopus 로고    scopus 로고
    • On Asymmetry, Holiday and Day-of-the-Week Effects in Volatility of Daily Stock Returns: The Case of Japan
    • Tanizaki, H. 2004. On Asymmetry, Holiday and Day-of-the-Week Effects in Volatility of Daily Stock Returns: The Case of Japan. Journal of the Japan Statistical Society 34: 129–152.
    • (2004) Journal of the Japan Statistical Society , vol.34 , pp. 129-152
    • Tanizaki, H.1
  • 265
    • 0000679352 scopus 로고
    • Financial returns modelled by the product of two stochastic processes – A study of the daily sugar prices 1961–75
    • ed. Anderson, O. D., Amsterdam: North-Holland
    • Taylor, S. J. 1982. Financial returns modelled by the product of two stochastic processes – A study of the daily sugar prices 1961–75, In Time Series Analysis: Theory and Practice 1, ed. Anderson, O. D., 203–226, Amsterdam: North-Holland.
    • (1982) Time Series Analysis: Theory and Practice , vol.1 , pp. 203-226
    • Taylor, S.J.1
  • 267
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (With discussion)
    • Tierney, L. 1994. Markov chains for exploring posterior distributions (with discussion). Annals of Statistics 22: 1701–1762.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 269
    • 0001560641 scopus 로고
    • Fully exponential Laplace approximations to expectations and variances of nonpositive functions
    • Tierney, L., Kass, R. E. and Kadane, J. B. 1989. Fully exponential Laplace approximations to expectations and variances of nonpositive functions. J. Am. Statist. Assoc 84: 710–6.
    • (1989) J. Am. Statist. Assoc , vol.84 , pp. 710-716
    • Tierney, L.1    Kass, R.E.2    Kadane, J.B.3
  • 273
    • 0036152462 scopus 로고    scopus 로고
    • The microarray way to tailored cancer treatment
    • Veer, L. and Jone, D. 2002. The microarray way to tailored cancer treatment. Nature Medicine 8: 13–14.
    • (2002) Nature Medicine , vol.8 , pp. 13-14
    • Veer, L.1    Jone, D.2
  • 274
    • 0035889492 scopus 로고    scopus 로고
    • Variable selection and Bayesian model averaging in case-control studies
    • Viallefont, V., Raftery, A. E. and Richardson, S. 2001. Variable selection and Bayesian model averaging in case-control studies. Statistics in Medicine 20: 3215–3230.
    • (2001) Statistics in Medicine , vol.20 , pp. 3215-3230
    • Viallefont, V.1    Raftery, A.E.2    Richardson, S.3
  • 275
    • 21844487977 scopus 로고
    • Computing Bayes factor using a generalization of the Savage-Dickey density ratio
    • Verdinelli, I. and Wasserman, L. 1995. Computing Bayes factor using a generalization of the Savage-Dickey density ratio. Journal of the American Statistical Association 90: 614–618.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 614-618
    • Verdinelli, I.1    Wasserman, L.2
  • 276
    • 0035889492 scopus 로고    scopus 로고
    • Variable selection and Bayesian model averaging in case-control studies
    • Viallefont, V., Raftery, A. E. and Richardson, S. 2001. Variable selection and Bayesian model averaging in case-control studies. Statistics in Medicine 20: 3215–3230.
    • (2001) Statistics in Medicine , vol.20 , pp. 3215-3230
    • Viallefont, V.1    Raftery, A.E.2    Richardson, S.3
  • 277
    • 0034059779 scopus 로고    scopus 로고
    • Bayesian information criterion for censored survival models
    • Volinsky, C. T. and Raftery, A. E. 2000. Bayesian information criterion for censored survival models. Biometrics 56: 256–262.
    • (2000) Biometrics , vol.56 , pp. 256-262
    • Volinsky, C.T.1    Raftery, A.E.2
  • 278
    • 0002226399 scopus 로고    scopus 로고
    • Bayesian model selection and model averaging
    • Wasserman, L. 2000. Bayesian model selection and model averaging Journal of Mathematical Psychology 44: 92–107.
    • (2000) Journal of Mathematical Psychology , vol.44 , pp. 92-107
    • Wasserman, L.1
  • 279
    • 0002644952 scopus 로고
    • Maximum Likelihood Estimation of Misspecified Models
    • White, H. 1982. Maximum Likelihood Estimation of Misspecified Models. Econometrica 50: 1–25.
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1
  • 280
  • 282
    • 3843149220 scopus 로고    scopus 로고
    • Efficient estimation of covariance selection models
    • Wong, F., Carter, C. K. and Khon, R. 2003. Efficient estimation of covariance selection models. Biometrika 90: 809–830.
    • (2003) Biometrika , vol.90 , pp. 809-830
    • Wong, F.1    Carter, C.K.2    Khon, R.3
  • 283
    • 53649089253 scopus 로고    scopus 로고
    • Bayesian model averaging and exchange rate forecasts
    • Wright, J. H. 2008. Bayesian model averaging and exchange rate forecasts Journal of Econometrics 146: 329–341.
    • (2008) Journal of Econometrics , vol.146 , pp. 329-341
    • Wright, J.H.1
  • 284
    • 19744365632 scopus 로고    scopus 로고
    • On leverage in a stochastic volatility model
    • Yu, J. 2005. On leverage in a stochastic volatility model. Journal of Econometrics 127: 165–178.
    • (2005) Journal of Econometrics , vol.127 , pp. 165-178
    • Yu, J.1
  • 286
    • 33846530014 scopus 로고    scopus 로고
    • Bayesian analysis of a Tobit quantile regression model
    • Yu, K. and Stander, J. 2007. Bayesian analysis of a Tobit quantile regression model. Journal of Econometrics 137: 260–276.
    • (2007) Journal of Econometrics , vol.137 , pp. 260-276
    • Yu, K.1    Stander, J.2
  • 287
    • 84946357749 scopus 로고
    • An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias
    • Zellner, A. 1962. An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. Journal of the American Statistical Association 57: 348–368.
    • (1962) Journal of the American Statistical Association , vol.57 , pp. 348-368
    • Zellner, A.1
  • 289
    • 0002684291 scopus 로고
    • Maximal data information prior distributions
    • ed. A. Aykac and C. Brumat, Amsterdam: North-Holland
    • Zellner, A. 1977. Maximal data information prior distributions, In: New developments in the applications of Bayesian methods ed. A. Aykac and C. Brumat, 211–232. Amsterdam: North-Holland.
    • (1977) New Developments in the Applications of Bayesian Methods , pp. 211-232
    • Zellner, A.1
  • 290
    • 0346129438 scopus 로고    scopus 로고
    • Models, prior information, and Bayesian analysis
    • Zellner, A., 1996. Models, prior information, and Bayesian analysis Journal of Econometrics 75: 51–68.
    • (1996) Journal of Econometrics , vol.75 , pp. 51-68
    • Zellner, A.1
  • 291
    • 33947252665 scopus 로고    scopus 로고
    • S. James Press and Bayesian Analysis
    • Zellner, A. 2006. S. James Press and Bayesian Analysis. Macroeconomic Dynamics 10: 667–684.
    • (2006) Macroeconomic Dynamics , vol.10 , pp. 667-684
    • Zellner, A.1
  • 292
    • 0035565804 scopus 로고    scopus 로고
    • Bayesian modeling of economies and data requirements
    • Zellner, A. and Chen, B. 2001. Bayesian modeling of economies and data requirements. Macroeconomic Dynamics 5: 673–700.
    • (2001) Macroeconomic Dynamics , vol.5 , pp. 673-700
    • Zellner, A.1    Chen, B.2
  • 293
    • 0000627474 scopus 로고
    • Prediction and decision problems in regression models from the Bayesian point of view
    • Zellner, A. and Chetty, V. K. 1965. Prediction and decision problems in regression models from the Bayesian point of view. Journal of the American Statistical Association 60: 608–616.
    • (1965) Journal of the American Statistical Association , vol.60 , pp. 608-616
    • Zellner, A.1    Chetty, V.K.2
  • 295
    • 38249031890 scopus 로고
    • Bayesian specification analysis and estimation of simultaneous equation models using Monte-Carlo integration
    • Zellner, A., Bauwens, L., Van Dijk, H.K. 1988. Bayesian specification analysis and estimation of simultaneous equation models using Monte-Carlo integration, Journal of Econometrics 38: 39–72.
    • (1988) Journal of Econometrics , vol.38 , pp. 39-72
    • Zellner, A.1    Bauwens, L.2    van Dijk, H.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.